Inversion formula for the non-uniformly attenuated x-ray transform for emission imaging in \mathbb{R}^3 using quaternionic analysis

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/1751-8121/43/33/335202)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.89.198.100
The article was downloaded on 17/07/2010 at 03:45

Please note that terms and conditions apply.
Inversion formula for the non-uniformly attenuated x-ray transform for emission imaging in \mathbb{R}^3 using quaternionic analysis

S M Saberi Fathi

Université de Cergy-Pontoise, Laboratoire de Physique Théorique et Modélisation,
95302 Cergy-Pontoise, France

E-mail: majid.saberi@u-cergy.fr

Received 14 April 2010, in final form 22 June 2010
Published 16 July 2010
Online at stacks.iop.org/JPhysA/43/335202

Abstract

In this paper, we present a new derivation of the inverse of the non-uniformly attenuated x-ray transform in three dimensions, based on quaternionic analysis. An explicit formula is obtained using a set of three-dimensional x-ray projection data. The result without attenuation is recovered as a special case.

PACS numbers: 02.30.Jr, 02.30.Uu, 02.30.Zz

1. Introduction

When a radiopharmaceutical emits radiation of photon energy E_0, an ideal SPECT camera records only emitted photons, which arrive perpendicularly to its surface. We are dealing uniquely with photons of energy E_0; thus, we have to solve a simplified photon transport equation, which may be expressed as

$$\mathbf{n} \cdot (\nabla u_0)(\mathbf{r}, \mathbf{n}, E_0) = -a_0(\mathbf{r}, E_0)u_0(\mathbf{r}, \mathbf{n}, E_0) - f_0(\mathbf{r}, \mathbf{n}, E_0).$$

Here $u_0(\mathbf{r}, \mathbf{n}, E_0)$ represents the photon flux density in the direction \mathbf{n} of energy E_0, i.e. number of photons per unit surface perpendicular to \mathbf{n} per second. Recall that $a_0(\mathbf{r}, E_0)$ is the linear attenuation coefficient or rate of depletion per unit length traversed and finally $f_0(\mathbf{r}, \mathbf{n}, E_0)$ is the number of photons emitted in the direction \mathbf{n} per unit volume matter (of the extended radiation source). For simplicity, the energy label E_0 will be omitted hereafter.

The aim is to solve this partial differential equation with an isotropic source term $f_0(\mathbf{r})$:

$$\mathbf{n} \cdot (\nabla u_0)(\mathbf{r}, \mathbf{n}) = -a_0(\mathbf{r})u_0(\mathbf{r}, \mathbf{n}) - f_0(\mathbf{r}),$$

where the unknown photon flux density is $u_0(\mathbf{r}, \mathbf{n})$. Reconstructing f_0 from the data $u_0(\mathbf{x}, \mathbf{n})$ is the main problem posed here.

In three dimensions without attenuation, the solution is represented by the ‘x-ray cone beam’, without restriction on the set of source points \mathbf{x}. This has been worked out
mathematically in [1–4]. The reconstruction formula contains the average of the x-ray data on the unit sphere of \mathbb{R}^3. The case of point sources lying on a space curve is given by [5–8]. Finally, among the large amount of indirect inversion procedures, the most well known for efficiency and appeal are those by Smith, who developed a technique that converts divergent beam data into parallel beam data and used its known inversion procedure [9] and by Grangeat, who made a conversion of x-ray data into three-dimensional Radon data before using Radon inversion [10].

Reconstructing f_0 from equation (2) in two dimensions has been worked out by Novikov [11]. In this paper, we show that the use of quaternion analysis leads to a new inversion formula for the non-uniformly attenuated x-ray transform in \mathbb{R}^3. Quaternions are higher dimensional generalization of complex numbers. Although not widely used, they provide elegant compact local formulation for electromagnetism, solid mechanics and some other fields in engineering [12]. Recently, quaternions have been used in integral transforms, for example, in geophysical processes [13] or in signal processing [14]. In imaging science, [15] gets an inversion formula for the x-ray transform without attenuation. In another work [16], the inversion of exponential x-ray transform is given. The generalization of these works for the non-uniform attenuation is the subject of this paper. As we see later, this generalization is not trivial, because the fundamental solution of the Dirac operator with the non-uniform function $(D + a(x))$ in quaternion analysis has been studied only for an approximate vector potential of the form [17]

$$\left\{ \frac{x - x^{(i)}}{x - x^{(i)}_3}, i = 1, 2, \ldots \right\}. \quad (3)$$

This is not realistic in practical applications. However, the case of constant ‘$a = \text{constant}$’ has been studied in [18, 19].

In the next section, we introduce some useful notions on the algebra of real quaternions \mathbb{H} and collect the main results of quaternion analysis needed for our problem. Section 3 describes the derivation of the inversion formula giving the reconstructed function in terms of the x-ray data, and we give an interpretation of this new result. This paper ends with a conclusion and some perspectives to invert the x-ray transform in the presence of other effects.

