ON VARIETAL CAPABILITY OF DIRECT PRODUCTS OF GROUPS AND PAIRS OF GROUPS

HANIEH MIREBRAHIMI¹ AND BEHROOZ MASHAYEKHY²

Abstract. In this paper we give some conditions in which a direct product of groups is \mathcal{V}-capable if and only if each of its factors is \mathcal{V}-capable for some varieties \mathcal{V}.

1. INTRODUCTION AND PRELIMINARIES

R. Baer [1] initiated an investigation of the question which conditions a group G must fulfill in order to be the group of inner automorphisms of a group E, that is $(G \cong E/Z(E))$. Following M. Hall and J. K. Senior [5], such a group G is called capable. Baer [1] determined all capable groups which are direct sums of cyclic groups. As P. Hall [4] mentioned, characterizations of capable groups are important in classifying groups of prime-power order.

F. R. Beyl, U. Felgner and P. Schmid [2] proved that every group G possesses a uniquely determined central subgroup $Z^*(G)$ which is minimal subject to being the image in G of the center of some central extension of G. This $Z^*(G)$ is the smallest central subgroup of G whose factor group is capable [2, Corollary 2.2]. Hence G is capable if and only if $Z^*(G) = 1$ [2, Corollary 2.3]. They showed that the class of all capable groups is closed under the direct products [2, Proposition 6.1]. Also, they presented a condition in which the capability of a direct product of finitely many of groups implies the capability of each of the factors [2, Proposition 6.2]. Moreover, they proved that if

¹ 2010 Mathematics Subject Classification. Primary 20E10, 20K25; Secondary 20E34, 20D15, 20F18.

² Key words and phrases. Capable group; Direct product; Variety of groups; \mathcal{V}-capable group; Pair of groups; Capable pair of groups.

164
N is a central subgroup of G, then \(N \subseteq Z^*(G) \) if and only if the mapping \(M(G) \to M(G/N) \) is monomorphic [2, Theorem 4.2].

Then M. R. R. Moghadam and S. Kayvanfar [8] generalized the concept of capability to \(V \)–capability for a group \(G \). They introduced the subgroup \((V^*)^*(G) \) which is associated with the variety \(V \) defined by the set of laws \(V \) and a group \(G \) in order to establish a necessary and sufficient condition under which \(G \) can be \(V \)–capable [8, Corollary 2.4]. They also showed that the class of all \(V \)–capable groups is closed under the direct products [8, Theorem 2.6]. Moreover, they exhibited a close relationship between the groups \(VM(G) \) and \(VM(G/N) \), where \(N \) is a normal subgroup contained in the marginal subgroup of \(G \) with respect to the variety \(V \). Using this relationship, they gave a necessary and sufficient condition for a group \(G \) to be \(V \)–capable [8, Theorem 4.4].

In this note, we present some conditions in which the \(V \)–capability of a direct product of finitely many groups implies the \(V \)–capability of each of its factors.

2. Main results

Suppose that \(V \) is a variety of groups defined by the set of laws \(V \). A group \(G \) is said to be \(V \)–capable if there exists a group \(E \) such that \(G \cong E/V^*(E) \). If \(\psi : E \to G \) is a surjective homomorphism with \(ker\psi \subseteq V^*(E) \), then the intersection of all subgroups of the form \(\psi(V^*(E)) \) is denoted by \((V^*)^*(G) \). It is obvious that \((V^*)^*(G) \) is a characteristic subgroup of \(G \) contained in \(V^*(G) \).

If \(V \) is the variety of abelian groups, then the subgroup \((V^*)^*(G) \) is the same as \(Z^*(G) \) and in this case \(V \)–capability is equal to capability [8].

Theorem 2.1. [8] (i) A group \(G \) is \(V \)–capable if and only if \((V^*)^*(G) = 1 \).
(ii) \((V^*)^*(\prod_{i \in I} G_i) \leq \prod_{i \in I}(V^*)^*(G_i) \).

As a consequence, if \(G_i \)'s are \(V \)–capable groups, then \(G = \prod_{i \in I} G_i \) is also \(V \)–capable. In the above theorem, the equality does not hold in general (Example 2.3).

Theorem 2.2. [8] Let \(N \) be a normal subgroup contained in the marginal subgroup of \(G, V^*(G) \). Then \(N \subseteq (V^*)^*(G) \) if and only if the homomorphism induced by the natural map \(VM(G) \to VM(G/N) \) is a monomorphism.

