Influence of low Co substitution on magnetoelastic properties of HoFe\(_{11}\)Ti intermetallic compound

L. Motevalizadeh\(^a,\ast\), N. Tajabor\(^b\), D. Sanavi Khoshnoud\(^c\), D. Fruchart\(^d\), F. Pourarian\(^e\)

\(^a\) Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
\(^b\) Department of Physics, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
\(^c\) Department of Physics, Semnan University, Semnan 35195-363, Iran
\(^d\) Institut. Néel, Département MCMF, Groupe IICF, BP 166, 38042 Grenoble Cedex 9, France
\(^e\) Department of Material Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

\begin{abstract}
The thermal expansion and magnetostriction of HoFe\(_{11-}\)Co\(_x\)Ti (x=0, 0.3, 0.7 and 1) intermetallic compounds were measured, using the strain gauge method in the temperature range 77–590 K under applied magnetic fields up to 1.5 T. Results show that for samples with x=0 and 0.3, both linear thermal expansion and linear thermal expansion coefficient exhibit anomalies below the Curie temperature. Below room temperature, the spontaneous volume magnetostriction decreases with Co content. For all compounds studied, the anisotropic magnetostriktion shows similar behaviour in the measured temperature range. The magnetostriction compensation occurs above room temperature in all samples. The volume magnetostriction shows a linear dependence on the applied field and by approaching the Curie temperature this trend changes to parastrictive behaviour. The results of the spontaneous magnetostriction are discussed based on the local magnetic moment model. The contribution of magnetostriction attributed to the magnetic sublattices R and T (Fe or Co) is discussed.
\end{abstract}

\section{Introduction}

Intermetallic compounds based on rare-earth (R) and transition metal (T) elements are important from technological and fundamental point of view. Ternary intermetallic compounds of the type RT\(_1\)M (T=Fe, Co or Mn and M=Ti, V, Cr, Mo, W, or Si) have been extensively investigated as the candidate for permanent magnet applications. All these compounds crystallise in the tetragonal ThMn\(_{12}\) structure with the space group \textit{I4/mmm}, where the R atoms are located on one crystallographic site (2\(a\)) and the T atoms occupy three non-equivalent sites (8\(f\), 8\(i\) and 8\(j\)) [1–3]. Pseudo-ternary compounds of the type RFe\(_{11-}\)Co\(_x\)Ti also crystallise in the ThMn\(_{12}\) structure [4]. In the past two decades, magnetic properties and magnetic structure of RFe\(_{11}\)Ti have been studied in order to investigate the nature of the field-induced magnetic phase transitions [5–7]. Many researches have also been performed on the investigation of magnetoelastic properties of intermetallic compounds based on RFe\(_{12-}\)M\(_x\) [8–12]. In the previous study, we investigated the structural and magnetic properties of HoFe\(_{11-}\)Co\(_x\)Ti compounds [13]. It was found that lattice parameters decrease and Curie temperature (\(T_C\)) increases with cobalt content. Spin reorientation transition as a result of the competition between anisotropies of Ho and T (Fe,Co) sublattices has been observed only for x=9 and 11 compounds. However, the influence of Co concentration on the thermal expansion and magnetostriction of RFe\(_{11-}\)Co\(_x\)Ti compounds has seldom been studied. To our knowledge, there is only one report on the thermal expansion of YFe\(_{11-}\)Co\(_x\)Ti compounds that showed the variation of the thermal expansion anomaly in these compounds [14]. The influence of Co substitution on this anomaly in the presence of magnetic moment of a rare-earth element has not been investigated until now. In this work, we report the effect of low Co concentration on the magnetostriction and thermal expansion of HoFe\(_{11}\)Ti compound.

\section{Experimental methods}

The HoFe\(_{11-}\)Co\(_x\)Ti (x=0, 0.3, 0.7 and 1) polycrystalline samples were prepared by arc Ar atmosphere. Then, the buttons were re-melted in a high-frequency induction furnace equipped with a water-cooled copper crucible. To assure the homogeneity, the samples were subsequently wrapped into Ta foil, sealed into an evacuated quartz tube and annealed for 12 day at 1050°C and quenched in air. X-ray diffraction (with Cu-K\(\alpha\) radiation) patterns...
of the annealed samples revealed the formation of single phase materials.