2. Quaternions

Let $x = (x_1, x_2, x_3)$ be an element of \mathbb{R}^3, expressed in an orthonormal basis formed by three unit vectors t_1, t_2 and t_3 by $x = \sum_{m=1}^{3} x_m t_m$. The conventional vector space structure is given by a scalar (inner) product rule for the basis unit vectors, i.e. $(t_i \cdot t_m) = \delta_{im}$ and by a vector (cross) product, i.e. $t_1 \times t_2 = t_3$ with its cyclic permutations and the non-commutativity $t_m \times t_n = -t_n \times t_m$.

To this structure, one can add a new one

- by promoting the unit vectors to be imaginary units, i.e. $t_1^2 = t_2^2 = t_3^2 = -1$ and
- by introducing a non-commutative multiplication rule between them: $t_i t_j = -t_j t_i$ for $i \neq j$ and $t_i t_j t_k = t_k$ for all cyclic permutations of (i, j, k).

Then to each $x = \sum_{m=1}^{3} x_m t_m$, as a three-dimensional vector, corresponds a new object x (also called $\text{Vec} x$ by some authors), which has the same formal expression but with t_m following the new multiplication rule. Consequently, the identification

$$x \in \mathbb{R}^3 \mapsto x = \sum_{m=1}^{3} x_m t_m \quad (4)$$
is an isomorphism of \(\mathbb{R}^3 \) onto the set of ‘vector parts’ \(\{ \text{Vec} \} \) of more general objects called quaternions by Hamilton [27].

In fact, a quaternion \(x \) has four components, i.e. besides its imaginary vector part, there is also a scalar part \(\text{Sc} \, x = x_0t_0 \), where \(t_0 \) is the real (or non-imaginary) unit part (usually identified with the real unit \(1 = t_0 \in \mathbb{R} \)) and \(x_0 \in \mathbb{R} \), such that

\[
x = x_0t_0 + \sum_{m=1}^{3} x_m t_m = \text{Sc} \, x + \text{Vec} \, x = x_0t_0 + \mathbf{x}, \quad (x_0, x_1, x_2, x_3 \in \mathbb{R}). \tag{5}
\]

The set of quaternions with real components should be called \(\mathbb{H}(\mathbb{R}) \), but for simplicity, will be denoted by \(\mathbb{H} \).

Following [20], we give some of their properties:

- **Conjugate operation:**
 \[
x = x_0t_0 - \sum_{m=1}^{3} x_m t_m, \tag{6}
\]

- **Square norm:**
 \[
 |x|^2 = xx = x_0^2 + x_1^2 + x_2^2 + x_3^2, \tag{7}
\]

- **Inverse:**
 \[
 x^{-1} = \frac{\overline{x}}{|x|^2} \text{ if and only if } x \overline{x} \neq 0. \tag{8}
\]

Finally, the ordered product of two quaternions \(y = y_0t_0 + \mathbf{y} \) and \(x = x_0t_0 + \mathbf{x} \) is a quaternion \(w = yx = (\text{Sc} \, w + \text{Vec} \, w) \), where

\[
w_0 = \text{Sc} \, w = y_0x_0 - (\mathbf{y} \cdot \mathbf{x}) \quad \text{and} \quad w = \text{Vec} \, w = \mathbf{y}x_0 + y_0\mathbf{x} + \mathbf{y} \times \mathbf{x}. \tag{9}
\]

In particular, i.e. the ordered product of \(\mathbf{y} \) by \(\mathbf{x} \) is

\[
\mathbf{y} \mathbf{x} = -\mathbf{y} \cdot \mathbf{x} + \mathbf{y} \times \mathbf{x}. \tag{10}
\]

For our purposes, we do not require the full machinery of quaternionic analyticity as developed by Fueter and others [20, 21]. Here we are only concerned with analytic properties useful for imaging processes in \(\mathbb{R}^3 \) modeled by the x-ray transform. They are essentially extracted from [18, 22]:

\[
D = \sum_{j=1}^{3} \mathbf{i}_j \frac{\partial}{\partial x_j}. \tag{11}
\]

The quaternionic operator \(D \) has been given different names according to authors: Dirac operator for [18], three-dimensional Cauchy–Riemann operator for [12], Moisil–Teodorescu differential operator for [23], etc.

Inspection shows that it is related to the three-dimensional Laplace operator by \(\triangle = -D^2 \). The solutions of \(Df(x) = 0 \), called frequently left-monogenic \(\mathbb{H} \)-valued functions, satisfy many generalizations of classical theorems from complex analysis to higher dimensional context [22]. Given the elementary solution of the Laplace operator, \(\triangle E(x) = -D^2 E(x) = \delta(x) \), as

\[
E(x) = \frac{1}{4\pi |x|}, \tag{12}
\]

the elementary solution of \(D \) can be worked out as [18]

\[
K(x) = \sum_{j=1}^{3} K_j(x) t_j = -\frac{x}{4\pi |x|^3}, \quad x \neq 0, \tag{13}
\]

1 Quaternions with complex-valued components are called biquaternions and denoted by \(\mathbb{H}(\mathbb{C}) \).
where
\[
K_j(x) = -\frac{x_j}{4\pi |x|^3} \quad (j = 1, 2, 3).
\]
(14)

Note that \(K(x)\) is a \(\mathbb{H}\)-valued fundamental solution of \(D\) and therefore monogenic in \(G \setminus \{0\}\) where \(G \subset \mathbb{R}^3\).

