Approximately Orthogonal Additive Set-valued Mappings

Alireza Kamel Mirmostafaee* and Mostafa Mahdavi
Center of Excellence in Analysis on Algebraic Structures, Department of pure Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad 91775, Iran
e-mail: mirmostafaei@um.ac.ir and m_mahdavi1387@yahoo.com

Abstract. We investigate the stability of orthogonally additive set-valued functional equation

\[F(x + y) = F(x) + F(y) \quad (x \perp y) \]

in Hausdorff topology on closed convex subsets of a Banach space.

1. Introduction

A functional equation \(\mathcal{E} \) is called stable if for any function \(f \) satisfying approximately to the equation \(\mathcal{E} \), there is a true solution of \(\mathcal{E} \) near to \(f \). In 1940, S. M. Ulam [24] proposed the first stability problem for group homomorphisms. Hyers [9] gave the first significant partial solution to his problem for linear functions. Th. M. Rassias [20] improved Hyers’ theorem by weakening the condition for the Cauchy difference controlled by \(\|x\|^p + \|y\|^p \), \(p \in [0,1) \). For some recent developments in this area, we refer the reader to the articles [5, 6, 11, 12, 15, 19] and the references therein.

In 1985, Rätz [21] gave a generalization of Birkhoff-James orthogonality [1, 10] in vector spaces. He also investigated some properties of orthogonally additive functional equation. This definition motivated some Mathematicians to discuss about the orthogonal stability of functional equations (see e. g. [8, 13, 16, 22]). On the other hand, set-valued mappings and their stability have been investigated by some authors from different point of view [2, 7, 14, 17, 23].

In the next section, we prove the stability of set-valued orthogonal additive functional equation

\[F(x + y) = F(x) + F(y) \quad (x \perp y). \]

* Corresponding Author.
Received June 11, 2012; accepted August 30, 2012.
2010 Mathematics Subject Classification: 39B22, 39B55, 39B62, 39B82.
Key words and phrases: Set-valued mappings, orthogonal space, Hausdorff metric, Hyers-Ulam stability.
This research was supported by a grant from Ferdowsi University of Mashhad No. MP91281 MIM.
In fact, we will show if \((X, \bot)\) is an orthogonal space, \(Y\) is a Banach space and \(F : X \to \text{CC}(Y)\) is an even function such that

\[
\mathcal{H}\left(F(x + y), F(x) + F(y)\right) \leq \varepsilon \quad (x, y \in X, x \bot y),
\]

for some \(\varepsilon > 0\). Then there exists a unique quadratic function \(Q : X \to \text{CC}(Y)\) such that

\[
\mathcal{H}\left(F(x), Q(x)\right) \leq \frac{7\varepsilon}{4} \quad (x \in X).
\]

In this case, we will show that there is a quadratic function \(q : X \to Y\) such that

\[
q(x) \in F(x) + \frac{7\varepsilon}{3} \overline{B(0, 1)} \quad (x \in X).
\]

2. Main Results

Throughout the paper, unless otherwise stated, we will assume that \(X\) and \(Y\) are topological vector spaces over \(\mathbb{R}\). If \(A, B \subseteq Y\) and \(\lambda \in \mathbb{R}\), we use the following notions

\[
A + B = \{a + b : a \in A, \ b \in B\}, \quad \lambda A = \{\lambda a : a \in A\}.
\]

The following properties will often be used in the sequel:

For each \(A, B \subseteq Y\) and \(\lambda, \mu \geq 0\), we have

\[
\lambda(A + B) = \lambda A + \lambda B, \quad (\lambda + \mu)A \subseteq \lambda A + \mu A.
\]

Moreover, if \(A\) is convex, \((\lambda + \mu)A = \lambda A + \mu A\).