Thermal expansion and magnetostriction measurements were performed by using a strain gauge method. The gauges were placed on disc-shaped samples (10 mm diameter, 3 mm thick), which were cut from the annealed bulk ingots. Magnetic fields were applied up to 1.5 T, with temperature ranging from 77 to 590 K. The thermal expansions $\Delta l/l = [(l(T) - l(77 K))]/l(77 K)$ were deduced by measuring the relative change in length of the samples versus temperature. The magnetostriction was measured (with an accuracy of 2×10^{-6}) parallel (longitudinal magnetostriction, λ_3) and perpendicular (transverse magnetostriction λ_2) to the field direction, thus allowing to deduce the anisotropic thermal expansion as discussed in the text. The arrows indicate the Curie temperature (T_C) with an accuracy of 2.

It should be emphasised that no significant difference was observed between the strains measured in the plane and perpendicular to the plane of the disc of the samples, suggesting the absence of any preferred orientation effects.

3. Results and discussion

The structural and magnetic properties of these samples were investigated by authors in Ref. [13]. It was shown that the samples are single phase [13].

The linear thermal expansion curves, $\Delta l/l(T)$, of HoFe$_{11-x}$Co$_x$Ti compounds are shown in Fig. 1. The Curie temperatures of the samples with $x=0$ and 0.3 are indicated by arrows. It can be seen that, for $x=0$, both $\Delta l/l(T)$ and linear thermal expansion coefficient, $\alpha(T) = d/dT[\Delta l/l(T)]$, exhibit an anomalous behaviour and Invar effect near T_C. Beyond T_C in the paramagnetic region, $\Delta l/l(T)$ behaves linearly. Sample with $x=0.3$ shows similar behaviour, but without Invar effect. For samples with $x=0.7$ and 1, the Curie temperature (determined by magnetisation method) is at 593 K and 623 K, respectively [13]; which are higher than the maximum temperature allowed to apply to the strain gauge. Therefore, the curves for these samples show only the behaviour in the magnetic ordering state. The spontaneous linear magnetostriction, $[\Delta l/l(T)]_{lm}$, was determined by subtracting the lattice thermal expansion, $[\Delta l/l(T)]_{latt}$, from the total experimental linear thermal expansion, $[\Delta l/l(T)]_{exp}$, i.e. $[\Delta l/l(T)]_{lm} = [\Delta l/l(T)]_{exp} - [\Delta l/l(T)]_{latt}$. The lattice contribution (the dashed lines in Fig. 1) is obtained by extrapolating the paramagnetic range according to the Debye theory with the Debye temperature, $TD = 450$ K in this case [8–10], and the Gruneisen relation, $\alpha(T) = 3\kappa T/CV$, where κ is the phonon anharmonic thermal expansion coefficient, γ is the isothermal compressibility, γ is the Gruneisen parameter, and CV is the specific heat. With assumption that $\Delta l/l(T)$ is isotropic, spontaneous volume magnetostriction will be $\omega_3(T) = 3(\Delta l/l(T))_{lm}$, which is defined as the relative volume difference between the magnetic and paramagnetic states. Fig. 2 shows the temperature dependence of $\omega_3(T)$ for HoFe$_{11}$Ti compound which illustrates decrease of ω_3 from 9.0×10^{-5} to about 0 at T_C. The nonzero remaining values of ω_3 above T_C reflect the existence of a short-range magnetic ordering in the paramagnetic state, similar to some other 1–12 compounds [8–10]. Comparison of ω_3 in polycrystalline sample of HoFe$_{11}$Ti with that of YFe$_{11}$Ti in Ref. [14] shows that ω_3 is smaller in the Ho containing compound. This indicates that the volume dependence of magnetisation (dM/dω) (volume dependence of the magnetic moments) in HoFe$_{11}$Ti is lower than that of YFe$_{11}$Ti compound. A similar behaviour was also determined for the pressure effect on the magnetisation of these compounds which shows that dM/dP is equal to -0.065 and -0.056 (mol/cm3) kbar$^{-1}$ for Y- and Ho-containing compounds, respectively [15]. Therefore, these results may indicate that Ho sublattice moment induces a negative effect on spontaneous volume magnetostriction. Fig. 2 shows the temperature dependence of $\omega_3(T)$ for sample with $x=0.3$. As temperature decreases below T_C, ω_3 increases up to 170 K and then decreases gradually. The presence of the maximum in ω_3 around 170 K can be
attributed to the linear and non-Invar behaviour of the thermal expansion in low temperatures. Such behaviour is also observed in YFe\textsubscript{11–x}Co\textsubscript{x}Ti compounds [14]. Finally, as shown in Fig. 2, ω decreases with Co content in HoFe\textsubscript{11–x}Co\textsubscript{x}Ti compounds.