In this section we verify the equation \((V^*)^*(A \times B) = (V^*)^*(A) \times (V^*)^*(B) \) for some famous varieties.
In general, for an arbitrary variety of groups \(V \), and groups \(A \) and \(B \),
\(\mathcal{V}M(A \times B) \cong \mathcal{V}M(A) \times \mathcal{V}M(B) \times T \), where \(T \) is an abelian group [7]. For some particular varieties, the group \(T \) is trivial with some conditions. For instance, some famous varieties as variety of abelian groups [7], variety of nilpotent groups [3], and some varieties of polynilpotent groups [6] have the property that: for any two groups \(A \) and \(B \) with \((|A^{ab}|, |B^{ab}|) = 1\) the isomorphism
\(\mathcal{V}M(A \times B) \cong \mathcal{V}M(A) \times \mathcal{V}M(B) \) \((*)\) holds.

Now, suppose that \(V \) is a variety, \(A \) and \(B \) are two groups with the property
\(\mathcal{V}M(A \times B) \cong \mathcal{V}M(A) \times \mathcal{V}M(B) \).

By Theorem 2.2, we have the following monomorphism
\[
\mathcal{V}M(A) \times \mathcal{V}M(B) \hookrightarrow \mathcal{V}M\left(\frac{A}{(V*)^*(A)}\right) \times \mathcal{V}M\left(\frac{B}{(V*)^*(B)}\right).
\]

Moreover, we have the following inclusion
\[
\mathcal{V}M\left(\frac{A}{(V*)^*(A)}\right) \times \mathcal{V}M\left(\frac{B}{(V*)^*(B)}\right) \hookrightarrow \mathcal{V}M\left(\frac{A}{(V*)^*(A)} \times \frac{B}{(V*)^*(B)}\right).
\]

Finally, we get the monomorphism
\[
\mathcal{V}M(A \times B) \hookrightarrow \mathcal{V}M\left(\frac{A \times B}{(V*)^*(A) \times (V*)^*(B)}\right).
\]

Thus, by Theorem 2.2, we conclude that
\[
(V*)^*(A) \times (V*)^*(B) \leq (V*)^*(A \times B).
\]

This note leads us to our main result.

Theorem 2.3. Let \(V \) be a variety, \(A \) and \(B \) be two groups with \(\mathcal{V}M(A \times B) \cong \mathcal{V}M(A) \times \mathcal{V}M(B) \), then \((V*)^*(A \times B) = (V*)^*(A) \times (V*)^*(B)\). Consequently \(A \times B \) is \(V \)-capable if and only if \(A \) and \(B \) are both \(V \)-capable.

Remark 2.4. In some famous varieties as the variety of abelian groups and the variety of nilpotent groups, the isomorphism \(\mathcal{V}M(A \times B) \cong \mathcal{V}M(A) \times \mathcal{V}M(B) \) holds, where \((|A^{ab}|, |B^{ab}|) = 1\) ([3, 9]). Thus, using Theorem 2.3, for a family of groups \(\{A_i \mid 1 \leq i \leq n\} \) whose abelianizations have mutually coprime orders, \(\prod_{i=1}^{n} A_i \) is capable (\(\mathcal{N}_c \)-capable) if and only if every \(A_i \) is capable (\(\mathcal{N}_c \)-capable). Note that in these varieties, for finitely generated groups \(A \) and \(B \),
\(\mathcal{V}M(A \times B) \cong \mathcal{V}M(A) \times \mathcal{V}M(B) \) if and only if \(|A^{ab}|\) and \(|B^{ab}|\) are finite with \((|A^{ab}|, |B^{ab}|) = 1\) ([3, 9]).
Corollary 2.5. Let \(\{A_i \mid 1 \leq i \leq n\} \) be a family of groups whose abelianizations have mutually coprime orders. If \(\prod_{i=1}^{n} A_i \) is nilpotent of class at most \(c_1 \), then it is \(N_{c_1, \cdots, c_s} \)-capable if and only if every \(A_i \) is \(N_{c_1, \cdots, c_s} \)-capable.

References

\(^{1,2}\) Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran.

E-mail address: \texttt{h.mirebrahimi@um.ac.ir}
E-mail address: \texttt{bmashf@um.ac.ir}