Definition 2.1. Let \(Y\) be a normed space and \(A_1, A_2 \subseteq Y\) be non-empty closed bounded sets. Then the Hausdorff distance between \(A_1\) and \(A_2\) is defined by

\[
\mathcal{H}(A_1, A_2) := \inf \{s > 0 : A_1 \subseteq A_2 + sB(0, 1) \text{ and } A_2 \subseteq A_1 + sB(0, 1)\}.
\]

It is known that \(\mathcal{H}\) defines a metric on closed convex subsets of \(Y\), which is called Hausdorff metric topology\([3, 4]\). Moreover, if \(Y\) is a Banach space, \((\text{CC}(Y), \mathcal{H})\), the space of all non-empty compact convex subsets of \(Y\) with the Hausdorff metric topology is a complete metric space \([3]\).

In 1985, Rätz \([21]\) introduced the following notion:

Definition 2.2. Let \(X\) be a real topological vector space of dimension \(\geq 2\). A binary relation \(\bot \subseteq X \times X\) is called an **orthogonal relation** if the following properties hold.

1. \(x \bot 0, \ 0 \bot x\) for every \(x \in X\),
(2) if \(x, y \in X \setminus \{0\} \), \(x \perp y \), then \(x \) and \(y \) are linearly independent;

(3) if \(x, y \in X \), \(x \perp y \), \(\alpha x \perp \beta y \) for all \(\alpha, \beta \in \mathbb{R} \),

(4) if \(P \) is a two dimensional subspace of \(X \), \(x \in P \), \(\lambda \in \mathbb{R}^+ \), then there exists some \(y \in P \) such that \(x \perp y \) and \(x + y \perp \lambda x - y \).

The space \(X \) with an orthogonal relation \(\perp \) is called an orthogonally space and is denoted by \((X, \perp)\).

Definition 2.3. Let \(X \) and \(Z \) be two sets. A function \(Q : X \to Z \) is called **quadratic** if \(Q(x + y) + Q(x - y) = 2Q(x) + 2Q(y) \) for all \(x, y \in X \).

We need to the following result due to Rådström [18].

Lemma 2.4. Let \(A, B \) and \(C \) be nonempty subsets of a topological vector space \(Y \). Suppose that \(B \) is closed and convex and \(C \) is bounded. If \(A + C \subseteq B + C \), then \(A \subseteq B \). If moreover, \(A \) is closed and convex and \(A + C = B + C \), then \(A = B \).

Now, we are ready to state the main result of this paper.

Theorem 2.5. Let \(X \) be a topological vector space over \(\mathbb{R} \) which is also an orthogonal space and let \(Y \) be a Banach space. Let \(F : X \to CC(Y) \) be an even function and for some \(\varepsilon > 0 \),

\[
\mathcal{H}\left(F(x + y), F(x) + F(y) \right) \leq \varepsilon \quad (x, y \in X, x \perp y).
\]

Then there exists a unique quadratic and orthogonal additive function \(Q : X \to CC(Y) \) such that

\[
\mathcal{H}(F(x), Q(x)) \leq \frac{7\varepsilon}{3} \quad (x \in X).
\]

Proof. We divide the proof into several steps.

Step 1. For each \(x \in X \),

\[
\mathcal{H}\left(F(2x), 4F(x) \right) \leq 7\varepsilon.
\]

Proof of step 1. By Definition 2.2, for each \(x \in X \), there is some \(y \in X \) such that \(x \perp y \) and \(x + y \perp x - y \). Take some \(y \in X \) with this property. Then
\[
F(x) = F\left(\frac{x+y}{2} \pm \frac{x-y}{2}\right)
\]
\[
\subseteq F\left(\frac{x+y}{2}\right) + F\left(\frac{x-y}{2}\right) + \varepsilon B(0,1)
\]
\[
= F\left(\frac{x+y}{2}\right) + F\left(\frac{y-x}{2}\right) + \varepsilon B(0,1) \quad (\therefore F \text{ is even})
\]
\[
\subseteq F\left(\frac{x+y}{2} \pm \frac{y-x}{2}\right) + 2\varepsilon B(0,1)
\]
\[
= F(y) + 2\varepsilon B(0,1).
\]

Since \(x + y \perp y - x\), by interchanging the role of \(x\) and \(y\), we see that
\[
F(y) \subseteq F(x) + 2\varepsilon B(0,1).
\]