Now, we write the generalized Leibniz formula in quaternions [18]:
\[
D(uw) = \pi Dw + (Du)w + 2SC(uD)w, \quad u, w \in \mathbb{H}(\mathbb{R}^4),
\]
where \(\mathbb{H}(\mathbb{R}^4)\) is the set of \(u\) and \(v\), which are \(\mathbb{H}\)-valued functions with the domain in \(\mathbb{R}^4\).

Consequently, there exists a three-dimensional Cauchy integral representation for continuous left-monogenic \(\mathbb{H}\)-valued functions on \(\overline{G}\) [22],
\[
(Ff)(x) := \int_{\Gamma} K(x - y)g(y)f(y) d\Gamma_y, \quad x \in G \setminus \Gamma,
\]
where \(g(y) = \sum_{j=1}^{3} \alpha_j(y) y_j\) is the quaternionic outward pointing unit vector at \(y\) on the boundary \(\partial G = \Gamma\), \(d\Gamma_y\) is the Lebesgue measure on \(\Gamma\). Moreover one has \(D(Fff)(x) = 0\).

The operator \(D\) has a right inverse, called the Teodorescu transform [24]. It is defined for all \(f(x) \in C(G, \mathbb{H})\) by
\[
(Tf)(x) := \int_{G} K(x - y) f(y) dy \quad x \in G \subset \mathbb{R}^3.
\]
(17)

Roughly speaking, \(D\) is a kind of directional derivative and \(T\) is just the integration, the right inverse of this directional derivative.

Conversely, for any \(f(x) \in C^1(G, \mathbb{H}) \cap C(\overline{G}, \mathbb{H})\), it can be shown that it satisfies the so-called Borel–Pompeiu formula [18]
\[
(Ff)(x) + (TD)f(x) = \begin{cases} f(x), & x \in G \\ 0, & x \in \mathbb{R}^3 \setminus \overline{G}. \end{cases}
\]
(18)

A generalization of the concept of Cauchy principal value for \((Ff)(x)\) can be introduced when the variable \(x\) is approaching the boundary \(\partial G = \Gamma\). For a given \(f\), at each regular point \(x' \in \Gamma\) [18], the non-tangential limit of the Cauchy integral representation can be written as
\[
\lim_{x \to x'} (Ff)(x) = \frac{1}{2} (\pm f(x') + (Sf)(x')),
\]
where
\[
(Sf)(x) = 2 \int_{\Gamma} K(x - y)g(y)f(y) d\Gamma_y
\]
(20)
is understood as a ‘quaternionic Cauchy principal value’ of the integral over the smooth boundary \(\Gamma\) because of the singularity of \(K(x)\) in the integrand.

A Plemelj–Sokhotskij-type formula for \(f\), relative to \(\Gamma\), [22, 24] can now be given as
\[
\begin{align*}
(i) \quad & \lim_{x \to x'} (Ff)(x) = (Pf)(x'), \\
(ii) \quad & \lim_{x \to x'} (Ff)(x) = -(Qf)(x'),
\end{align*}
\]
(21)
where \(P\) is the projection operator \((P^2 = P)\) onto \(\mathbb{H}\)-valued functions, which have a left-monogenic extension into the domain \(G\), and \(Q\) is the projection operator \((Q^2 = Q)\) onto \(\mathbb{H}\)-valued functions, which have a left-monogenic extension into the domain \(\mathbb{R}^3 \setminus \overline{G}\) and vanish at infinity.

\(P\) and \(Q\) can be given, in turn, an alternative form in terms of the quaternionic principal value operator \(S\) as
\[
P := \frac{1}{2} (I + S) \quad Q := \frac{1}{2} (I - S),
\]
(22)
with the following operator relations

\[SP = P, \quad SQ = -Q, \quad S^2 = SS = I. \tag{23} \]

Finally, we define a trace operator \(\text{tr} \) as a restriction map for an \(\mathbb{H} \)-valued function \(f \) on \(\Gamma \), smooth boundary of \(G \in \mathbb{R}^3 \), by

\[\text{tr} f = f|_\Gamma. \tag{24} \]

Notation. Here we review our notation in this paper. Only ‘bold’ letters are used for vectors or vector functions in \(\mathbb{R}^3 \), such as \(x \) or \(f(x) \). The index ‘zero’ indicates the scalar part of a quaternion or quaternion function, e.g. \(x_0 \) or \(a_0(x) \). Underlined bold letters are used for the vector part of the quaternions or quaternion functions, e.g. \(\underline{x} \) or \(\underline{f}(x) \). Operators with index ‘\(a \)’ are the operators with attenuation, e.g. \(T_a, X_a \).

