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A nonlinear model is developed for the vibration of a single-walled carbon nanotube
(SWCNT) based on Eringen’s nonlocal elasticity theory. The nanotube is assumed to be
embedded in a Pasternak-type foundation with simply supported boundary conditions.
The nonlinear equation of motion is solved by the energy balance method (EBM) to obtain
a sufficiently accurate flow-induced frequency. It is demonstrated that the nonlinearity of
the model makes a reasonable change to the frequency at high flow velocity and for the
large deformations. Furthermore, the deviation of the frequency from the linear frequency
will be exaggerated with an increase in the nonlocal parameter and a decrease of the Pas-
ternak parameters. Ultimately, the results show that the nonlinearity of the model can be
effectively tuned by applying axial tension to the nanotube.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The exceptional and extraordinary mechanical, electrical, chemical and physical properties of carbon nanotubes (CNTs)
have made them suitable for many innovative applications in nanotechnology. Recently, CNTs have been introduced and
used widely as a building block in nano-electro-mechanical systems (NEMS) such as in nano-sensors [1–3] , nano-resonators
[4,5], nano-switches [6], nano-resistors [7], nano-motors [8] and nano-robots [9]. Moreover, pursuant to hollow cylindrical
shape of nanotubes with extremely high elasticity and flexibility, CNTs are used as nano-pipes, nano-containers, and nano-
fluid and -gas storage devices [10–13]. In this way, they can be used in nano-medicine as pharmaceutical excipients for cre-
ating versatile drug delivery systems (DDSs) [14]. The drug can be delivered directly to the target cells trough CNT-based
nano-pipes and consequently, the therapeutic properties of the drug will be improved, with a reduction of undesirable side
effects [14,15]. In such nanotube-based fluidic devices, flow-induced vibration of CNTs is a very important topic and of great
interest to nano-material scientists. Two different approaches are usually applied to investigate the vibrational behavior of
nanotubes, namely: the Molecular Dynamic (MD) simulation and the continuum approach. Since MD simulation is still time
consuming and needs much computational effort, even for small nano-structures, continuum theories are widely and suc-
cessfully used to simulate the dynamical behavior of CNTs. The Euler–Bernoulli elastic theory is employed to assess the
flow-induced vibrational behavior and stability of single-walled carbon nanotubes (SWCNTs) [16–19] and multi-walled car-
bon nanotubes (MWCNTs) [15,20–23]. However, as the size of nanotubes is on the nano-scale, the local continuum theories
may not predict the mechanical behavior of CNTs accurately. Hence, the nonlocal continuum theory introduced by Eringen
[24], which contains information about the long-range forces between atoms and the internal length scale, will be a good
. All rights reserved.
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alternative theory because it provides a more than satisfactory model [25,26]. In recent years, several investigations applied
the nonlocal Euler–Bernoulli elastic theory to simulate the vibration of nanotubes conveying fluid. Lee and Chang [27] devel-
oped a nonlocal Euler–Bernoulli elastic model of a SWCNT conveying fluid to analyze the effects of the fluid flow on vibration
frequency and mode shapes of the nanotube. These authors [28] also considered flow-induced vibration of a viscous-fluid-
conveying SWCNT embedded in a Winkler-type foundation, on the basis of the nonlocal continuum theory. The influences of
the nonlocal parameter, viscosity, aspect ratio, and elastic medium constant on the fundamental frequency have been inves-
tigated. Wang [29] introduced a nonlocal Euler–Bernoulli elastic beam model to describe the vibration and instability of
tubular micro- and nano-beams conveying fluid. He found that the effects of the small-scale parameter on vibration prop-
erties and critical flow velocity are visible in nano-pipes while such effects can be neglected in micro-pipes. Based on thermal
elasticity–mechanics and nonlocal continuum theory, an elastic beam model was developed for analysis of dynamic behavior
of fluid-conveying SWCNTs by Zhen and Fang [25]. In this study, the thermal and nonlocal effect on the vibration and insta-
bility of a SWCNT conveying fluid was studied. It was found that the natural frequencies and critical flow velocity increase
with temperature changes and the nonlocal effect is enhanced with flow velocity.