On the other hand,
\[
F(2x) = F(x + y + x - y) \subseteq F(x + y) + F(x - y) + \varepsilon B(0,1)
\]
\[
\subseteq 2F(x) + 2F(y) + 3\varepsilon B(0,1)
\]
\[
\subseteq 4F(x) + 7\varepsilon B(0,1)
\]
and
\[
4F(x) = 2F(x) + 2F(x) \subseteq 2F(x) + 2F(y) + 4\varepsilon B(0,1)
\]
\[
\subseteq F(x) + F(y) + F(x) + F(-y) + 4\varepsilon B(0,1) \quad (\text{since } x \perp y)
\]
\[
\subseteq F(x + y) + F(x - y) + 6\varepsilon B(0,1) \quad (\text{since } x + y \perp x - y)
\]
\[
\subseteq F(2x) + 7\varepsilon B(0,1).
\]

Therefore (2.2) holds.

Step 2. There is a unique orthogonal additive function \(Q : X \rightarrow CC(Y)\) such that

\[
Q(2x) = 4Q(x) \quad \text{and}
\]

(2.3) \[
\mathcal{H}(F(x), Q(x)) \leq \frac{7\varepsilon}{3}
\]
for each \(x \in X\).

Proof of step 2. Replace \(x\) by \(2^n x\) in (2.2) and multiply both sides of the obtained inequality by \(4^{-(n+1)}\) to obtain the following inequality

\[
\mathcal{H}\left(4^{-(n+1)} F(2^{n+1} x), 4^{-n} F(2^n x)\right) \leq \frac{7\varepsilon}{4^{n+1}} \quad (n \geq 0, \ x \in X).
\]
It follows that for each \(n > m \geq 0 \), we have

\[
\mathcal{H}\left(4^{-n}F(2^n x), 4^{-m}F(2^m x)\right) \leq \sum_{k=m}^{n-1} 2^k 2^{k+1} + \sum_{k=m}^{n-1} \frac{\varepsilon}{2^{k+1}} (x \in X).
\]

(2.4)

Since the right hand side of the above inequality tends to zero as \(n \to \infty \), \(\{4^{-n}F(2^n x)\} \) is a Cauchy sequence in \((CC(Y), \mathcal{H})\). Completeness of \(CC(Y) \) with respect to the Hausdorff metric topology insures that

\[
Q(x) = \lim_{n \to \infty} 4^{-n}F(2^n x) (x \in X)
\]
defines a function from \(X \) to \(CC(Y) \). Put \(m = 0 \) in (2.4) to obtain

\[
\mathcal{H}\left(Q(x), F(x)\right) = \lim_{n \to \infty} \mathcal{H}\left(4^{-n}F(2^n x), F(x)\right)
\]

(2.5)

\[
\leq \sum_{k=0}^{\infty} \frac{\varepsilon}{2^{k+1}} = \frac{\varepsilon}{3} (x \in X).
\]

Moreover, for every \(x \in X \), we have

\[
Q(2x) = \lim_{n \to \infty} 4^{-n}F(2^{n+1} x)
\]

(2.6)

\[
= 4 \lim_{n \to \infty} 4^{-(n+1)}F(2^{n+1} x) = 4Q(x).
\]

If \(x \perp y \), we have

\[
\mathcal{H}\left(Q(x) + Q(y), Q(x + y)\right) = \lim_{n \to \infty} \mathcal{H}\left(4^{-n}F(2^n x) + 4^{-n}F(2^n y), 4^{-n}F(2^n(x + y))\right) \leq \lim_{n \to \infty} 4^{-n}\varepsilon = 0.
\]

Hence \(Q \) is orthogonal additive. Suppose that \(Q' : X \to CC(Y) \) satisfies the following properties:

(i) \(\mathcal{H}\left(Q'(x), F(x)\right) \leq \frac{\varepsilon}{3} \) and

(ii) \(Q'(2x) = 4Q'(x) \) for each \(x \in X \).