3. The x-ray transform and its inverse

We are now in a position to tackle the inversion problem for the non-uniform attenuated x-ray transform of a physical density \(f_0(x) \). By definition, this transform consists of integrating \(f_0(x) \), assumed to be an integrable function with compact support in a convex set \(G \), along a straight line from the source point \(x \) to infinity in the direction of the unit vector \(n \), i.e.

\[(X_a f_0)(x, n) = \int_0^{\infty} dt \, e^{-\mathcal{D}a_0(x)t} f_0(x + tn), \tag{25} \]

where

\[\mathcal{D}a_0(x) = -\frac{1}{4\pi} \int_{\Omega_n} (Xa_0)(x, n) \, d\Omega_n, \tag{26} \]

where \(d\Omega_n \) is the area element of the unit sphere \(\Omega_n \) in \(\mathbb{R}^3 \) and \((Xa_0) \) is the x-ray transform

\[(Xa_0)(x, n) = \int_0^{\infty} dt \, a_0(x + tn). \tag{27} \]

In transmission modality, \(f_0 \) represents the attenuation map of the object under study, whereas in emission modality \(f_0 \) is its radiation activity density.

The next point is that if \(f_0(\infty) = 0 \), it can be verified that \((X_a f_0)(x, n)\) satisfies a very simple partial differential equation, namely

\[(n \cdot \nabla x + a_0(x)) (X_a f_0)(x, n) = -f_0(x). \tag{28} \]

This can be checked if we let the \((n \cdot \nabla x + a_0(x))\) operator act under the integral sign. After a change of variables, the integrand just turns into the differential of \(f_0(x) \) under the integral sign. Equation (28) is in fact a simplified stationary photon transport equation with loss by attenuation function \(a_0(x) \) and without source or sink term [25]. Since \((n \cdot \nabla x + a_0(x))\) is a directional derivative plus the attenuated term, clearly its inverse is an integration\(^2\). The solution of this partial differential equation is subjected to the following boundary condition. For a given direction \(n \), because of the support hypothesis and because of the prescription on the direction of integration, \((X_a f_0)(x, n) = 0\), whenever \(x \) is on the boundary \(\Gamma = \partial G \) of \(G \) and \(n \) points outward of \(\Gamma \).

To obtain the solution of the above equation by using real analysis, we write the solution of the homogenous form of equation (28), i.e.

\[(n \cdot \nabla x + a_0(x)) v_0(x, n) = 0 \tag{29} \]

\(^2\) This is not the second-order ultra-hyperbolic partial differential equation of John [26].
from which \(v_0(\mathbf{x}, \mathbf{n}) \) is obtained as

\[
v_0(\mathbf{x}, \mathbf{n}) = e^{-\int_{\mathbb{R}^3} G_0(\mathbf{x}-\mathbf{y}, \mathbf{n})v_0(\mathbf{y})dy}, \quad \mathbf{y} \in \mathbb{R}^3, \tag{30}
\]

where \(G_0(\mathbf{x} - \mathbf{y}, \mathbf{n}) \) is the Green’s function of the \((\mathbf{n} \cdot \nabla_x)\) operator.

At this point, we define \(u_0(\mathbf{x}, \mathbf{n}) \) in (28) as

\[
u_0(\mathbf{x}, \mathbf{n}) = C_0(\mathbf{x})v_0(\mathbf{x}, \mathbf{n}). \tag{31}\]

By substituting \(u_0(\mathbf{x}, \mathbf{n}) \) into equation (28), we have

\[
C_0(\mathbf{x}) = \int_{\mathbb{R}^3} \tilde{G}_0(\mathbf{x} - \mathbf{y}, \mathbf{n})v_0^{-1}(\mathbf{y}, \mathbf{n})f_0(\mathbf{y})dy, \tag{32}\]

and

\[
u_0(\mathbf{x}, \mathbf{n}) = -\int_{\mathbb{R}^3} R_0(\mathbf{x}, \mathbf{y}, \mathbf{n})f_0(\mathbf{y})dy, \tag{33}\]

where

\[
R_0(\mathbf{x}, \mathbf{y}, \mathbf{n}) = v_0(\mathbf{x}, \mathbf{n})\tilde{G}_0(\mathbf{x} - \mathbf{y}, \mathbf{n})v_0^{-1}(\mathbf{y}, \mathbf{n}). \tag{34}\]

We will use a similar method in the quaternion analysis to obtain an inversion solution for equation (28).

3.1. Quaternion solution

By considering \(\mathbf{n} \) independent of \(\mathbf{x} \), we can rewrite equation (28) in the following form:

\[
\mathbf{n} \cdot (\nabla + \mathbf{a})u_0(\mathbf{x}) = -f_0(\mathbf{x}), \tag{35}\]

where we define \(\mathbf{a} := a_0\mathbf{n} \).

We would like to use the machinery of quaternion analysis to obtain the inversion of the three-dimensional x-ray transform. The idea is to consider equation (28) as part of an inhomogeneous equation (11), with an \(\mathbb{H} \) valued ‘source’ function \(f = f_0(\mathbf{x}) + \mathbf{f}(\mathbf{x}) \) on its right-hand side for an unknown scalar function \(u_0(\mathbf{x}) \). As can be checked, the quaternionic product rule (9) yields

\[
\mathbf{n}D_\mathbf{a}u_0(\mathbf{x}) = \mathbf{f}(\mathbf{x}), \tag{36}\]

where \(D_\mathbf{a} \) is defined as follows:

\[
D_\mathbf{a} = D + \mathbf{a}. \tag{37}\]

Explicitly equation (36) has the following form:

\[
\mathbf{n}D_\mathbf{a}u_0(\mathbf{x}) = -\mathbf{n} \cdot (\nabla_x + \mathbf{a}(\mathbf{x}))u_0(\mathbf{x}) + \mathbf{n} \times (\nabla_x + \mathbf{a}(\mathbf{x}))u_0(\mathbf{x}) = f_0(\mathbf{x}) + \mathbf{f}(\mathbf{x}), \tag{38}\]

which leads to a set of two equations for \(u_0 \):

\[
(\mathbf{n} \cdot \nabla_x + a_0(\mathbf{x}))u_0(\mathbf{x}) = -f_0(\mathbf{x}) \tag{39}\]

\[
(\mathbf{n} \times \nabla_x)u_0(\mathbf{x}) = \mathbf{f}(\mathbf{x}), \tag{39}\]

the first one being exactly the one of the x-ray transform. By solving equation (39), we can obtain the solution of equation (39) as a by product, for given \(f_0(\mathbf{x}) \), first. Then, \(\mathbf{f}(\mathbf{x}) \) can be computed from the curl term and the gradient term of the solution.

From (39) the case \(\mathbf{f} = (\mathbf{n} \times \nabla_x)u_0 = 0 \) means that the areolar derivative of \(u_0 \) is equal to zero. In the other words, the derivative of \(u_0 \) on the plane perpendicular to \(\mathbf{n} \) is equal to zero, or \(u_0 \) is constant on the plane perpendicular to \(\mathbf{n} \).

Considering \(\mathbf{f} = 0 \), equation (36) becomes

\[
\mathbf{n}D_\mathbf{a}u_0(\mathbf{x}) = f_0(\mathbf{x}), \quad \mathbf{x} \in G, \tag{40}\]
in which we can easily see that the above equation is the transport equation (28) in the quaternion formalism.

Now, by multiplying equation (40) by \(-n\) from the left-hand side we have

\[
D_a u_0(x, n) = -n f_0(x),
\]

where we used ‘nn = -1’.

We choose the Dirichlet boundary condition for equation (41), i.e. the boundary value of \(u_0\) on the smooth boundary surface of \(\Gamma\) is equal to \(w_0\) which is a monogenic function. Hence, we have

\[
D_a u_0(x) = -n f_0(x), \quad x \in G
\]

where \(w_0\) is a scalar function.

Before obtaining the solution of the above equation, we derive an explicit form of \(T a\):

\[
(T a)(x) = \int_G K(x - y) a(y) \, dy
\]

\[
= \frac{1}{4\pi} \int_G \frac{x - y}{|x - y|^3} a(y) \, dy = \frac{1}{4\pi} \sum_{i,j=1}^3 \int_G \frac{x_i - y_i}{|x - y|^3} a_j(y) \, dy \, i \, j.
\]

The photon transport in the \(n\) direction of the x-ray source located at \(x\) required that \(y = x + nt\), where \(t \in \mathbb{R}^+\). Consequently, the volume element \(dy \) in spherical coordinates becomes \(d\gamma = t^2 \, dt \, d\Omega_n\), where \(d\Omega_n\) is the area element of the unit sphere \(\Omega_n\) in \(\mathbb{R}^3\). Then, we have

\[
(T a)(x) = \frac{1}{4\pi} \int_{\Omega_n} \int_{\mathbb{R}^+} \frac{nt}{|nt|^3} a_0(x + nt) t^2 \, d\Omega_n \, dt
\]

\[
= -\frac{1}{4\pi} \int_{\Omega_n} \left(\int_{\mathbb{R}^+} a_0(x + nt) \, dt \right) \, d\Omega_n,
\]

where we have \(a = na_0\) and \(nn = -1\). Now, we use the definition of the x-ray transform of component \(f_0\):

\[
Xa_0(x, n) := \int_{\mathbb{R}^+} a_0(x + nt) \, dt.
\]

Then, we have

\[
Da_0(x) := (Ta)(x) = -\frac{1}{4\pi} \int_{\Omega_n} (Xa_0)(x, n) \, d\Omega_n.
\]

Here we showed that the \((Ta) = (Ta_n)_0\) is a scalar function. Thus, the following theorem gives the solution \(u_0\) of the above equation when \((Ta)\) is a scalar function. This is sufficient to solve our problem.