In order to investigate the effect of Co substitution on $\omega(T)$, we use the local moment model (the Heisenberg model). In this model, the volume difference $\langle \omega \rangle$ due to the magnetic coupling is given by the two isotropic spin correlation functions $\langle \mathbf{m}_i \cdot \mathbf{m}_j \rangle$ [16]

$$\omega = \kappa \sum_{ij} C_{ij} \langle \mathbf{m}_i \cdot \mathbf{m}_j \rangle \quad (1)$$

where κ is the compressibility, C_{ij} is the magnetovolume coupling constant due to the volume dependence of exchange interaction and i, j are the lattice sites. It is well known that in R–T compounds, there are three exchange interactions included J_{RT} between the transition metal spins, J_{RRT} between the rare earth spin and transition metal spins, and J_{RR} between rare earth spins. Since the Curie temperature is nearly equal in HoFe\textsubscript{11–x}Co\textsubscript{x}Ti and YFe\textsubscript{11–x}Co\textsubscript{x}Ti compounds; therefore, J_{RT} is dominant in comparison to J_{RR}, whereas J_{RR} contribution can be neglected [13,14]. Previous results showed that in RFe\textsubscript{12–x}M\textsubscript{x} alloys, M\textsubscript{f} (= Ti, Mo, etc.) atoms substitute preferentially into the 8\textsubscript{i} site. This site is corresponding to 6c (dumbbell) site in Th\textsubscript{2}Zn\textsubscript{17}-type [17]. The critical bond length between a positive exchange interaction (ferromagnetic) and a negative exchange interaction (antiferromagnetic) is about 2.45 Å. In ThMn\textsubscript{12} structure, two bond lengths of 8i–8i (in the ab-plane) and 8f–8f (half of the lattice parameter c and along the c-axis) are smaller than 2.45 Å (critical bond length). Therefore, the coupling between these sites is strong with negative value and responsible for the spontaneous volume magnetostriction.

Our previous results show that the introduction of Co into the HoFe\textsubscript{11–x}Ti alloy resulted in a decrease in lattice parameters [13]. Consequently, it can be expected that the bond lengths of 8i–8i and 8f–8f decrease and negative exchange interaction increases. However, the total J_{RT} is not only determined by the exchange parameter J_{RT}^{ex} (exchange integral between $T(i)$ and $T(j)$, where (i) and (j) are $T(Fe, Co)$ atoms for equivalent and non-equivalent sites) but also by T magnetic moment and the number of T nearest neighbours. Indeed, based on the Wiener–Seitz cell calculation, Co atoms occupy 8f sites [13]. Thus, although the exchange parameter J_{RT}^{ex} increases by lattice contraction, the magnetic moment and the number of Fe–Fe pairs in 8f site decreases by Co substitution. The contribution of Co–Co interaction to J_{RT} is positive and independent of the interatomic distances. This explanation is consequence of a little change of T_C in Co-rich HoFe\textsubscript{11–x}Co\textsubscript{x}Ti compounds [13]. Finally, the decrease in magnetovolume effect in HoFe\textsubscript{11–x}Co\textsubscript{x}Ti compounds with Co substitution indicates that the magnetovolume coupling constant (C_{ij}) decreases, i.e. the total exchange interaction is independent of the interatomic distance. A similar trend has been observed in RFe\textsubscript{12–x}CoB (R = Y and Er) compounds [18,19]. Moreover, from the decrease of ω value, it can be concluded that by increasing Co content the compounds tend to become strong ferromagnets. This conclusion can be understood by following the magnetic valence model and the theoretical calculations of the density of states for Fe and Co [20,21].

Lee and Pourarian employed the local moment model, using the spontaneous volume magnetostriction in a two sublattice approximation described in the case of R–T intermetallic compounds as [22]

$$\omega = \frac{B_{eff} \mu_T^2}{C_0} + n_{Fe} \mu_F \mu_T + n_{RR} \mu_R^2 \mu_T,$$ \hspace{1cm} (2)

where μ_T and μ_R are the average magnetic moments of the T and R atoms, n_{Fe} and n_{RR} are the magnetoelastic coupling coefficients in the T and R sublattices, respectively, and n_{RT} is the intersublattice coupling coefficient between R and T atoms. For intermetallic compounds with high content of 3d metals, it is possible to neglect the last term in relation (2) [10]. Using relation (2) and the values of μ_{Ho}, μ_{Fe} and μ_{FeFe} at 5 K from [13,14], the intermetallic coupling coefficient, n_{HoFe}, is obtained as $-1.7 \times 10^{-5} \mu_B^2$ at 5 K that is insignificant in comparison to n_{FeFe}. In this calculation, we can use the linear fit of thermal expansion experimental curve at low temperature for obtaining ω_0 at 5 K.