Then for each \(x \in X \), we have

\[
\mathcal{H}\left(Q'(x), Q(x)\right) = \lim_{n \to \infty} \mathcal{H}\left(4^{-n}Q'(2^n x), 4^{-n}F(2^n x)\right)
\]

\[
= \lim_{n \to \infty} 4^{-n}\mathcal{H}\left(Q'(2^n x), F(2^n x)\right) \leq \lim_{n \to \infty} 4^{-n}\frac{\varepsilon}{3} = 0.
\]

Thus the uniqueness assertion of step 2 follows.

Step 3. The function \(Q : X \to CC(Y) \) is quadratic.
Proof of step 3. Let $x, y \in X$. Then the following cases may happen.

(i) $y = \alpha x$, where $\alpha \geq 0$. In this case, by property (4) of Definition 2.2, for each $x \in X$, there is some $z \in X$ such that $x \perp z$ and $x + z \perp \alpha x - z$. Therefore

$$Q(x + y) + Q(x - y) = Q(x + \alpha x) + Q(x - \alpha x) = Q(x + z + \alpha x - z) + Q(\alpha x - x).$$

It follows that

$$Q(x + \alpha x) + Q(x - \alpha x) + Q(2z) = Q(x + z) + Q(\alpha x - z) + Q(\alpha x - x + 2z) = Q(x) + 2Q(z) + Q(\alpha x) + Q(x + z + z - \alpha x) = Q(x) + 2Q(z) + Q(\alpha x) + Q(x + z) + Q(z - \alpha x) = 2Q(x) + 2Q(\alpha x) + 4Q(z) = 2Q(x) + 2Q(\alpha x) + Q(2z).$$

Thanks to Lemma 2.4, the result follows in this case.

(ii) $y = \alpha x$, where $\alpha < 0$. Let $\beta = -\alpha$. Then $\beta > 0$. Hence,

$$Q(x + \alpha x) + Q(x - \alpha x) = Q(x - \beta x) + Q(x + \beta x) = 2Q(x) + 2Q(\beta x) = 2Q(x) + 2Q(\alpha x)$$

since Q is even.

(iii) x and y are linearly independent.

By Definition 2.2, there is some z in linear span of $\{x, y\}$ such that $x \perp z$. Let $y = \alpha x + \beta z$. Then

$$Q(x + y) + Q(x - y) = Q[(x + \alpha x) + \beta z] + Q[x - (\alpha x + \beta z)] = Q(x + \alpha x) + Q(\beta z) + Q(x - \alpha x) + Q(-\beta z) = 2Q(x) + 2Q(\alpha x) + 2Q(\beta z) = 2Q(x) + 2Q(\alpha x + \beta z) = 2Q(x) + 2Q(y).$$

This completes the proof of the theorem.

Example 2.6. Let X be an inner product space and $\varepsilon > 0$. Define $F : X \to CC(\mathbb{R})$ by $F(x) = [0, \|x\|^2 + \varepsilon]$. It is easy to see that F is $[0, \varepsilon]$-orthogonal additive even function. According to Theorem 2.5, there is a quadratic function $Q : X \to CC(\mathbb{R})$ such that

$$\mathcal{H}(F(x), Q(x)) \leq \frac{7\varepsilon}{3} (x \in X).$$

Definition 2.7. Let X and Y be two sets. By a selection of a set-valued function $F : X \to 2^Y$, we mean a single-valued mapping $f : X \to Y$ such that $f(x) \in F(x)$ for each $x \in X$.

Corollary 2.8. Under conditions of Theorem 2.5, there is a quadratic function $q : X \to Y$ such that

$$q(x) \in F(x) + \frac{7\varepsilon}{3} B(0, 1) (x \in X).$$
Proof. It is known that if X is an abelian group with division by two and Y is a topological vector space, then every subquadratic set-valued function $Q : X \to CC(Y)$ admits a quadratic selection $q : X \to Y$ [4, Theorem 35.2]. So the result follows from Theorem 2.5.

Acknowledgements. The authors would like to thank the two anonymous reviewers for their helpful comments.

References

