Behaviour of Plate Girders Subjected to Combined Bending and Shear Loading

F. Shahabian* and T.M. Roberts

Theoretical predictions regarding the ultimate resistance of slender plate girders to applied shear loading, based on existing theories and formulas, show close correlation with the test data presented. When a plate girder is subjected to a bending moment in addition to shear, the determination of the ultimate resistance becomes more complex. Herein, an interaction formula for the ultimate resistance of slender plate girders to combined bending and shear loading is proposed, which shows satisfactory correlation with the available theories and which is acceptable for practical purposes. The proposed interaction equation covers web panel aspect ratios, \(b_w/d_w \), from 1 to 2 and slender ratios, \(d_w/t_w \), from 150 to 300.

INTRODUCTION

Slender steel plate girders are used in a variety of structural engineering applications, owing to their high strength-to-weight ratios and post-buckling reserves of strength. The web panels of plate girders may be subjected to shearing forces, bending moments and a combination of such loading. For example, end panels are subjected to shear loading and central panels are subjected to bending, while intermediate panels are subjected to combined bending and shear loading.

During the past four decades, numerous tests have been performed on slender plate girders to provide a better understanding of the modes of failure and the influence of geometric and material parameters on their ultimate resistance. Previous experimental and theoretical studies of slender web panels subjected to pure shear loading have been reviewed by Porter et al. [1], Evans [2] and Lee and Yoo [3]. Numerous tests have indicated that failure occurs in a typical shear sway mode, which is characterized by the formation of large inclined plastic shear buckles in the web and plastic hinges in the flanges. Rockey et al. [4] and Evans [2] have studied bending and the interaction between bending and shear loading. They proposed a procedure for quantifying the interaction between bending and shear, in terms of the moment at first yield, and the yield shear strength of the web. It seems that the proposed procedure by Rockey et al. and Evans is more complex and is not suitable for practical purposes. Herein, an interaction formula for the ultimate resistance of slender plate girders to combined shear loading and bending is proposed, which shows satisfactory correlation with the available theories and which is acceptable for practical purposes.

ULTIMATE SHEAR RESISTANCE

Theoretical predictions of the ultimate shear resistance of the test girders, \(V_u \), were made, in accordance with the tension field theory developed by Porter et al. [1] and Evans [2]. For a web panel having width of \(b_w \), depth of \(d_w \), thickness of \(t_w \), and similar top and bottom flanges (Figure 1), the ultimate shear resistance, \(V_u \), is given by:

\[
V_u = \tau_w b_w t_w + \sigma_y^2 \sin^2 \theta (d_w \cos \theta - t_w) t_w + \frac{d_w t_w}{2} \sin \theta \sqrt{(\sigma_{yw} M_w^2 \sigma_y^2)},
\]

Figure 1. Details of test girders.

* Correspoding Author; School of Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111, Mashhad, I.R. Iran.
1. School of Engineering, University of Wales Cardiff, P.O. Box 906, Cardiff CF2 3TB, UK.
where \(\tau_{cr} \) is the critical shear stress of an assumed, simply supported web plate given by:

\[
\tau_{cr} = K \left(\frac{\pi^2 E}{12(1 - \nu^2)} \right) \left(\frac{l_w}{d_w} \right)^2
\]

where \(K \) is the buckling coefficient given by:

\[
K = 5.34 + 4 \left(\frac{b_w}{b_o} \right)^2 \text{ when } \frac{b_w}{b_o} \geq 1,
\]

\[
K = 5.35 \left(\frac{b_w}{b_o} \right)^2 + 4 \text{ when } \frac{b_w}{b_o} \leq 1.
\]

\(\sigma_y^p \) is the web tension field membrane stress defined by the following equation:

\[
\sigma_y^p = \frac{\sigma_{yw} \left(1 - \left(\frac{\tau_{cr}}{\tau_{yw}} \right)^2 \left(1 - \frac{3}{4} \sin^2 \theta \right) \right)}{\frac{\sqrt{3}}{2} \frac{\tau_{yw}}{\sin \theta}}
\]

where \(\tau_{yw} \) is the shear yield stress of the web given by:

\[
\tau_{yw} = \frac{\sigma_{yw}}{\sqrt{3}}
\]

