Trimerization of sulfur trioxide: a density functional theory study

Seyed Hasan Kazemi*, Hossein Eshtiagh-Hosseini and Masoud Mirzaei
Chemistry Department, Ferdowsi University of Mashhad, P.O. Box 917791436 Mashhad, Iran.

Upon condensation of the pure planar gas SO$_3$ (D_{3h}) trimerizes spontaneously, which is often called γ-SO$_3$. It adopts a cyclic structure (C_{3v}) described as $[\text{S}(=\text{O})_2(\mu-\text{O})]_3$. The highly electrophilic nature of γ-SO$_3$ results in insertion reactions into M-C as well as M-O (M = Si, Ge, Sn, Pb) bonds under very mild conditions to leave the organic portion of the molecule intact [1-3]. Other experimental and theoretical investigations of γ-SO$_3$ and its derivatives have been relatively sparse.

Thus, the main objective of the present work is to study the trimerization of SO$_3$ in the gas phase, with density functional theory (DFT) at the B3LYP/ 6-31G(d) basis set level. The basis set superposition error (BSSE) associated with the polymerization energy was computed via the counterpoise method using the individual bases as fragments [4].

DFT calculations were carried out to predict the structures and vibrational (Raman and infrared) spectra and were compared to the experimental results [5-7]. Theoretical calculations were also carried out for SO$_3$ and γ-SO$_3$ for better understanding the intermolecular interactions.

References: