13th Congress of the International Society for Ethnopharmacology

in collaboration with the

Society for Medicinal Plant and Natural Product Research

and

Eurasia-Pacific Uninet

Graz, Austria
September 2 - 6, 2012

http://ise13.uni-graz.at
ACKNOWLEDGEMENTS

The Organising Committee wants to express its gratitude to the following companies and institutions for financial support of the 13th Congress of the International Society for Ethnopharmacology:

- Spectronex GmbH
 - Wien, Austria
- Thermo Fisher Scientific
- CAMAG
 - Muttenz, Switzerland
- VWR International
 - Wien, Austria
- Bionorica SE
 - Neumarkt, Germany
- Shimadzu Handelsgesellschaft mbH
 - Korneuburg, Austria
- PhytoLab GmbH & Co. KG
 - Vestenbergsgreuth, Germany
- Elsevier B.V.
 - Amsterdam, The Netherlands
- Georg Thieme Verlag KG
 - Stuttgart, Germany
Local Organising Committee
Rudolf Bauer (Chairman)
Adelheid Brantner
Marlene Monschein
Claudia Thenius

Scientific Committee
Husnu Baser (Eskisehir, Turkey)
Anna Rita Bilia (Florence, Italy)
Wolfgang Blaschek (Kiel, Germany)
Lars Bohlin (Uppsala, Sweden)
Rainer Bussmann (St. Louis, USA)
Salvador Cañigueral (Barcelona, Spain)
Kelvin Chan (Sydney, Australia)
Yung-Chi Cheng (New Haven, USA)
Roberto Della Loggia (Trieste, Italy)
Elaine Elisabetsky (Porto Alegre, Brasil)
Jacobus N. Eloff (Pretoria, South Africa)
Sue Evans (Lismore, Australia)
Chlodwig Franz (Vienna, Austria)
Barbara Frei-Haller (Neuchâtel, Switzerland)
Simon Gibbons (London, UK)
Hassan Anwarul Gilani (Karachi, Pakistan)
Guo De-an (Shanghai, China)
Matthias Hamburger (Basel, Switzerland)
Peter Houghton (London, UK)
Michael Heinrich (London, UK)
Andreas Hensel (Münster, Germany)
Anna Jäger (Copenhagen, Denmark)
Ikhlas Khan (Oxford, USA)
Brigitte Kopp (Vienna, Austria)
Marie Aleth Lacaille-Dubois (Dijon, France)

Patronage
Mag. Franz Voves, Governor of Styria
Mag. Siegfried Nagl, Mayor of Graz

Scientific Items
Prof. Dr. Rudolf Bauer
Institute of Pharmaceutical Sciences
Department of Pharmacognosy
Karl-Franzens-University Graz
Universitätsplatz 4
8010 Graz, Austria
Tel.: +43/316/380 8700
Fax: +43/316/380 9860
rudolf.bauer@uni-graz.at

Organising Secretariat
Mag. Claudia Thenius
Institute of Pharmaceutical Sciences
Karl-Franzens-University Graz
Universitätsplatz 4
8010 Graz, Austria
Tel.: +43/316/380 5525
Fax: +43/316/380 9860
E-Mail: ise13@uni-graz.at
http://ise13.uni-graz.at
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>P51</td>
<td>Radiation absorption and use efficiency of sesame as affected by biofertilizers in a low input cropping system</td>
<td>Mohsen Jahan, Mohammad Behzad Amiri, Mehdi Nassiri Mahallati</td>
</tr>
<tr>
<td>P52</td>
<td>TANZANIAN MEDICINAL PLANTS USED FOR MANAGEMENT OF LABOUR PAINS AND ABORTION</td>
<td>Sheila Maregesi</td>
</tr>
<tr>
<td>P53</td>
<td>Tanner Sumach an old medicine and a conventional spice in Iran</td>
<td>Reyhane Azimi, A Koocheki</td>
</tr>
<tr>
<td>P54</td>
<td>Evaluation of the anti-inflammatory, antinociceptive and antioxidant effects of the endemic Soqotraen Boswellia elongata and Jatropha unicostata</td>
<td>Ramzi Mothana,</td>
</tr>
<tr>
<td>P55</td>
<td>Antipruritic effects of the petals of Hypericum patulum</td>
<td>Hisae Oku</td>
</tr>
<tr>
<td>P56</td>
<td>Traditional medicine</td>
<td>Antonia Nyamukuru, JRS Tabuti, B Kato, P Aduma</td>
</tr>
<tr>
<td>P57</td>
<td>Isolation of Antidiabetic Principle from bark of Acacia modesta Root</td>
<td>SUNIL JAWLA, Y. Kumar, M.S.Y. Khan</td>
</tr>
<tr>
<td>P58</td>
<td>The synergic antibacterial effect of tea and Mentha pulegium hot water extracts</td>
<td>Reyhaneh Sariri, R Razmgar, M Taheri</td>
</tr>
<tr>
<td>P59</td>
<td>AGATHISFLAVONE, A CYTOTOXIC BIFLAVONE FROM LEAVES AND FRUITS OF JUNIPERUS PHOENICEA L. GROWING IN EGYPT</td>
<td>Maii Ismail, Salma El-Sawi A, Hemaia M Motawae, Mohamed A Sleem, Abdel-Rahman O El-Shabrawy, Usama W Hawas</td>
</tr>
<tr>
<td>P60</td>
<td>Ethnobotanical survey of medicinal plants in the South east Ethiopia used in traditional medicine</td>
<td>Mohammed Mohammed, NT Wabe</td>
</tr>
</tbody>
</table>
Radiation absorption and use efficiency of sesame as affected by biofertilizers in a low input cropping system