\(\theta \) is the inclination of the web tension field, assumed, approximately, to be two thirds of the inclination of the web panel diagonal, i.e.:

\[
\theta = \frac{2}{3} \tan^{-1} \left(\frac{d_w}{b_w} \right)
\]

where \(\sigma_{yw} \) is the yield stress of the web and \(M_p^* \) is a non-dimensional flange strength parameter defined as follows:

\[
M_p^* = \frac{M_{pf}}{d_w^2 t_w \sigma_{yw}}.
\]

\(M_{pf} \) is the fully plastic moment of the flange, which for a rectangular flange having width of \(b_f \), thickness of \(t_f \) and yield stress of \(\sigma_{yf} \) is given by:

\[
M_{pf} = 0.25 b_f t_f^2 \sigma_{yf}.
\]

A series of tests has been conducted on short span, welded plate girders, illustrated in Figure 1 [5]. The dimensions of the test girders, denoted PG1 to PG4, and material yield strengths are presented in Table 1. All the girders were simply supported and loaded in an Avery hydraulic testing machine under deflection control.

Theoretical ultimate resistances of the test girders to shear loading, \(V_u \), which are determined in accordance with Equation 1, are compared with the maximum experimental results, \(V_{ex} \), shown in Table 2. As can be seen, there is close correlation between \(V_u \) and \(V_{ex} \), so any one of them can be used in the next calculations.

ULTIMATE BENDING RESISTANCE

Based on an experimental study, Cooper [4] proposed the following empirical equation for determining the ultimate bending resistance of slender plate girder web panels, \(M_u \):

\[
M_u = 1 - 0.0005 \frac{A_w}{A_f} \left(\frac{d_w}{t_w} - 5.7 \sqrt{\frac{E}{\sigma_{yf}}} \right)
\]

where \(M_p \) is the moment at first yield of the extreme fibres of the compression flange, \(A_w \) and \(A_f \) are the cross-section areas of the web and compression flange, respectively, and \(E \) is Young's modulus.

COMBINED BENDING AND SHEAR LOADING

When a plate girder is subjected to a bending moment in addition to shear, the determination of the ultimate resistance becomes more complex. Rockett et al. [4] and Evans [2] have studied the interaction between

<table>
<thead>
<tr>
<th>Test Girder</th>
<th>(V_u) kN</th>
<th>(V_{ex}) kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG1</td>
<td>373</td>
<td>380</td>
</tr>
<tr>
<td>PG2</td>
<td>271</td>
<td>268</td>
</tr>
<tr>
<td>PG3</td>
<td>202</td>
<td>182</td>
</tr>
<tr>
<td>PG4</td>
<td>87</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 2. Comparison of test results with theoretical predictions.
bending and shear loading. The interaction between these two forms of loading was presented by the type of diagram shown in Figure 2. The portion of the curve between points S and C represents the region within which the girder will fail by the development of a shear mechanism. The vertical ordinate of point S represents the pure shear resistance given by Equation 1. This shear resistance is reduced gradually by the presence of an increasing bending moment.

Beyond point C, where the applied bending moment is high, failure occurs in the flanges, either by the yielding of the flanges or by the inward or lateral buckling of the compression flange. The following empirical relationship has been developed for locating point C [1]:

\[
\frac{V_c}{V_{yw}} = \frac{\tau_{fw}}{\tau_{ew}} + \left(\frac{\sigma_{if}}{\sigma_{ew}} \right) \sin \left(\frac{4\theta_f}{3} \right) \left[0.554 + \frac{36.8M_p}{M_F} \right] \left[2 - \left(\frac{h_w}{d_w} \right)^{1/8} \right],
\]

(10)

\[
V_{yw} = \tau_{ew} d_w t_w,
\]

(11)

where \(\theta_f \) is the inclination of the web panel diagonal and \(M_F \) is the plastic moment resistance of the flanges about the neutral axis of the girder, given by:

\[
M_F = b_f t_f \sigma_{ef} (d_w + t_f).
\]

(12)

Equation 10 defines the vertical ordinate of point C and, in conjunction with the horizontal coordinate value, \(M_F \), enables the position of point C to be located.

