برآورد باخش لرزه‌های ساختمانی رشوبی توسط ریز ارتعاشات تک ایستگاهی مطالعه موردی، ایرانشهر

ناصر حافظی مقدس، دکترای مهندسی زمین شناسی، شرکت مهندسی مشاور زمین، همراه با: h_moghads@yahoo.com
قویکت یوشبی. روزبه نادری، دانشجوی دکترای زمین شناسی مهندسی دانشگاه فردوسی مشهد، rouzbeh.yazdanfar@gmail.com
احسان زائری، کارشناسی ارشد زمین‌شناسی، دانشگاه تهران، شرکت مهندسی مشاور، enrostami@ut.ac.ir
محمد مهرانی، کارشناسی ارشد زمین‌شناسی مهندسی، هیئت علمی دانشگاه سیستان و بلوچستان
m.mehran@gmail.com

چکیده:
روش‌های همبستگی بر اساس آماری‌که اغلب به عنوان روش شناسی ساده و کارا جهت برآورد ویژگی‌های زمین شناسی و زمین‌شناسی روش تقویت زمین‌شناسی استفاده می‌گردد. چنین روش به‌طور کلی ویژگی‌های متنوعه‌های همبستگی بر اساس طبقات اثرات بر ایمنی تا ۲۰۰۰ انتخاب شده‌اند. و نهایتاً شاخص آستین‌پری زمین و کمیتی برای جهت ارزایی بیان کننده خرابی لرزه‌ها و پریستی رفتار دینامیکی ساختگاه برای شرکت ایرانشهر محاسبه گردیده است. نشانه‌های همبستگی شرکت ایرانشهر گواهی این تفاوت می‌باشد که این نوع همبستگی‌های وجود در محدوده طرح جامع شرکت ایرانشهر کوتاه بوده واردو محدوده برابری کمتر از ۲/۰ تا ۱/۰ (بهره ۱) و به عبارت دیگر زمین نوع دو واقع کرده است. با توجه به جنس رسوبات (پاپیت خاک)، شکل حوضه، ایا بودن بقای‌های زمین‌شناسی و لرزه‌ای و شکل بودن رسوبات، بایان بودن پریستی شاخص آستین‌پری

کلید واژه‌ها: ایرانشهر، ریز ارتعاشات، بروز نشتیدن، ناگواره، شاخص آستین‌پری

Abstract:
Single station microtremors observations have been performed at 123 sites in Iranshahr, Iran. These data were processed based on horizontal-to-vertical spectral ratio (HVRS) method for estimation of the fundamental resonance period and quasi transfer function of ground. Iso-period and iso-amplification maps of study area had extracted base on processes. In order to evaluation of seismic damage potential and site dynamic behavior of Khash city, ground vulnerability index and shear strain are calculated. According to mentioned maps above, most of the Iranshahr city is located in low period resonance zones. This phenomenon is coherent with geological setting and sedimentary environment, existence of engineering bedrock at shallow depth of Iranshahr city.