Theorem. Assuming that \((Ta) = Sc((Ta)_0) = (Ta)_0\), and for \(f_0\) and \(u_0\), \(v_0\) differentiable or weakly differentiable functions in a normed space with domain in \(G \subset \mathbb{R}^3\), the solution of equation (42) is given by

\[
v_0 = e^{-Ta_0}
\]

\[
u_0 = -\frac{1}{4\pi} \int_{\Omega_n} (Xa_0)(x, n) \, d\Omega_n.
\]

Then, we have

\[
Qa_0(x) := (Ta)(x) = -\frac{1}{4\pi} \int_{\Omega_n} (Xa_0)(x, n) \, d\Omega_n.
\]

where \(Ta_0 f_0 = v_0 T v_0^{-1} f_0 \) and \(Faw_0 = v_0 F v_0^{-1} w_0\). With the condition

\[
Qa u_0 = -\operatorname{tr}(v_0 T v_0^{-1} f_0),
\]

\[
Qa u_0 = -\operatorname{tr}(v_0 T v_0^{-1} f_0),\]
where $Q_w v_0 = v_0 Q v_0^{-1}$ the above condition follows from Plemelj–Sokhotski’s formula. This means that there exists an extension onto the domain $\mathbb{R}^3 \setminus G$.

Proof. v_0 is the solution of the following homogenous equation:

$$D_a v_0 = (D + a) v_0 = D v_0 + a v_0 = 0,$$

where the solution of the above equation is equal to

$$v_0 = e^{-T a}.$$

In appendix A, we solve equation (51) using real analysis. We can verify the above solution by substituting expression (52) into equation (51):

$$D e^{-T a} + a v_0 = -(D T a) e^{-T a} + a v_0 = -(D T a) v_0 + a v_0 = -av_0 + a v_0 = 0,$$

where we used the fact that $DT v_0 = v_0$ in G, which means that T is the right inverse of D [22]. Now, we introduce the general solution of (42) as $u_0^{(p)} := v_0 C_0$, where C_0 is a function with domain in $G \subset \mathbb{R}^3$ and $\text{tr} C_0 = 0$. We replace it in equation (42). Thus, we have

$$D(v_0 C_0) + a v_0 C_0 = -n f_0.$$

Finally, (54) gives

$$D(v_0 C_0) = v_0 D C_0 + (D v_0) C_0 = v_0 D C_0 - a v_0 C_0 = -n f_0. $$

Consequently, (55) gives

$$v_0 D C_0 = -n f_0. $$

By acting v_0^{-1} on the above equation we obtain

$$D C_0 = -v_0^{-1} n f_0. $$

Now, taking into account that ‘$\text{tr} C_0 = 0$’ (which means that ‘$FC_0 = 0$’), C_0 has the following form:

$$C_0 = -T v_0^{-1} n f_0. $$

In a similar way where it was shown before that $(T a) = (T n a_0)$ is a scalar function, one can show that $(T v_0 n f_0)$ is a scalar function. Finally, $u_0^{(p)}$ is equal to

$$u_0^{(p)} = v_0 C_0 = -v_0 T v_0^{-1} n f_0 = -T a n f_0. $$

The proper solution $u_0^{(p)}$ of equation (42) which takes the value u_0 on the boundary, i.e. equation (43) is

$$\text{tr} u_0 = \text{tr} u_0^{(p)} + \text{tr} u_0^{(p)} = -tr (v_0 T v_0^{-1} n f_0) + tr u_0^{(p)}. $$

Using condition (50), we obtain

$$\text{tr} u_0 = Q_a w_0 + tr u_0^{(p)} = w_0. $$

Consequently,

$$\text{tr} u_0^{(p)} = (I - Q_a) w_0 = v_0 (I - Q) v_0^{-1} w_0 = v_0 P v_0^{-1} w_0 = P_a w_0. $$

where $P_a = v_0 P v_0^{-1}$. Thus, from the definition of $P w_0 = tr (F w_0)$ [18], $u_0^{(p)}$ is equal to

$$u_0^{(p)} = v_0 F v_0^{-1} w_0 = F_a w_0. $$

Finally, by considering $u_0^{(p)}$ and $u_0^{(p)}$, $u_0 = u_0^{(p)} + u_0^{(p)}$ is obtained by equation (49). We verify our solution by acting D_a on equation (42). Then, we have

$$D_w u_0 = -D_w v_0 T v_0^{-1} n f_0 + D_a (F_a w_0) = -v_0 D_a T v_0^{-1} n f_0 + (D_a v_0) T v_0^{-1} n f_0,$$

where we used the generalized Leibniz formula (15) and
\[D(F_u w) = D(v_0 F_{v_0^{-1}} w_0) = (Dv_0) F_{v_0^{-1}} w_0 + v_0 D F_{v_0^{-1}} w_0 = -\mathbf{a} F_{v_0^{-1}} w_0 + 0, \quad (65) \]

where we use \(D F_{v_0^{-1}} w_0 = 0 \), which means that \((F_{v_0^{-1}} w_0) \) is a monogenic function \([22]\). Thus, as a result, we can conclude that \(D_a F_a w_0 = 0 \).