If a plate girder is subjected to a bending moment in excess of \(M_F \), it will fail in a bending mode. If sufficient lateral support is provided to ensure that lateral buckling does not occur, a thin walled plate girder will fail by an inward collapse of the compression flange. This will occur when the applied bending moment, \(M_u \), is close to that moment, \(M_F \), which produces a yielding of the extreme fibres of the compression flange.

Equation 9 defines the position of point D on the horizontal axis of the interaction diagram. \(M_u \) is the moment required to produce yield in the extreme fibres of the flange, while the corresponding stresses in the web are below yield. Consequently, the web can resist a certain amount of coexistent shear loading. This shear is defined by the ordinate of point B, lying vertically above point D. The ordinate, \(V_B \), is given by [2]:

\[
\frac{V_B}{V_C} = \sqrt{\left(\frac{M_p - M_u}{M_{yw}} \right)},
\]

(13)

where \(M_p \) is the fully plastic moment resistance of the complete cross-section and \(M_{yw} \) is the fully plastic moment of the web given by:

\[
M_{yw} = 0.254 d_w^4 \sigma_{ew}.
\]

(14)

Equation 13 defines the position of the final point on the interaction diagram. The portion, CB, of the curve can be assumed to be either parabolic or linear. In this way, the complete diagram can be drawn.

PROPOSED INTERACTION EQUATION

A summary of the calculations required to draw the interaction curves for test girders PG1 to PG4 is represented in Table 3 and the completed diagrams are shown in Figures 3 to 6.

The method proposed by Rockey et al. [4] and Evans [2] for quantifying the interaction between bending and shear involves sufficient complexity to
bending and shear loading. The interaction between these two forms of loading was presented by the type of diagram shown in Figure 2. The portion of the curve between points S and C represents the region within which the girder will fail by the development of a shear mechanism. The vertical ordinate of point S represents the pure shear resistance given by Equation 1. This shear resistance is reduced gradually by the presence of an increasing bending moment.

Beyond point C, where the applied bending moment is high, failure occurs in the flanges, either by the yielding of the flanges or by the inward or lateral buckling of the compression flange. The following empirical relationship has been developed for locating point C [1]:

\[
\frac{V_C}{V_{gw}} = \frac{\tau_{ew}}{\tau_{ew}} + \left[\frac{1}{3} \left(\frac{\sigma_{ew}^2}{4\beta_d} \right) \sin \left(\frac{4\theta_d}{3} \right) \right]
\]

\[
0.554 + \frac{36.8 M_P}{M_P^2} \left[2 - \left(\frac{h_w}{a_w} \right)^{1/8} \right]
\]

\[V_{gw} = \tau_{ew} a_{ew} t_{ew},\]

where \(\theta_d\) is the inclination of the web panel diagonal and \(M_P\) is the plastic moment resistance of the flanges about the neutral axis of the girder, given by:

\[M_P = b f_t \sigma_{ef} (a_w + t_f)\] \[\text{(12)}\]

Equation 10 defines the vertical ordinate of point C and, in conjunction with the horizontal coordinate value, \(M_{P_F}\), enables the position of point C to be located.

If a plate girder is subjected to a bending moment in excess of \(M_{PF}\), it will fail in a bending mode. If sufficient lateral support is provided to ensure that lateral buckling does not occur, a thin walled plate girder will fail by an inward collapse of the compression flange. This will occur when the applied bending moment, \(M_{B}\), is close to that moment, \(M_{PF}\), which produces a yielding of the extreme fibres of the compression flange.