Keywords: Iranshahr, microtremors, resonance period, Nakamura, Vulnerability Indice
پاسخ‌های رسمی به انرژی به‌طور تجربه‌ای زمین رژیم‌های تغییر امواج عمومی جهان لرزه‌ها برگزار یافته از دسته‌هایی که تعداد واحدهای جهانی زمین لرزه‌ها به وسیله امواج وPEND نسبت به دایره مشخص می‌شود. این سیستم تحقیقاتی است که به شکل حساس‌یابی امواج زمین و امواج سیستمیک می‌تواند به وسیله انرژی به‌طور تجربه‌ای زمین رژیم‌های تغییر امواج عمومی جهان لرزه‌ها برگزار یافته از دسته‌هایی که تعداد واحدهای جهانی زمین لرزه‌ها به وسیله امواج وPEND نسبت به دایره مشخص می‌شود. این سیستم تحقیقاتی است که به شکل حساس‌یابی امواج زمین و امواج سیستمیک می‌تواند به وسیله انرژی به‌طور تجربه‌ای زمین رژیم‌های تغییر امواج عمومی جهان لرزه‌ها برگزار یافته از دسته‌هایی که تعداد واحدهای جهانی زمین لرزه‌ها به وسیله امواج وPEND نسبت به دایره مشخص می‌شود. این سیستم تحقیقاتی است که به شکل حساس‌یابی امواج زمین و امواج سیستمیک می‌تواند به وسیله انر‌
2- برداشت بر اثر انتخابات محیطی در داخل هر شبکه به مدت 10 دقیقه توسط لرزشسنج SL07: در مرحله اول با توجه به شناخت نسبی از زمین‌شناسی منطقه برداشت‌ها داخل شبکه‌های مرحلی انجام شد. در پایان این مرحله با ارسال نتایج بدست آمده از برداشت‌های مرحلی و مقایسه آنها با نفت خاک منطقه وجود مرحله دیگری برای برداشت‌های مرحلی مشابه SL07 کامپیوتر فیلتر جمله و سیستم موجودی باین‌های خود روز. لرزشسنج SL07 در کنار کلیه سه کاناله ساخت شد. امکانات فاصله GPS و انتخاب SL07 اینکه در هر پذیرش داده داده شده دارای (SAR) است. این انتخاب بهره برداری گردید.

د - بردارنده مرکزی با پذیرش داده کننده سپس بودن است. فرکانس‌های سنتورش است. دو روند این انتخاب و سیستم‌هایی به همین جهت از 25 دقیقه این انتخاب برای هر محل فقط 10:00 برای زمان‌های داده 24:00، نگرفته 7 دقیقه از کل برداشت. انتخاب داده شد. التصویر IR مشخص. انتخاب running average جهت اجرای خاصیت توسط نگاه ادغام شد.

3- تهیه برنامه‌ای در نرم افزار MATLAB اکتشافات محاسبات نسبت طیفی: مراحل بعدی بردارش داده‌ها شامل تبدیل سریع فیشر. همین‌که در این نسخه معادنی کردن آنها. در نتیجه طیفی در مقابل فرکانس (پیک) و مکان اکتشافات (MATLAB) از اکتشافات داده‌ها توسط داده‌ها مشخص. همچنین برای انتخاب فردی‌ها و با پیک نسبت طیفی محاسبه (Spatial transfer function) می‌باشد. از مواد استفاده از اکتشافات به شکل پیک‌دار (Pik) اکتشافات زمانی این پیک‌ها توسط نگاه ارتفع داده و محرک پایه گشت تا ویژگی‌های نسنج (پیک) مواد و پیک‌های تغییرات می‌باشد.

4- اکتشافات فرکانسی در میان بزرگ‌ترین نسبت طیفی: اکتشافات داده‌ها و ظرفیت بیافزایش خود در دایره‌های زمانی-شیمیایی و مولکول‌های شیمیایی-جنتیکی کل نیازهای انتخابی. برای میانگین این پیک‌های زمانی رسم شیند. میانگین 10 نسبت طیفی به همراه میانگین به اضافه و پیک‌های منطقه اکتشافات اسکلرال در مقابل پیک‌های کم و سایر اکتشافات در روند پیدا. برای گرده و خود انتخاب طیفی از روش ای نمودر. انتخابگر و به روش بی‌شنیدنی باشد.

زاپت: 1

\[R(T) = \frac{\sqrt{F_{NS}(T) \times F_{EW}(T)}}{F_{UD}(T)} \]

نیازی رطوبی نسبت طیفی-A به عمودی برای هر نیازهای زمانی.

\(F_{NS} \): طبق فرکانس موثر شیمیایی-جنتیکی

\(F_{EW} \): طبق فرکانس موثر شریک-شیمیایی

\(F_{UD} \): نسبت طیفی برای یک نیازهای (از 10 نیازهای زمانی یک نقطه برداشت) زمانی:

راوانه: 1
6- ارائه نقشه هم برود تشخیص منطقه.

بر اساس محاسبات و بردارش های صوت گرفته کمیته و بیشینه مقادیر برود به ترتیب برابر 1/1 و 0/878

نقطه می‌باشد.

از مقادیر برود محاسبه شده به همراه مختصات مربوط آنها که در هنگام برداشت روی زمین باید به

برداری شده به جهت درون یابی مکانی استفاده شد. بین منظور و برای رسم منحنی های هم ارزش

از نرم افزار 3.2 ArcView مکانی برود با استفاده از روش وزن دهی (IDW) استفاده گردیده است.

پس از درون‌پایی، نقشه هم برود در این نرم افزار تهیه گردید (شکل 3). بارهایی انتخابی برای رسم

منحنی‌های هم ارزش بر اساس طیف بارش در آن به کار برده شد.

جدول 1 رابطه نوع زمین و 1/7 بر اساس ورایش سوم استاندارد 2000

<table>
<thead>
<tr>
<th>نوع زمین</th>
<th>1/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>/4</td>
<td>I</td>
</tr>
<tr>
<td>0/4</td>
<td>II</td>
</tr>
<tr>
<td>0/7</td>
<td>III</td>
</tr>
<tr>
<td>1/10</td>
<td>IV</td>
</tr>
</tbody>
</table>
ئراته نقشه هم تقویت ساختمان.

استفاده از دامنه نسب طیفی با استفاده از روش ناکامپرا با عنوان تقویت واقعی ساختمان توجهه علمی ندارد. (مراجع)

بر اساس (حیجه و همکاران 2002)، از مدل سطح تقویت نسبی و روش سطح تقویت واقعی بهره گرفته شد و نقشه هم تقویت در گستره محدود تهیه گردید. کمیته و بینشینه دانه طیفی به ترتیب برابر 1/2 و 3/4 باشد. سه نقشه هم تقویت ساختمان شهر ايرانشهر را نشان می‌دهد.

شکل 2- نقشه هم تقویت ساختمان شهر ايرانشهر.

8- شاخه آسبب بدیری و کرنش برشته زمین در ایرانشهر

مطبق حدود ۲ زمین از ۱۰۰۰= ۱/۲ شروع به نشان دادن رفتار غیر حضوری می‌کند نا انگه در ۱/۲ تغییر شکل‌های برگ و وارگوی رخ می‌دهد(ناگما، 1998). میانگین کرنش‌های سطح زمین توسط رایلینگ دبل براورد می‌گردد:

\[
\gamma = \frac{dH}{dH}
\]

فاکتور تقویت زمین \(H\) ضخامت لایه سطحی. چ جاحویی لرزه‌ای زمین می‌باشد. شاخه آسبب بدیری زمین از فرکانس تشدید و تابع تقویت به صورت زیر براورد می‌گردد:

\[
K_\gamma = \frac{A_g}{F_g}
\]

فاکتور تقویت زمین \(F_g\) فرکانس تشدید ساختمان می‌باشد.

جدول ۲- وزنگری‌های دینامیکی وابسته به کرنش برشته گاک

ماکزیم تهیه و تابع تقویت استخراج شده در رد بهنی بندی لرزه‌ای شهر ایرانشهر برای محاسبه شاخه آسبب بدیری و مکانیک کرنش برشته زمین توسط راکت‌آرایش شهر ناکامپرا (رویکروم 2002). بهره بدیه این شهر بر ۲/۱۰= ۱۰۰۰ با اعضا برزش افتاده فرکانس \(F_g\) کمیته و بینشینه شاخه آسبب بدیری به ترتیب ۲/۱۰= ۱۰۰۰ با اعضا برزش افتاده فرکانس \(F_g\) که می‌تواند شاخه آسبب بدیری در شرایطی که دیگر برکت می‌باشد. نقشه بهنی بندی شاخه آسبب بدیری و کرنش برشته شهر ایرانشهر در شکل‌های ۲ و ۳ نشان داده شده‌اند.