Thus, equation (64) is obtained as
\[D_a u_0 = -v_0 v_1^{-1} \mathbf{n} f_0 - v_0 a T v_0^{-1} \mathbf{n} f_0 + (v_0 \mathbf{a}) T v_0^{-1} \mathbf{n} f_0 = -\mathbf{n} f_0, \quad (66) \]
where in the first term on the right-hand side we used \(DTu_0 = u_0 \).

Now, we check the solution at the boundary condition (43). Thus, by substituting \(u_0 \) from (48) into (43), we obtain
\[w_0 = -\operatorname{tr}(v_0 T v_0^{-1} \mathbf{n} f_0 + F_u w_0) = -\operatorname{tr}(v_0 T v_0^{-1} \mathbf{n} f_0) + \operatorname{tr}(F_a w_0) = -\operatorname{tr}(v_0 T v_0^{-1} \mathbf{n} f_0) + P_a w_0, \quad (67) \]
where in the last equation we use: \(\operatorname{tr}(F_u w_0) = (F_a w_0) \Gamma = P_a w_0 \). Then, (67) yields
\[-\operatorname{tr}(v_0 T v_0^{-1} \mathbf{n} f_0) = (I - P_a) w_0 = Q_a w_0. \quad (68) \]

\[\square \]

3.2. The x-ray representation

Now, we reconstruct \(f_0 \) by using equation (49). As shown in (66), \(D_a u_0 = D_a (-v_0 v_1^{-1} \mathbf{n} f_0 + F_a w_0) = -\mathbf{n} f_0 \); thus,
\[\mathbf{n} f_0 = D_a (v_0 T v_0^{-1} \mathbf{n} f_0) \quad (69) \]
which gives \(\mathbf{n} f_0 \). Now, replacing \(\mathbf{n} f_0 \) by \(f_0 \), we can obtain \(f_0 \):
\[f_0 = D_a (v_0 T v_0^{-1} f_0) \quad (70) \]
or by using \(D_a v_0 = 0 \) (equation (51)), we have
\[f_0 = v_0 D_a (T v_0^{-1} f_0). \quad (71) \]

To get the explicit form of \(f_0(x) \) in terms of the imaging data set, we first compute the Teodorescu transform of \(v_0^{-1} f_0 \). Thus, by using equation (47), \(v_0 \) is written as
\[v_0(x) = e^{-T (x)} = e^{\frac{\theta}{2}} \int_{\Omega_n}(X_{\mathbf{n}}(x, \mathbf{n})d\Omega_n = e^{\mathbf{D}_{\mathbf{n}}(x)}. \quad (72) \]

Then, we obtain \((Tv_0^{-1} f_0)(x)\) by using the same method with which we obtained \((T \mathbf{a})\) in equation (47):
\[(Tv_0^{-1} f_0)(x) = \int_G K(x - y)(v_0^{-1} f_0)(y) \ dy \]
\[= \frac{1}{4\pi} \int_{\Omega_n} \mathbf{n}[X(v_0^{-1} f_0)](x, \mathbf{n}) d\Omega_n. \quad (73) \]

Now, we define the attenuated x-ray transform as follows:
\[(X_{\mathbf{a}} f)(x, \mathbf{n}) := \int_{\mathbb{R}^2} e^{-\mathbf{D}_{\mathbf{n}}(x + \mathbf{n})} f_0(x + \mathbf{n}) \ df. \quad (74) \]

Thus, equation (73) is rewritten as
\[(Tv_0^{-1} f_0)(x) = \frac{1}{4\pi} \int_{\Omega_n} \mathbf{n}(X_{\mathbf{a}} f_0)(x, \mathbf{n}) d\Omega_n. \quad (75) \]

Hence, \(f_0 \) is obtained by
\[f_0(x) = v_0 D_a (Tv_0^{-1} f_0)(x) = \frac{1}{4\pi} e^{\mathbf{D}_{\mathbf{n}}(x)} D_a \int_{\Omega_n} \mathbf{n}(X_{\mathbf{a}} f_0)(x, \mathbf{n}) d\Omega_n. \quad (76) \]
As earlier in this paper we have introduced $(X_{a_0}f_0)(x, n)$, this is a monogenic (analytic) function on Ω_1n; thus, $[a_0(x)(X_{a_0}f_0)(x, n)]_{\Omega_1n} \to 0$ as $t \to 0$. Finally, the reconstruction formula for f_0 is obtained as

$$f_0(x) = -\frac{1}{4\pi} e^{\mathcal{D}_a(x)} \int_{\Omega_1n} (n \cdot \nabla_x) (X_{a_0}f_0)(x, n) \, d\Omega_n. \quad (77)$$

Case $a_0 = 0$. In the special case where $a_0 = 0$, $\mathcal{D}_a = 0$. Equation (77) is given as

$$f_0(x) = \frac{1}{4\pi} \int_{\Omega_n} (n \cdot \nabla_x) (Xf_0)(x, n), \quad (78)$$

where $(Xf_0)(x + nt) = \int_0^\infty dt f_0(x + nt)$ is the x-ray transform without attenuation. Here the result is the one obtained by [15]. A comparison of the above formula with other results given by [15] is presented in appendix B.