Since CNTs should usually be embedded in a foundation, the mechanical properties of the medium play an important role
in the dynamic behavior of nanotubes. The Winkler-type foundation which simulates the elastic medium as a series of clo-
sely spaced, mutually independent, vertical springs is applied widely to show the interaction between the foundation and
the CNT [19,25,30–33]. However, this model simulates the foundation as a discontinuous and incoherent medium and can-
not predict the mechanical behavior accurately. The Pasternak-type foundation model represents a more precise and gener-
alized simulation of the medium, using two different parameters (called Pasternak parameters). The first parameter
represents normal pressure while the second accounts for shear resistance due to interaction of shear deformation of the
elastic medium [34]. Recently, the Pasternak-type foundation was applied for vibration analysis of nanotubes [34,35]
whereas up to now there was no publication dealing with flow-induced vibration of CNTs using this kind of foundation
model.

All of the mentioned works suggested linear formulations for the vibration of CNTs while previous theoretic and exper-
imental investigations [36–38] showed that the deformation of nanostructures, such as CNTs, is nonlinear in nature when
subjected to large external loads and displacements. Recently, Rasekh and Khadem [39] developed a nonlinear vibration
model of a SWCNT conveying fluid. The SWCNT was assumed to be embedded in a Winkler-type elastic foundation. The non-
linear governing equation of motion was derived using local continuum theory and solved by a traditional perturbation
method called the method of multiple scales (MMS). The most important limitation of the perturbation techniques is that
the solution is completely related to the small perturbation parameter and is valid for weak nonlinear problems. To obtain
the analytical solution for strongly nonlinear models, the approximate variational methods, as novel and simple techniques
with reasonable accurate results, can be used instead of traditional perturbation methods. Lately, the approximate varia-
tional methods such as the variational iteration method [40–43], the homotopy perturbation method [44–47], the parameter
expansion method [48–50], the max–min method [51–53], and the energy balance method [54–58] (EBM) have been widely
and successfully applied to various kinds of nonlinear mathematical, physical, and engineering problems. Moreover, in the
field of nanostructures and nano-modeling, some research has used approximate variational methods to predict the nonlin-
ear mechanical behavior of nanostructures [59,60].

In this research, for the first time, the nonlocal continuum theory is applied to simulate the nonlinear vibration of a
SWCNT conveying fluid, resting on a Pasternak-type elastic foundation. The EBM is used to calculate the nonlinear flow-in-
duced frequency as a function of vibration amplitude. The obtained results show good agreement with the numerical sim-
ulation and also with a previous simpler study. The influence of the vibration amplitude, flow velocity, nonlocal parameter
and stiffness of the medium on the nonlinear frequency variation is discussed widely. Moreover, it is shown that the axial
tension of the nanotube can tune the effect of the nonlinearity of the system effectively.

2. The nonlinear model for a single-walled carbon nanotube conveying fluid

Fig. 1 demonstrates a SWCNT conveying fluid, as a hollow cylindrical tube in a Pasternak-type elastic medium. The nano-
tube is assumed to be simply supported at both ends and the effect of gravity is negligible. As the SWCNT is supposed to be
slender, Euler–Bernoulli beam theory is applied to simulate the vibrational behavior in the model.