<table>
<thead>
<tr>
<th>Size of Strain (\gamma)</th>
<th>10^{-3}</th>
<th>10^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenomena</td>
<td>Wave Vibration</td>
<td>Crack Settlement</td>
</tr>
<tr>
<td>Dynamic Properties</td>
<td>Elasticity</td>
<td>Elasto-Plasticity</td>
</tr>
<tr>
<td></td>
<td>Landslide, Soil Compaction, Liquefaction</td>
<td>Collapse</td>
</tr>
<tr>
<td></td>
<td>Repeat, Effect, Speed, Effect of Loading</td>
<td></td>
</tr>
</tbody>
</table>
نتیجه گیری:
جهت برآورد بارامترهای دینامیکی انرژی، اندوزه‌گیری‌های تک استگاهی ریز ارتعاشات در ۱۳۲ محل در داخل و اطراف شهر ایرانشهر انجام گرفت. برای تشدید هر محل مبنی بر روش نسبت طبیعی افزایشی به عمودی ریز ارتعاشات (روش ناکامورا) استخراج گردد و داده‌های حاصل از بردارش جهت نهشته‌نگرهم یپ‌تربیتو گرفته شده. نتیجه‌های برای تشدید شهر ایرانشهر گواهی این واقعیت می‌باشد که کل نهشته‌های واقع در محدوده طرح جامع شهری ایرانشهر کوته برود هستند.

پایین بودن یپ‌تربیتو تشدید در این ساختمان را می‌تواند به جنس رسوبات (بافت خاک)، شکل حوضه، بالا بودن پیسنگ زمین‌شناسی و ارزهای و سخت بودن رسوبات مربوط دانست. بافت خاک عمدتاً محدوده طرح جامع شهری نیازمند تغییراتی صحرایی همگام با برداشته ریز ارتعاشات و با استناد به نگار گمینه‌های حفاظی شده و نقشه بافت خاک، درست داشته از جنس پیلی و گرایی می‌باشد که خود دلبل بر پایین بودن یپ‌تربیتو تشدید این ساختمان می‌باشد.

مقادیر شاخصی استفاده شده و در‌پروپز در منطقه مورد مطالعه پایین می‌باشند. نتایج مقادیر این دو بارامتر نشان دهندهٔ قابل توجهی موجود اندازه‌برداری نسبت. این مسئله با مقادیر بالای فرکانس تشخیص خاصی در منطقه همکاری نشان می‌دهد.
منابع فارسی:

تركاشوند، آ. (1385). راهنمای تفسیر آینه‌نامه طرح ساختمان‌های برابر زلزله و مهندسی زلزله، آینه‌نامه 200. ویرایش سوم، قرار اندیشان سر. ۱۵۷ صفحه. حافظی مقدسی، ن. (1389). ریز، به‌نی‌لگی، لزه‌ای ابراشهر، سازمان مسکن، شهرسازی سیستم و پیش‌بینی زلزله، مهندسی زنونکیک لزه‌ای، انتشارات پژوهشگاه بین‌المللی زلزله شناسی و مهندسی زلزله، صفحه ۹۳۳.

References:

Hardesty, K., Wolf, L.W., Bodin, P. (2010),Noise to signal: A microtremor study at liquefaction sites in the New Madrid Seismic Zone. Geophysics, Vol. 75, No. 3 _May-June 2010_; P. B83–B90, 6 Figs., 2 tables. 10.1190/1.3374357

Sesame, (2005). Guidelines for the implementation of the H/V spectralratio technique onambient vibrations-measurements, processing and interpretations,SESAME European research project EVG1-CT-2000-00026, deliverable D23.12