Fig. 3 shows the anisotropic magnetostriction ($\Delta \lambda$) of HoFe\textsubscript{11–x}Ti compound as a function of applied field at some selected temperatures. It is clear that below room temperature $\Delta \lambda$ monotonically increases with negative sign under applied field. In this compound, the anisotropy field is larger than 1.5 T below room temperature (RT). Thus, the tendency to saturation is not observed in this temperature range. Saturation behaviour starts approximately from $T_s = 330$ K. This behaviour may be attributed to the reduction of the magnetocrystalline anisotropy with increasing temperature.

The temperature dependence of $\Delta \lambda$ for HoFe\textsubscript{11–x}Co\textsubscript{x}Ti ($x=0, 0.7$ and 1) compounds at applied field of 1.5 T is shown in Fig. 4.
such behaviour for Fe sublattice is observed in YFe\textsubscript{10}V\textsubscript{2} compound is plotted versus applied field at some selected temperatures. All compounds show similar behaviour in the whole temperature range, but the absolute values of Δl decrease slightly with Co content. As one can observe the anisotropic magnetostriction has a minimum around $T = 125$ K and then increases. Finally, magnetostriction compensation occurs at a point (T_C) above room temperature. It is seen that T_C decreases with Co substitution. Previous results on magnetostriction of RFe\textsubscript{11}Ti (Y, Tb and Dy) compounds show that Fe sublattice contribution to magnetostriction is positive in these compounds [11,12]. A similar trend was also reported for Fe sublattice contribution to the magnetostriction of YFe\textsubscript{12}V\textsubscript{4} compounds [23]. Therefore, using our results on Δl of HoFe\textsubscript{11}Ti, one can deduce that Ho sublattice contribution to magnetostriction of this compound is negative. Hence, observed minimum in Δl curve could be attributed to the gradually increasing (decreasing) contribution of Fe (Ho) sublattice to Δl. Such behaviour for Fe sublattice is observed in YFe\textsubscript{10}V\textsubscript{2} compound as well [24]. The observed positive value of Δl in these compounds beyond compensation point (T_C) can be attributed to the natural reduction of the anisotropy of Ho sublattice and is due to Fe-sublattice anisotropy. Moreover, the decrease of T_C by Co substitution in HoFe\textsubscript{11}...CoTi compounds shows that Co induces positive anisotropic magnetostriction in these compounds and enhances contribution of T-sublattice to Δl.

The volume magnetostriction ($\Delta V/V$) of the HoFe\textsubscript{11}Ti compound is plotted versus applied field at some selected temperatures shown in Fig. 5. Except at high temperatures, the $\Delta V/V$ curves of all compounds show almost linear dependence with field. $\Delta V/V$ also increases monotonically with field. Moreover, as expected for the parastrictive behaviour, for temperatures near T_C the $\Delta V/V$ curves tend to have a quadratic dependence on the applied field [25]. This behaviour occurs at higher temperatures for HoFe\textsubscript{11}...CoTi compounds. On the other hand, $\Delta V/V$ decreases with increasing Co concentration in these compounds. The results of ω_2 indicate that the volume dependence of the magnetic interaction weakens with Co substitution. A similar trend has also been observed in Er\textsubscript{2}Fe\textsubscript{14}...CoB and Tm\textsubscript{2}Fe\textsubscript{14}...CoSi\textsubscript{2} compounds [18,26].

4. Conclusion

The influence of Co substitution on the magnetoelastic properties of HoFe\textsubscript{11}Ti polycrystalline compound has been investigated. The spontaneous volume magnetostriction and Invar effect decrease with Co substitution. Results show that Ho sublattice has negative contribution to spontaneous volume magnetostriction in this compound. Magnetostriction compensation occurs above room temperature in HoFe\textsubscript{11}...CoTi compounds. The absolute values of Δl decrease slightly with Co content. From our results on Δl of HoFe\textsubscript{11}Ti, it can be deduced that Ho sublattice contribution to magnetostriction is negative and the observed positive value of Δl in HoFe\textsubscript{11}...CoTi compounds beyond the compensation point is due to the T-sublattice anisotropy. The volume magnetostriction decreases with increasing Co concentration in these compounds.

References

Fig. 5. Field dependences of the volume magnetostriction of HoFe\textsubscript{11}Ti compound at some typical temperatures.