Using Newton’s law, the governing equation of transverse motion of a SWCNT conveying fluid can be expressed as:
@Q
@x
¼ mc

@2w
@t2 þ kew� kp

@2w
@x2 þ F

@2w
@x2 þ Fw: ð1Þ
where x is the axial coordinate, t is the time and w(x, t) is the transverse deflection of the SWCNT. mc is the mass of the nano-
tube per unit length; ke and kp are Pasternak parameters that usually represent the Winkler and Pasternak constants of the
surrounding medium, in that order. Q and F are the transverse shear force and applied axial tension respectively. Fw repre-
sents the force per unit length induced by the fluid flow and is given by Ref. [25] as follows
Fw ¼ mf 2v @2w
@x@t

þ v2 @
2w
@x2 þ

@2w
@t2

 !
: ð2Þ
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Fig. 1. A single-walled carbon nanotube embedded in a Pastrenak-type foundation model characterized by the Winkler (kw) and Pasternak (kp) constant.
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Here, v is the uniform mean flow velocity and mf is the mass of fluid per unit length of a SWCNT. In the above equation, the
right terms represent the Coriolis, centrifugal, and transverse forces, in that order.

For Euler–Bernoulli beam theory, the transverse shear force Q, the bending moment of the model M, and the longitudinal
force N are related through [61]:
@Q
@x
¼ @

2M

@2x
þ N

@2w

@2x
; ð3Þ
while the bending moment M and the longitudinal force N can be expressed as
M ¼
Z

z:rxxdAc ¼
Z

z:EexxdAc; N ¼
Z

rxxdAc ¼
Z

EexxdAc: ð4Þ
where exx and rxx are the axial strain and the axial stress on the nanotube respectively. z shows the distance from the neutral
axis and Ac represents the cross section of the nanotube.

The classical or local continuum theories simulate the mechanical behavior of a structure as continuum medium and state
that the stress at a point is only related to the strain state at that point. However, increasing importance of surface energy,
discrete nature of the matter, internal strain, and quantum confinement at nanometer length scales may affect this assump-
tion and cause the local continuum theories to cease to be valid for nanostructures [62].

Nonlocal continuum theories, introduced by Eringen in 1983, are concerned with the physics of materials bodies whose
behavior at a material point is influenced by the state of all points of the body. These theories are based on lattice dynamics
and observations on phonon dispersion that describe the material as consisting of discrete atoms connected by forces from
other neighboring atoms. Nonlocal theories state that the stress tensor at a reference point in an elastic medium depends not
only on the strains at that point but also on the strains emanating from all other points in the body. This nonlocal description
of mechanical behavior of materials is faithful in microscopic scales to the size of the lattice parameter [24] and makes con-
tinuum models more accurate on the nanoscale [63]. In other words, the nonlocal elasticity introduces an internal length
scale into the constitutive equation as a material parameter and consequently, admits size dependence and small-scale ef-
fects in the elastic solutions. From a simple physical point of view, the nonlocal theory introduces a more flexible model as
the CNT can be viewed as atoms linked by elastic springs while the local model assumes spring constants to take on an infi-
nite value [64]. The nonlocal constitutive equation for a uniaxial stress state takes the form of [61]:
rxx ¼ Eexx þ ðe0aÞ2 @
2rxx

@x2 : ð5Þ
where E is the Young’s modulus of SWCNT, a is the characteristic length of the structure, and e0 represents the small scaling
parameter. The nonlocal parameter e0a in the modeling will lead to a small-scale effect on the response of structures at nano-
size and is a constant appropriate to each material which is used for adjusting the model to match reliable results by exper-
imentation or other theories.

Using Eqs. (4) and (5) can be rewritten as:
M � ðe0aÞ2 @
2M
@x2 ¼

Z
zEexxdAc: ð6Þ
The two dimensional displacement field of the model is
uðx; z; tÞ ¼ uðx; tÞ � z:
@w
@x

; ð7aÞ

wðx; z; tÞ ¼ wðx; tÞ: ð7bÞ
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where u is the longitudinal displacement. The von Karman strain of the Euler–Bernoulli elastic theory [65] associated with
the displacement field Eq. (7) is:
exx �
@uðx; z; tÞ

@x
þ 1

2
@wðx; z; tÞ

@x

� �2

¼ @
2u
@x2 � z:

@2w
@x2 þ

1
2

@wðx; z; tÞ
@x

� �2

: ð8Þ
Substituting exx from Eq. (8) into Eq. (5), we obtain:
M � ðe0aÞ2 @
2M
@x2 ¼ EI

@2w
@x2 : ð9Þ
Note that
R

zdAc ¼ 0 and
R

z2dAc ¼ I, where I denotes the second moment of area of the SWCNT about the neutral axis.
Substituting for the second derivative of M from Eq. (3) into Eq. (9), we obtain:
M ¼ ðe0aÞ2 @Q
@x
� N

@2w
@x2

" #
þ EI

@2w
@x2 : ð10Þ
By substituting M from Eq. (10) into Eq. (9), the dynamical equilibrium equation of the SWCNT will be derived as:
EI
@4w
@x4 þ

@Q
@x
� N

@2w
@x2 � ðe0aÞ2 @3Q

@x3 � N
@4w
@x4

" #
¼ 0: ð11Þ
For slender nanotubes and for immovable end conditions (i.e. u(0, t) = u(L, t) = 0), the longitudinal displacement u is expressed
as a function of the transverse displacement w and axial tension F [39]
u ¼ �1
2

Z x

0

@w
@x

� �2

dxþ x:
F

EAc

� �
þ x

2L

Z L

0

@w
@x

� �2

dx: ð12Þ
where L is the length of SWCNT.
Substitution of Eqs. (12) and (8) in Eq. (5) yields an explicit expression for the longitudinal force N:
N ¼ F þ EAc

2L

Z L

0

@w
@x

� �2

dx: ð13Þ
Substituting Eqs. (1) and (13) into Eq. (11) with using Eq. (2) lead to final form of the nonlinear governing equation of motion
of a fluid-conveying SWCNT based on the nonlocal Euler–Bernoulli beam theory:
mc
@2w
@t2 þ EI

@4w
@x4 þ kew� kp

@2w
@x2 þ F

@2w
@x2 þmf 2v @2w

@x@t
þ v2 @

2w
@x2 þ

@2w
@t2

 !

� ðe0aÞ2 mc
@4w
@t2@x2

þ ke
@2w
@x2 � kp

@4w
@x4 þ F

@4w
@x4 þmf 2v @4w

@x3@t
þ v2 @

4w
@x4 þ

@4w
@x2@t2

 !
� EAc

2L
:
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2
4
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2L
@2w
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Z L

0

 
@w
@x

!2

dx ¼ 0: ð14Þ
Since the nanotube is assumed to be simply supported at both ends, the boundary conditions can be written as:
wð0; tÞ ¼ @
2wð0; tÞ
@x2 ¼ 0 at x ¼ 0;

wðL; tÞ ¼ @
2wðL; tÞ
@x2 ¼ 0 at x ¼ L:

ð15Þ
In the above formula, w(x, t) are expanded as:
wðx; tÞ ¼ qðtÞ:/1ðxÞ: ð16Þ
where /1 represent the normalized mode functions of the nanotube from the linear vibration analysis due to the specified
boundary condition. Meanwhile, the mode function /1 satisfies the following formula.
Z L

0
/iðxÞ/jðxÞdx ¼ dij: ð17Þ
and dij is the Kronecker delta.
Substituting Eq. (16) into Eq. (14) and utilizing Eq. (17), we have:
€qðtÞ þ ½1þ e2ðKe þ Kp � T � U2Þ þ Ke þ Kp � T � U2�:x2
0

1þ e2 :qðtÞ þ x2
0

4r2 � q
3ðtÞ ¼ 0: ð18Þ
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The corresponding dimensionless parameters and variables are defined as:
x0 ¼
p2

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

mc þmf

s
; e ¼ p

L
ðe0aÞ; Ke ¼

L4

p4

1
EI

ke; Kp ¼
L2

p2

1
EI

kp;

T ¼ L2

p2

1
EI

F; U ¼ L
p

ffiffiffiffiffiffi
mf

EI

r
� v ; r ¼

ffiffiffiffiffi
I

Ac

s
:

ð19Þ
3. Solution procedures

To seek the solution of Eq. (18), we apply EBM to this nonlinear vibration equation. Based on the EBM, the balance be-
tween the kinetic and potential energy of a vibrating system occurs when the phase angle of the oscillation is p

4. Hence, a
Hamiltonian is built using the variational principle, and the nonlinear frequency can be determined with the collocation
method. [54,66]

The variational form of Eq. (18) can be obtained as:
JðqÞ ¼
Z t

0
�1

2
: _q2ðtÞ þ ½1þ e2ðKe þ Kp � T � U2Þ þ Ke þ Kp � T � U2�:x2

0

2:ð1þ e2Þ � q2ðtÞ þ x2
0

16r2 q4ðtÞ
 !

dt: ð20Þ
If the initial conditions are assumed to be as:
qð0Þ ¼ a0; _qð0Þ ¼ 0: ð21Þ
The harmonic approximate solution will be expressed as:
qðtÞ ¼ a0 cosðx � tÞ: ð22Þ
where, x is the nonlinear flow-induced frequency and a0 is the amplitude of the vibration.
Therefore, the Hamiltonian of Eq. (20) can be written in the form
H ¼ 1
2
: _q2ðtÞ þ ½1þ e2ðKe þ Kp � T � U2Þ þ Ke þ Kp � T � U2�:x2

0

2:ð1þ e2Þ :q2ðtÞ

þ x2
0

16r2 q4ðtÞ ¼ ½1þ e2ðKe þ Kp � T � U2Þ þ Ke þ Kp � T � U2�:x2
0

2:ð1þ e2Þ a2
0 þ

x2
0

16r2 a4
0:

ð23Þ
Or
H ¼ 1
2
: _q2ðtÞ þ ½1þ e2ðKe þ Kp � T � U2Þ þ Ke þ Kp � T � U2�:x2

0

2:ð1þ e2Þ :q2ðtÞ þ x2
0

16r2 q4ðtÞ

¼ ½1þ e2ðKe þ Kp � T � U2Þ þ Ke þ Kp � T � U2�:x2
0

2:ð1þ e2Þ a2
0 þ

x2
0

16r2 a4
0: ð23Þ
By substituting the approximate solution of Eq. (22) into Eq. (24), the following residual will be obtained:
RðtÞ ¼ 1
2
� ð�a0 sinðxtÞÞ2 þ ½1þ e2ðKe þ Kp � T � U2Þ þ Ke þ Kp � T � U2� �x2

0

2:ð1þ e2Þ � ða0 cosðxtÞÞ2 þ x2
0

16r2 ða0

� cosðxtÞÞ4 � ½1þ e2ðKe þ Kp � T � U2Þ þ Ke þ Kp � T � U2� �x2
0

2:ð1þ e2Þ a2
0 �

x2
0

16r2 a4
0: ð25Þ
To determine the frequency-amplitude relation, the collocation method should be used in the following form:
Z T

0
RðtÞ � cosðxtÞdt ¼ 0; s ¼ x

2p
: ð26Þ
and the nonlinear frequency x will be:
x ¼ ½1þ e2ðKe þ Kp � T � U2Þ þ Ke þ Kp � T � U2� �x2
0

ð1þ e2Þ þ 3:a2
0 �x2

0

16r2

 !1
2

: ð27Þ
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The linear resonant frequency xL can be obtained from Eq. (25) with a0 = 0
xL ¼ xja0¼0
¼ ½1þ e2ðKe þ Kp � T � U2Þ þ Ke þ Kp � T � U2� �x2

0

ð1þ e2Þ

 !1
2

: ð28Þ
To show the pure effect of the nonlinearity, ‘‘the nonlinear frequency variation’’ %Dx is defined as follows:
%Dx � x�xL

xL
� 100: ð29Þ
This parameter demonstrates a more apparent illustration for the difference between the nonlinear and linear model of a
CNT conveying fluid and the frequency shift based on the nonlinearity of the CNT.