4. Conclusion

In this paper, by using quaternion analysis we have obtained a successful inverse formula for the non-uniform x-ray transform in three dimensions. As we have shown in equation (77) for the case without attenuation $a_0 = 0$ has a different form, but it is essentially equivalent to the result obtained many years ago in previous works.

Appendix A.

In this appendix we compute a solution for equation (51) using real analysis. Equation (51) can be written as

$$\nabla_x v_0 + na_0 v_0 = 0. \quad (A.1)$$

Multiplying by n the left-hand side yields

$$(n \cdot \nabla_x) v_0 + a_0 v_0 = 0, \quad (A.2)$$

or

$$(n \cdot \nabla_x) \ln v_0 = -a_0, \quad (A.3)$$

where by introducing $\phi_0 := \ln v_0$ and $\rho_0 := -a_0$, we have

$$(n \cdot \nabla_x) \phi_0 = \rho_0. \quad (A.4)$$

The above equation is a stationary transport equation with the source term ρ_0 and without attenuation. The solution of this equation is known to be given by a divergent x-ray transform of the data [15, 28], i.e.

$$\phi_0(x, n) = (X\rho_0)(x, n) := \int_{\mathbb{R}} \rho_0(x + nt) \, dt. \quad (A.5)$$

Now, by replacing ρ_0 and ϕ_0 by $\ln v_0$ and $-a_0$, respectively, we obtain

$$v_0(x, n) = e^{-\int_{\mathbb{R}} a_0(x + nt) \, dt}, \quad (A.6)$$

which is the same result as obtained from quaternion analysis. This solution is obtained without restriction on a_0. Thus, equation (51) or (A.1) does not impose any restriction on a_0.

10
Appendix B. Comparison of formula (78) with known results [15]

In [3], the inverse formula of the x-ray transform in three dimensions is given by

\[f_0(x) = -\frac{1}{2\pi^2} \Delta_x \mathcal{R}^1 \int_{\Omega_n} (Xf_0)(x, \mathbf{n}) \, d\Omega_n = -\frac{1}{2\pi^2} \Delta_x \mathcal{R}^1 \int_{\Omega_n} u_0(x, \mathbf{n}) \, d\Omega_n, \]

(B.1)

where

\[\mathcal{R}^1 f_0(x) = \frac{1}{2\pi^2} \int \frac{1}{|x - y|^2} f_0(y) \, dy. \]

(B.2)

Setting \(y = x + \mathbf{n}t \) in the above equation, we find

\[\mathcal{R}^1 f_0(x) = \frac{1}{2\pi^2} \int_{\Omega_n} \int_{\mathbb{R}^n} f_0(x + \mathbf{n}t) \, dt \, d\Omega_n = \frac{1}{2\pi^2} \int_{\Omega_n} (Xf_0)(x, \mathbf{n}) \, d\Omega_n. \]

(B.3)

In equation (B.1) we may define \(\frac{1}{4\pi} \int_{\Omega_n} u_0(x, \mathbf{n}) \, d\Omega_n = (u_0)_n \) as the average of \(u_0 \) over a unit ball. Thus, by using the above relation, equation (B.3) can be written as

\[f_0(x) = -\Delta_x \mathcal{R}^1 (u_0)_n = -\frac{2}{\pi} \Delta_x (X(u_0)_n)(x) = -\frac{2}{\pi} \int_{\Omega_n} \Delta_x (Xu_0)(x, \mathbf{n}) \, d\Omega_n. \]

(B.4)

Here we obtain another form for \(\Delta_x (Xu_0)_n \). From equation (39), which expresses \(f \) as \(f = \mathbf{n} \times \nabla_x u_0 \), we deduce that \(\nabla_x \cdot f = 0 \). Thus,

\[\nabla_x \cdot (\nabla_x \times \mathbf{n}u_0) = \nabla_x \cdot \nabla_x u_0 = \nabla_x (\mathbf{n} \cdot \nabla_x u_0) = \mathbf{n} \Delta_x u_0 + \nabla_x f_0 = 0, \]

(B.5)

which yields

\[\Delta_x u_0 = - (\mathbf{n} \cdot \nabla_x) f_0. \]

(B.6)

Substitution of this expression into equation (B.4) gives an alternative form of the reconstructed \(f_0 \):

\[f_0(x) = \frac{2}{\pi} \int_{\Omega_n} (\mathbf{n} \cdot \nabla_x) (Xf_0)(x, \mathbf{n}) \, d\Omega_n. \]

(B.7)

which, up to a normalization factor, has the same form as equation (78).

References

[18] Gürlebeck K and Sprößig W 1997 Quaternionic and Clifford Calculus for Physicists and Engineers (Chichester: Wiley)

[27] Hamilton W R 1866 Elements of Quaternions (London: Longmans, Green)