Jahan M1, Nasrin mahallati M2, Amiri M.B3

1 Agronomy Dep. Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Iran, E-mail: jahan@fum.ac; 2 Agronomy Dep. Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Iran, E-mail: nasrin@fum.ac; 3Agronomy Dep. Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Iran, E-mail: m.b2.amiri@gmail.com

Cultivation of high efficacious crops in resource utilization, especially with higher water and radiation use efficiencies is one of the important strategies to achieve the goals of sustainable agriculture. In agreement with these guidelines and in order to estimate light extinction coefficient and radiation use efficiency of sesame as a high value medicinal plant in arid regions a randomized complete block design with three replications was conducted in 2009-10 growing season. Treatments were three different types of biofertilizers plus control, including 1-nitroxin (containing of Azotobacter sp.& Azospirillum sp.), 2- biophosphor (PSB, containing of phosphate solubilizing bacteria, Bacillus sp. & Pseudomonas sp.), 3- biosulfur (SSB, containing of Thiobacillus sp.) and 4- control (no fertilizer). The results showed that application of biofertilizers resulted to 15 days shorter period to achieve maximum leaf area index compared to control and as a result, the maximum fraction of absorbed radiation and consequently sesame dry matter produced at the sixtieth day after emergence, 15 day sooner than control. Although, light extinction coefficient in control (no biofertilizer) was higher than biofertilizer treatments (0.78 vs. 0.69), but radiation use efficiency (RUE) in SSB and nitroxinwas higher compared to control (1.31, 1.24 and 1.09respectively) which resulted to highest biomass and yield seed, yield oil and protein and harvest index. In this research, the total mean sesame RUE estimated of 1.19 g MJ⁻¹ (R²=0.95). In general, these results indicated that application of biofertilizers specially SSB and nitroxin enhanced utilization of radiated and absorbed radiation by sesame canopy and consequently improved quantitative and qualitative yields.

Medicinal Plants used in Tanzania to induce or to prevent abortion and to manage the labor pains

Sheila M. Maregesi
Department of pharmacognosy, Muhimbili University of Health and Allied Sciences (MUHAS). P.O. Box 65013. Dar Es Salaam, Tanzania.

Herbal drugs have been used in managing labor pain and induction of abortion for the unwanted pregnancies since ancient times. These herbal drugs may cause health risks to both the mother and expected baby. In Tanzania official documentation of the mortality rate from such practices is lacking but oral communication with various medical-workers confirm such practices from the confession of some patients seeking medical help. Herbderg and Chhabra teams [1, 2], Watt and Breyer-brandwijk [3], Haerdi [4] and Kokwaro [5] compiled many Tanzania medicinal plants for various diseases/conditions. For the purpose of this presentation, these are jointly designated as “the main point of reference”. Out of their work, 62 plants belonging to 33 families are used against abortion (43.55%), abortion inducement (20.97%) and mitigation of the labor pains (16.13%) The frequency of mention is once or twice to almost all species for either of the applications. However, at the families level, Euphorbiaceae, Malvaceae, Papilionaceae and Vitaceae each have three plants used to prevent abortion, whereas, Euphorbiaceae, Menispermaceae, Plumbaginaceae and Umbelliferae each have two plants used to induce abortion, and Sapindaceae having two plants used to for labour pain management.

The drawback on the previous work in the mentioned resources lies on the format used on data presentation i.e. not focused on particular a disease/medical condition. This work aims at providing an easy and quick dissemination/access to scientific researchers for further studies in order to confirm the claimed pharmacological activity, establish their safety or toxicity. This will give a way to isolation of bioactive compounds and standardization of herbal drugs.