4. Results and discussion

Fluid flow inside a nanotube plays a role as a source of energy that induces structural and mechanical oscillations. Flow-
induced vibrations of a CNT best describe the interaction that occurs between the fluid’s dynamic forces and the nanotube’s
inertial, damping, and elastic forces and the simulation of this dynamical behavior is currently a subject of great interest.
However, understanding the nature of the flow of liquids at nanoscale is still a very challenging problem and may differ from
macro-scale fluid flow. In the nanoscale, the balance of the volume forces is weakened and the impact of the surface forces is
enhanced. To this end, the non-slip hypothesis that assumes the zero flow velocity relative to the nanotube at the interface
breaks down, and a finite slip velocity of the flow occurs near the nanotube’s wall. This slip boundary condition is one of the
marked differences between the macro-scale and the nanoscale flows [67]. Since the continuum approaches represent a gen-
eralization of macro-mechanics into nanoscale, the effects of the slip boundary condition are ignored and the obtained re-
sults may not exactly reflect the real physics. Thus, these equations should be modified to cover this effect and to represent a
more precise continuum model. The Knudsen number Kn is a useful dimensionless criterion which determines whether the
fluid flow can be considered as a continuum flow and the non-slip condition is valid. The Knudsen number Kn � k

L� is defined
as the ratio of the molecular mean free path length k to a representative physical length scale L⁄ and the magnitude of Kn

determines the appropriate flow regime of the fluid through CNT. When the Knudsen number is small and less than 0.01,
the flow behaves as a continuous medium and the non-slip condition is established. However, for a nanotube conveying
fluid, the Knudsen number is usually greater than 0.01, the slip flow regime occurs near the nanotube’s wall [68], and the
continuum models should be modified for solving the nanoscale fluid flow problems. Recently, Rashidi et al. [69] have for-
mulated the small-size effect on slip boundary conditions of nanoflow through the Knudsen number Kn. They found that
although the slip boundary regime plays a remarkable role on the vibrational behavior of the CNT conveying nanogas, the
non-slip boundary condition can be used in the case of the nanoliquid flow with appropriate accuracy and the fluid can
be determined in terms of its macroscopic characteristics.

To evaluate the effects of various parameters on the nonlinear flow-induced frequency of a SWCNT embedded in an elas-
tic medium, the following material and geometrical parameters have been used. The Young’s modulus of the CNT is assumed
to be 3.4 Tpa with an effective wall thickness about 0.1 nm, as the recent investigations indicate [70,71]. The inner diameter
di, the mass density qc and the aspect ratio L/di of the SWCNT are 7 nm, 2300 kg/m3, and 20 respectively. The Winkler and
Pasternak constant and the axial tension F are set to be zero (kw = kp = F = 0) and the fluid inside the nanotube is assumed to
be that of water with the mass density qf of 1000 kg/m3.

The determination of the magnitude of the nonlocal parameter e0a is a key issue in a successful application of the nonlocal
continuum models. This value should be calibrated by the generated results from MD simulations for each model separately.
Recent investigations [72,73] reveal that this parameter is a function of the boundary conditions, chirality, and the nature of
motions in nanotubes. Narendar et al. [73] have conducted a simple molecular structural model to predict the parameter e0a
in nonlocal continuum shell model of armchair and zigzag SWCNTs under tensile and torsional loadings. They found that the
value of the nonlocal parameter is constant and irrespective of the chirality for the nanotubes with large diameters (more
than 2 nm) in a axial mode of wave propagation. In a similar work [74], the vibrational behavior of a double-walled carbon
nanotube (DWCNT) has been considered and the calibrated nonlocal parameter e0a has been proposed by matching the fun-
damental frequency obtained directly from MD simulation with those calculated via the nonlocal Donnel shell model. It has
been observed while the boundary conditions can influence the calibrated nonlocal parameter; chirality has no considerable
effect on e0a. Moreover, a long list of different values of the nonlocal scaling parameter proposed by various researchers can
be found in Ref. [75]. This matter shows that the identification of nonlocal parameter e0a has not been fully understood and
more computational research needs to be conducted in order to evaluate e0a more precisely, especially for transverse vibra-
tions of CNTs. In the present study, we choose e0a 6 2 nm, as a conservative estimation proposed by Wang and Wang [76].

4.1. Model verification

To verify the accuracy of the model, the dynamic transverse displacement of the SWCNT midpoint is plotted as in Fig. 2.
The results are compared with the linear vibration and numerical nonlinear solution of the model on the basis of two dif-
ferent flow velocities (U = 0.1 & 0.9). The good adaption between the EBM and numerical results corroborates the validity
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Fig. 2. Comparison between the EBM, linear, and numerical solution (a) at high flow velocity U = 0.9 and (b) at low flow velocity U = 0.1.
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of the energy balance procedure. Moreover, our model predicts a critical flow velocity of 1191.56 m/s for the case study
introduced in Ref. [20,39] while the linear numerical approach [20,77] and perturbation method [39] estimate 1190 m/s
and 1193 m/s, respectively.
4.2. The nonlinear frequency – amplitude relation

As Eq. (27) shows, the nonlinear flow-induced frequency x is related to the vibration amplitude a0. Hence, in this section,
the nonlinear frequency variation %Dx is plotted as a function of the vibration amplitude a0 for some effective parameters in
Figs. 3–6. All the figures reveal that the nonlinear frequency variation %Dx increases with the vibration amplitude a0. In
other words, the nonlinear model predicts a higher resonant frequency compared with the linear model, especially for
the large amplitudes.

The effect of the nonlocal parameter e0a on the nonlinear resonant frequency variation %Dx is shown in Fig. 3 with
respect to the vibration amplitude a0. The figure reveals that the nonlocal model (i.e. e0a – 0) predicts a higher nonlinear
frequency in comparison with the local model (i.e. e0a = 0). In addition, the nonlinear frequency increases with an increase
of the nonlocal parameter e0a. As mentioned above, the nonlocal theory introduces a more flexible model and with increas-
ing the flexibility, the effect of the nonlinearity on the model becomes more significant, which describes why %Dx rises with
the nonlocal parameter e0a.
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Fig. 3. The nonlinear frequency variation %Dx against the maximum nonlinear amplitude a0 with various nonlocal parameters e0a.
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Fig. 4. The nonlinear frequency variation %Dx against the maximum nonlinear amplitude a0 with various Winkler constants kw (e0a = 1 nm).
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The mechanical properties of the elastic medium around the nanotube are another important factor directly affects the
resonant frequency. As mentioned above, the foundation of the SWCNT is assumed as in the Pasternak model. The Pasternak-
type foundation, that is also called the two-parameter foundation model, simulates the interaction between the medium and
the nanotube using two different parameters. The first parameter of the Pasternak foundation model kw represents normal
pressure, while the second parameter kp accounts for transverse shear stress due to the interaction of shear deformation of
the surrounding elastic medium [35]. These factors kw and kp are called the Winkler and Pasternak constants, respectively.

The effects of the Pasternak parameters on the nonlinear frequency are shown in Figs. 4 and 5. Fig. 4 shows the effect of
the Winkler constant kw on the nonlinear frequency variation %Dx. As can be seen, with an increase in the Winkler constant
kw, the parameter %Dx decreases, especially for small vibration amplitudes a0. This means that as the nanotube vibrates in a
stiff medium, the nonlinear frequency tends to the linear frequency. In other words, for stiff elastic foundations and in small
amplitudes, the linear simulation of the SWCNT represents a sufficiently accurate theoretical model for transverse
flow-induced vibrations. The shear resistance of the surrounding elastic medium and its corresponding interaction on the
nanotube is characterized by the Pasternak constant kp. Fig. 5 plots the nonlinear frequency variation %Dx as a function
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of kp and the vibration amplitude a0. The figure indicates that as the shear stiffness of the medium increases and for the small
vibration amplitudes, the parameter %Dx decreases, and the nonlinear flow-induced frequency reduces to the linear
frequency.