Equation 9 defines the position of point D on the horizontal axis of the interaction diagram. \(M_{B}\) is the moment required to produce yield in the extreme fibres of the flange, while the corresponding stresses in the web are below yield. Consequently, the web can resist a certain amount of coexistent shear loading. This shear is defined by the ordinate of point B, lying vertically above point D. The ordinate, \(V_B\), is given by [1]:

\[\frac{V_B}{V_C} = \sqrt{\frac{M_P - M_u}{M_{PS}}}\] \[\text{(13)}\]

where \(M_P\) is the fully plastic moment resistance of the complete cross-section and \(M_{PS}\) is the fully plastic moment of the web given by:

\[M_{PS} = 0.25 h_w d_w^2 \sigma_{ew}\] \[\text{(14)}\]

Equation 13 defines the position of the final point on the interaction diagram. The portion, CB, of the curve can be assumed to be either parabolic or linear. In this way, the complete diagram can be drawn.

PROPOSED INTERACTION EQUATION

A summary of the calculations required to draw the interaction curves for test girders PG1 to PG4 is represented in Table 3 and the completed diagrams are shown in Figures 3 to 6.

The method proposed by Rockey et al. [4] and Evans [2] for quantifying the interaction between bending and shear involves sufficient complexity to
as follows:
\[
\left(\frac{V}{V_u} \right)^{4.0} + \left(\frac{M}{M_u} \right)^{4.0} = 1,
\] (15)

where \(V \) is the shear resistance of the plate girder in the presence of an applied bending moment, \(M \), \(V_u \) and \(M_u \) are defined by Equations 1 and 9, respectively.

DISCUSSION AND CONCLUSIONS

A series of tests have been conducted on short span, welded plate girders to investigate their ultimate resistance to shear loading. Failure of the test girders occurred in a typical shear failure mode, characterised by the formation of large inclined plastic shear buckles in the web and plastic hinges in the flanges. Theoretical predictions of the ultimate resistance of slender plate girders to applied shear loading, based on existing theories and formulas, show close correlation with the test data presented herein, so, any of them may be used in the calculations.

If a plate girder is subjected to a bending moment, it fails in a bending mode. If sufficient lateral support is provided to ensure that lateral buckling does not occur, a thin walled plate girder fails by inward collapse of the compression flange. This will occur when the applied bending moment is close to the moment that produces yielding of the extreme fibres of the compression flange.

When a plate girder is subjected to a bending moment in addition to shear, determination of the ultimate resistance becomes more complex. In this paper, an interaction formula for the ultimate resistance of slender plate girders to combined loading is proposed, which shows satisfactory correlation with the available theories and which is suitable for practical purposes. The proposed interaction equation covers web panel aspect ratios, \(b_w/d_w \), from 1 to 2 and slender ratios, \(d_w/t_w \), from 150 to 300.

NOMENCLATURE

- \(A_f \): flange cross section area
- \(A_w \): web cross section area
- \(b_f \): width of flange
- \(b_w \): clear width of web between stiffeners
- \(d_w \): depth of web
- \(E \): Young's modulus
- \(K \): buckling coefficient
- \(M \): moment resistance in the presence of shear
- \(M_p \): plastic moment resistance provided by the flanges
- \(M_p^c \): fully plastic moment resistance of the complete cross-section
- \(M_p^f \): plastic moment resistance of the flanges
- \(M_{pw} \): plastic moment of the web
- \(M_u \): ultimate bending resistance
- \(M_y \): moment, which produces yielding of the extreme fibres of the compression flange
- \(t_f \): thickness of flange
- \(t_w \): thickness of web
- \(V \): shear resistance in the presence of bending
- \(V_{ex} \): experimental ultimate shear resistance
- \(V_u \): ultimate shear resistance
- \(V_{yw} \): shear yield resistance of the web
- \(\theta \): inclination of web tension field
- \(\theta_d \): inclination of web panel diagonal
- \(\sigma_{fl} \): yield stress of flange
- \(\sigma_{yw} \): yield stress of web
- \(\sigma_y \): web tension field membrane stress
- \(\tau_{cr} \): critical shear stress of web
- \(\tau_{yw} \): shear yield stress of web

REFERENCES