Axial tension induced through external electrical fields tunes the vibration of CNTs in NEMS [78]. In fluid-conveying CNTs,
axial tension increases the stiffness of the model and can limit the flow-induced vibration and nonlinearity of the system.
The effect of the axial tension F on the nonlinear frequency variation %Dx is illustrated in Fig. 6. The results indicate that
axial tension of the SWCNT can reduce the difference between the nonlinear and the linear resonant frequency, and this ef-
fect is profound for high vibration amplitude a0. In other words, the nonlinearity can be controlled by increasing the axial
tension F.

4.3. The nonlinear frequency- flow velocity relation

The resonant frequency of the SWCNT conveying fluid is affected by the fluid flow within the nanotube and the kinetic
energy of the fluid flow is an essential issue in causing the nanotube to vibrate. In this section, the nonlinear frequency var-
iation %Dx is plotted against the dimensionless fluid flow velocity U for some parameters (Figs. 7–10). In all these figures, it
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is clear that the nonlinear frequency variation %Dx shifts upwards with fluid velocity and the nonlinearity of the model
makes a meaningful difference between linear and nonlinear frequency at high flow velocities. Fig. 7 represents the effect
of the nonlocal parameter e0a on the nonlinear frequency variation %Dx with flow velocity. The results indicate that at
low fluid velocities (U < 0.5), the effects of the nonlocal parameter is not significant and the nonlinear frequency variation
%Dx is not related to the small-scale parameters; while at higher flow velocities, the nonlinear frequency increases with
respect to the linear frequency, especially when the nonlocal parameter e0a increases. The effects of the Winkler constant
kw on the nonlinear frequency variation %Dx with regard to the flow velocity are shown in Fig. 8. As shown in the figure,
the mediums with stiff elastic properties cause the difference between the nonlinear and linear frequency to remain un-
changed with respect to flow velocity and %Dx remains almost constant at low fluid velocities (U < 0.5). Moreover, for com-
pliant mediums with kw < 1e7pa, the nonlinear frequency variation %Dx increases with the flow velocity and this pattern is
amplified by decreasing the Winkler constant kw. Fig. 9 displays the nonlinear frequency variation %Dx with the dimension-
less flow velocity U for some Pasternak constants kp. It is observed that at low fluid velocities (U < 0.5) and as the shear stiff-
ness of the elastic medium increases, %Dx declines to less than 0.8% and remains constant with any increase of the flow
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velocity. This shows that the nonlinear vibration behavior of the SWCNT is independent of the fluid flow and can be disre-
garded for mediums with high shear strength.

Fig. 10 reveals that the axial tension F has no significant effect on the nonlinear frequency variation %Dx at low flow
velocities (U < 0.4). However, at high flow velocity, the parameter %Dx decreases with F and the nonlinearity effect can
be controlled by tuning the axial tension on the model.
5. Conclusion

The nonlinear vibration model of a fluid-conveying SWCNT embedded in a Pasternak foundation was derived on the basis
of the nonlocal continuum theory. The energy balance method was applied successfully to the nonlinear governing equation
of motion, and an analytical solution was obtained for the nonlinear flow-induced frequency. The accuracy of the results was
verified with the numerical approach and a previous simpler model. The results show that the deviation of the nonlinear
flow-induced frequency from the linear frequency is considerable when the amplitude, flow velocity, and nonlocal param-
eter are high while for the CNTs embedded in the mediums of high Pasternak parameters, the nonlinearity of the model does
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not demonstrate a significant effect on the frequency. Moreover, the axial tension restricts the nonlinear effect and limits the
flow induced-vibration of the nanotube at high flow velocity and for high vibration amplitudes.
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