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a b s t r a c t

In this paper, two new elements for three-dimensional finite element analysis of cable structures are
proposed. The tangent stiffness matrices of the cable elements are derived under spatially concentrated
and distributed static and thermal loads. The first element, which is called Continuous Catenary Cable
(CCC) element and extends the classic catenary cable element, presents the explicit forms of the stiffness
matrix and internal force vector of the cable. The second element, Discrete Catenary Cable (DCC)
element, is introduced by transforming the continuous equations of the CCC element into discrete
formulation, giving the capability of dividing the cable into several straight elements with axial behavior.
The DCC element, having all the features of the CCC element, has the advantages of including more three-
dimensional loadings such as point loads along the member and non-uniform distributed lateral loads,
and incorporating various geometrical and material nonlinearities such as cable cross-section variation
and cable material yielding. Thereafter, employing the proposed elements, we have presented a simple
algorithm for the analysis of pretensioned cables. The proposed elements are then used for nonlinear
analysis of cable structures, and the response is compared with those obtained by other researchers. The
results of numerical examples indicate the capability and robustness of the proposed elements in
predicting the deformation response of cable structures.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

In recent decades, cable structures have been widely utilized in
engineering applications due to their various advantages such as
high strength, high degrees of flexibility, elastic behavior, light
weight, the possibility of pretensioning and cost-effective construc-
tion [1]. Despite these advantages, high geometric nonlinearity has
always been a potential threat to the stability of cable structures [2].
Because of this challenging problem, the analysis of these structural
systems has attracted the attention of many researchers [3]. The
proposed models are mainly classified into two categories including
the models on the basis of finite element method and the classic
elastic catenary expressions. From the first point of view, truss
elements and multi-node curved elements, having both transla-
tional and rotational degrees of freedom, are presented [4]. The
simplest element is truss element most commonly used in the
analysis of cable structures [5–8], and has been resulted in a proper
response for low-sag, highly stretched cables; in this case, the
equivalent elastic modulus can be used to improve the accuracy [9].
The multi-node curved elements have been presented and extended
as well [10–15]. Although using these elements results in more
accurate responses [10,12], having no access to explicit form of
ll rights reserved.

+98 5118763303.
stiffness matrix and internal force vector may cause numerical and
convergence problems [16].

Elastic catenary cable formulation, first presented by O'Brien and
Francis [17] and later on extended by Andreu et al. [18] and Chunjiang
et al. [19], is based on the equilibrium state of the cable element
having only two nodes at its ends. This formulation, as compared to
approximate finite element models, considers nonlinear effects accu-
rately and requires less number of elements in cable structures
modeling. Moreover, the use of the parabolic curve as an approximate
geometry of a catenary cable is reportedly acceptable when cable
experienced small curvatures [20–23]. Besides, the stiffness matrix is
implicitly a function of the cable's internal forces and available in
global coordinates. Recently, Thai and Kim [24], Impollonia et al. [25]
and Salehi Ahmad Abad et al. [26] presented cable elements for
nonlinear analysis of cable structures. Thai and Kim [24] precisely
considered the effect of self-weight, and obtained the tangent stiffness
matrix and internal force vector explicitly under static and dynamic
loading. The effect of material nonlinearity lumped at the two ends of
the elements was considered as well. Impollonia et al. [25] obtained
the vector form of equilibrium equations as well as the closed form of
the deformed shape; temperature variation, and uniformly distributed
and point loads along the element have also been considered in their
model. However, there is no access to explicit stiffness matrix and
internal force vector. Salehi Ahmad Abad et al. [26] investigated the
seismic response of cable structures and proposed a new catenary
cable element for both material and geometric nonlinear dynamic
analysis of these structures.
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In this paper, the CCC element is proposed on the basis of the
classic elastic catenary expressions; the explicit forms of the
stiffness matrix and internal force vector of the cable are also
available. Thereafter, with the use of the CCC model, the DCC
element is proposed through transforming the continuous equa-
tions of the CCC element into discrete formulation; the DCC model
provides the advantages of including more three-dimensional
loadings such as point loads along the member and non-
uniformly distributed lateral loads, and of incorporating various
geometrical and material nonlinearities such as variation of the
cable cross-section and yielding of the cable material. Then, a
simple algorithm for the analysis of pretensioned cables is put
forward with the use of our proposed elements. The results of the
analysis of the cable structures using our proposed elements show
that the DCC model analyses structures faster and with higher
accuracy than continuous models.
2. Formulation

2.1. Continuous modeling

Herein, it is assumed that the cable is perfectly flexible, and is
subjected to uniformly distributed and thermal loading along the
member. The cross-sectional area of the element is kept constant as
well. Fig. 1 shows the cable element under general loads. This element
is suspended between points 1 and 2 with Cartesian coordinates
ð0;0;0Þ and ðl1; l2; l3Þ, respectively. The uniformly distributed loadsw1,
w2 and w3 are applied in global directions. Temperature variation is
also considered. The Lagrangian coordinates of the un-deformed and
deformed configurations are s and p. The equations for the equilibrium
of the cable can be expressed as follows:

T
dx1
dp

� �
¼−ðw1sþ f 1Þ ð1aÞ

T
dx2
dp

� �
¼−ðw2sþ f 2Þ ð1bÞ

T
dx3
dp

� �
¼−ðw3sþ f 3Þ ð1cÞ

where f 1, f 2 and f 3 are the projected components of the cable force at
the first node in x1,x2 and x3 directions, respectively. The cable tension
at the Lagrangian coordinates is given by

TðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
3

i ¼ 1
ðwisþ f iÞ2

s
ð2Þ
Fig. 1. Continuous model of catenary cable subjected to general loads.
The cable tension T is related to the strain ε by Hook's law as

T ¼ EAðε−εtÞ ¼ EA
dp−ds
ds

−αΔT
� �

¼ EA
dp
ds

−1−αΔT
� �

ð3Þ

where E,A,α and ΔT are the elastic modulus, cross-sectional area,
linear thermal expansion coefficient of the materials, and the
change in cable's temperature, respectively. The relationships
between the Cartesian and Lagrangian coordinates are as follows:

xiðsÞ ¼
Z s

0
dxi ¼

Z s

0

dxi
dp

dp
ds

ds; i¼ 1;3 ð4Þ

Substituting Eqs. (1) and (3) into Eq. (4), we can find xi as a
function of s:

xiðsÞ ¼
Z s

0

−ðwisþ f iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑3

i ¼ 1ðwisþ f iÞ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑3

i ¼ 1ðwisþ f iÞ2
q

EA
þ ð1þ αΔTÞ

0
@

1
Ads;

i¼ 1;3 ð5Þ

The boundary conditions at the ends of the cable are

xiðl0Þ ¼ li; i¼ 1;3 ð6aÞ

xið0Þ ¼ 0; i¼ 1;3 ð6bÞ

where l0 is the initial length of the cable element. By integrating
along the member and applying the above boundary conditions,
the projected lengths of the cable as functions of the internal
forces, f i ¼ 1;3, are derived as follows:

liðf 1; f 2; f 3Þ ¼ −
l0f i
EA

−
l20wi

2EA

þ1þ αΔT
w3 wwi T1−T2ð Þ þ w2f i−a1wi

� �
ln

a1
w

þ T1

� �h�

−ln lw þ a1
w

þ T2

� �i
Þ

w¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
3

j ¼ 1
w2

j

s
; a1 ¼ ∑

3

j ¼ 1
f jwj;

T1 ¼ Tð0Þ
T2 ¼ Tðl0Þ ð7Þ

In order to solve the above system of equations, differential
projected components of the cable forces along x1,x2 and x3
directions are required. These components are determined by

dli ¼ ∑
3

j ¼ 1

∂li
∂f j

df j ð8Þ
Fig. 2. Discrete model of catenary cable subjected to general loads.



Fig. 3. Flow chart for computing internal forces and tangent stiffness matrix.

Fig. 4. Flow chart for computing internal forces and unstressed length for
pretensioned cable.
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In matrix form, Eq. (8) can be expressed as

dl1
dl2
dl3

8><
>:

9>=
>;¼ F½ �

df 1
df 2
df 3

8><
>:

9>=
>;¼

∂l1
∂f 1

∂l1
∂f 2

∂l1
∂f 3

∂l2
∂f 1

∂l2
∂f 2

∂l2
∂f 3

∂l3
∂f 1

∂l3
∂f 2

∂l3
∂f 3

2
6664

3
7775

df 1
df 2
df 3

8><
>:

9>=
>; ð9Þ

where ½F� is the flexibility matrix of the element. The general term
of the flexibility matrix is given by

∂li
∂f j

¼ b0ði; jÞ−
1þ αΔT

w3 b1ði; jÞ þ b2ði; jÞ ln
a1
w

þ T1

� �
−ln

a1
w

þ T2 þ lw
� �n oh i

ð10Þ
the parameters are defined in

b0ði; jÞ ¼
−l
EA ; i¼ j

0; i≠j

(
ð11aÞ

b1ði; jÞ ¼ −wwi
f jþ3

T2
þ f j
T1

	 


þðw2f i−a1wiÞ
wf j þwjðlw þ T2Þ
T2ðlw2 þ a1 þwT2Þ

−
wf j þwjT1

T1ða1 þwT1Þ

	 

ð11bÞ

b2ði; jÞ ¼
w2

i −w
2; i¼ j

wiwj; i≠j

(
ð11cÞ

The stiffness matrix is obtained by taking the inverse of the
flexibility matrix as

½k� ¼ ½F�−1 ð12Þ
This stiffness matrix can be readily incorporated into the global

tangent stiffness matrix of the CCC element with six degrees of
freedom as

½KT � ¼
−k k

k −k

	 

ð13Þ

The projected components of the internal forces at the second
node of the element, i.e.f 4, f 5 and f 6, are determined through the
following equations of equilibrium:

f 4 ¼ −ðw1l0 þ f 1Þ ð14aÞ

f 5 ¼ −ðw2l0 þ f 2Þ ð14bÞ

f 6 ¼ −ðw3l0 þ f 3Þ ð14cÞ
where f 4, f 5 and f 6 are along x1,x2 and x3 directions, respectively.
Finally, the internal force vector is expressed as

F intf g ¼ f 1; f 2; f 3; f 4; f 5; f 6
� �T ð15Þ

2.2. Discrete modeling

Every cable member can be considered as a series of several
truss elements. Therefore, by transforming Eq. (4) into a discrete
form, a new discrete catenary cable (DCC) element is introduced.
In this type of modeling, each cable member is divided into several
truss elements allowing the concentrated loads to be applied along
the element. Fig. 2 shows the DCC element and the associated
applied loads.

The equations of equilibrium for the DCC element can be
expressed as

Tj Δxji
lj

 !
¼ − jlswi þ f i þ ∑

j

k ¼ 1
pki

 !
i¼ 1;3; j¼ 1;n ð16aÞ

Δxji ¼ xjþ1
i −xji ð16bÞ

where n is the number of cable's sub-elements, j is the



Table 3
Comparison of displacements of isolated cable under concentrated load.

Researcher Element type Displacements (m)

Vertical Horizontal

Michalos and Birnstiel [28] Elastic straight −5.472 −0.845
O'Brien and Francis [17] Elastic catenary −5.627 −0.860
Jayaraman and Knudson [29] Elastic straight −5.471 −0.845
Jayaraman and Knudson [29] Elastic catenary −5.626 −0.859
Tibert [4] Elastic catenary −5.626 −0.859
Andreu et al. [18] Elastic catenary −5.626 −0.860
Y. B. Yang and Tsay [30] Elastic catenary −5.625 −0.859
Thai and Kim [24] Elastic catenary −5.626 −0.859
Present work (DCC) Elastic catenary −5.592 −0.855
Present work (CCC) Elastic catenary −5.626 −0.859
Present work (DCCWP) Elastic catenary −5.830 −0.873
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sub-element's index, and i is the Cartesian coordinate in which the
equilibrium condition is considered. ljis the length of the j-th sub-
element, and ls is the unstressed length of each sub-element. pki is
the load applied to k-th internal node along i-direction. xji is the
component of the j-th sub-element in i-direction of the Cartesian
coordinate system. Tj is the tension within the j-th sub-element
and ls is determined by

ls ¼ l0=n ð17Þ
where l0 is the unstressed length of the cable. The tension within
each sub-element can be described as

Tj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
3

i ¼ 1
jlswi þ f i þ ∑

j

k ¼ 1
pki

 !2
vuut ; j¼ 1;n ð18Þ

According to Hook's law, the relationship between tension in
each sub-element and strain is given by

Tj ¼ EjAjεj ¼ EjAj lj−ls
ls

−αΔT

 !
¼ EjAj lj

ls
−1−αΔT

 !
ð19Þ

where lj is the deformed length of the j-th sub-element. The
coordinates of the j-th node are calculated as

xji ¼ ∑
j

k ¼ 1
Δxki ¼ ∑

j

k ¼ 1

Δxki
lk

lk

ls
ls; i¼ 1;3 ð20Þ

by substituting Eqs. (16) and (19) into Eq. (20), and applying the
boundary conditions, the following nonlinear system of equations
with three unknowns will be achieved:

liðf 1; f 2; f 3Þ ¼−ls ∑
n

j ¼ 1
jlswi þ f i þ ∑

j

k ¼ 1
pki

 !
1

EAj
þ 1þ αΔT

Tj

� �
ð21Þ
Table 1
Abbreviated names of the proposed elements.

Abbreviated name Model

CCC Continuous catenary cable
PCCC Pretensioned continuous catenary cable
DCC Discrete catenary cable
PDCC Pretensioned discrete catenary cable
DCCWP Discrete catenary cable with point loads

Fig. 5. Isolated cable under concentrated load.

Table 2
Initial properties of isolated cable under concentrated load.

Item Data

Cross-sectional area 548.4 mm2

Elastic modulus 131.0 kN/mm2

Cable self-weight 46.12 N/m
Sag under self-weight at load point 29.276 m
Unstressed cable length of sections 1–2 125.88 m
Unstressed cable length of sections 2–3 186.85 m
Taking the first derivative of Eq. (21) with respect to f 1,f 2 and
f 3, a matrix similar to Eq. (9) is obtained. The general term of the
flexibility matrix is estimated by

∂li
∂f j

¼
ls ∑

n

k ¼ 1

1

EAk
þ 1þ αΔT

Tk
þ ð1þ αΔTÞðklswi þ f i þ∑k

n ¼ 1p
n
i Þ2

ðTkÞ3

 !
; i¼ j

ls ∑
n

k ¼ 1

ð1þ αΔTÞðklswi þ f i þ∑k
n ¼ 1p

n
i Þðklswj þ f j þ∑k

n ¼ 1p
n
j Þ

ðTkÞ3

 !
; i≠j

8>>>>><
>>>>>:

ð22Þ

Ultimately, similar to the CCC element, the tangent stiffness
matrix and the internal force vector of the DCC element can be
evaluated with the use of Eqs. (13) and (15).
2.3. Application in pretensioned cable

In the case of pretensioned cables, the pretension force is
known instead of the unstressed length. Therefore, four
unknowns,f 1,f 2,f 3 and l0, can be obtained by solving Eq. (23)
simultaneously with Eqs. (7) or (21) for continuous and discrete
conditions, respectively:

T0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
3

i ¼ 1
f 2i

s
ð23Þ

where T ′0 is the pretension force of the cable. This system of
equations can be solved by common iterative numerical methods
such as Newton–Raphson. The Jacobian of the nonlinear system of
equations is available through the following equation:

H½ � ¼
F½ � ∂l

∂l0

n oT

∂T0

∂f i

n o
0

2
64

3
75 ð24aÞ

∂T0

∂f i

( )
¼ f 1

T0
f 2
T0

f 3
T0

( )
ð24bÞ

∂l
∂l0


 �
¼ ∂l1

∂l0
∂l2
∂l0

∂l3
∂l0

( )
ð24cÞ

Matrix [F] can be determined for the CCC and DCC elements
using Eqs. (10) and (22), respectively. The components of vector
∂li=∂l0
� �

can also be computed using Eq. (25a) for the CCC element
or Eq. (25b) for the DCC element:

∂li
∂l0

¼ −
1þ αΔT

T2
þ l0
EA

� �
f iþ3; i¼ 1;3 ð25aÞ



Fig. 6. Hyperbolic paraboloid net.

Table 4
Comparison of vertical displacements (mm) of hyperbolic paraboloid net.

Node Experiment
[31]

Dynamic
relaxation [31]

Minimum Energy
[32]

Elastic catenary
[24]

Present worka

(PDCC)
Present workb

(PDCC)
Present worka

(PCCC)
Present workb

(PCCC)

Value Error (%) Value Error (%) Value Error (%) Value Error (%) Value Value Error (%) Value

5 �19.50 �19.30 �1.03 �19.30 �1.03 �19.56 0.31 �19.51 �0.05 �19.99 �19.50 0.00 �19.92
6 �25.30 �25.30 0.00 �25.50 0.79 �25.70 1.58 �25.57 1.07 �28.17 �25.56 1.03 �28.01
7 �22.80 �23.00 0.88 �23.10 1.32 �23.37 2.50 �23.27 2.06 �27.47 �23.27 2.06 �27.24
10 �25.40 �25.90 1.97 �25.80 1.57 �25.91 2.01 �25.82 1.65 �28.60 �25.81 1.61 �28.46
11 �33.60 �33.80 0.60 �34.00 1.19 �34.16 1.67 �33.94 1.01 �40.93 �33.93 0.98 �40.63
12 �28.80 �29.40 2.08 �29.40 2.08 �29.60 2.78 �29.42 2.15 �38.81 �29.41 2.12 �38.34
15 �25.20 �26.40 4.76 �25.70 1.98 �25.86 2.62 �25.61 1.63 �30.66 �25.60 1.59 �30.44
16 �30.60 �31.70 3.59 �31.20 1.96 �31.43 2.71 �31.01 1.34 �42.12 �31.00 1.31 �41.63
17 �21.00 �21.90 4.29 �21.10 0.48 �21.56 2.67 �21.24 1.14 �35.28 �21.22 1.05 �34.53
20 �21.00 �21.90 4.29 �21.10 0.48 �21.57 2.71 �20.84 �0.76 �27.42 �20.83 �0.81 �27.07
21 �19.80 �20.50 3.54 �19.90 0.51 �20.14 1.72 �19.20 �3.03 �32.73 �19.18 �3.13 �31.95
22 �14.20 �14.80 4.23 �14.30 0.70 �14.55 2.46 �13.83 �2.61 �30.33 �13.81 �2.75 �29.18
‖Error‖ 10.6 4.5 7.8 6.0 6.1

a wg¼�0.195 N/m, wx¼wy¼0.
b wg¼�0.195 N/m, wx¼wy¼30 N/m.

Fig. 7. Spatial net.
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∂li
∂l0

¼ 1
n

∑
n

j ¼ 1

ð1þ αΔTÞ
Tj

Tj
i 1−

cjjls
ðTjÞ2

 !
−jlswi

" #
−
Tj
i þ jlswi

ðEAÞj
; i¼ 1;3

Tj
i ¼ jlswi þ f i þ ∑

j

k ¼ 1
pki ; cj ¼ ∑

3

k ¼ 1
wkT

j
k ð25bÞ
2.4. Verification of the proposed elements

In the previous sections, equations of elastic catenary cable
element under general loads like uniformly distributed, 3D point
loads and thermal forces were derived. By assuming that the cable
element is only exposed to self-weight ðw1 ¼w2 ¼ 0;w3 ¼ −w0Þ
and neglecting changes in temperature, the cable's projected
length can be expressed as follows according to Eq. (7):

l1 ¼−
l0f 1
EA

−
f 1
w0

lnðT2 þ f 6Þ−lnðT1−f 3Þ
� � ð26aÞ

l2 ¼−
l0f 2
EA

−
f 2
w0

lnðT2 þ f 6Þ−lnðT1−f 3Þ
� � ð26bÞ

l3 ¼−
l0f 3
EA

þw0l
2
0

2EA
þ 1

w0
T2−T1½ � ð26cÞ

where T1 and T2 are the cable tensions at points 1 and 2,
respectively. Also by applying the above-mentioned assumptions
to Eq. (10) and simplifying the equations, the differential of the
cable's projected lengths with respect to the internal forces can be
computed as follows:

∂l1
∂f 1

¼ −
l0
EA

þ 1
w0

ln
T2 þ f 6
T1−f 3

	 
� �
þ f 21
w0

1
T1ðT1−f 3Þ

−
1

T2ðT2 þ f 6Þ

	 


∂l1
∂f 2

¼ ∂l2
∂f 1

¼ f 1f 2
w0

1
T1ðT1−f 3Þ

−
1

T2ðT2 þ f 6Þ

	 

;

∂l1
∂f 3

¼ ∂l3
∂f 1

¼ f 1
w0

1
T2

−
1
T1

	 




Table 5
Comparison of displacements (mm) of spatial net.

Node z-coord Lewis et al. [31] Thai and Kim [24] Present work (PDCC) Present work (PCCC)

dx dy dz dx dy dz dx dy dz dx dy dz

1 1000.0 – – – – – – – – – – – –

2 2000.0 – – – – – – – – – – – –

3 3000.0 – – – – – – – – – – – –

6 0 – – – – – – – – – – – –

7 819.5 �5.14 0.42 30.41 �5.03 0.41 29.86 �5.05 0.40 29.55 �5.02 0.41 29.55
8 1409.6 �2.26 0.47 17.70 �2.23 0.46 17.29 �2.23 0.40 17.16 �2.24 0.43 17.55
9 1676.9 0.00 �2.27 �3.62 0.00 �2.31 �3.61 0.00 �2.36 �3.19 0.00 �2.33 �3.19

13 0 – – – – – – – – – – – –

14 687.0 �4.98 0.00 43.49 �4.92 0.00 42.85 �4.93 0.00 42.94 �4.94 0.00 42.99
15 1147.8 �2.55 0.00 44.47 �2.55 0.00 44.26 �2.55 0.00 44.34 �2.56 0.00 44.30
16 1317.6 0.00 0.00 41.65 0.00 0.00 42.08 0.00 0.00 42.14 0.00 0.00 42.04

Fig. 8. Saddle net.

Table 6
Comparison of displacements (mm) of saddle net.

Node z-coord Kwan [3] Thai and Kim [24] Present work (PDCC) Present work (PCCC)

dx dy dz dx dy dz dx dy dz dx dy dz

1 �1368 – – – – – – – – – – – –

2 �2432 – – – – – – – – – – – –

3 �3192 – – – – – – – – – – – –

4 �3648 – – – – – – – – – – – –

5 �3800 – – – – – – – – – – – –

11 �1032 15.55 �4.46 81.70 15.55 �4.46 81.66 15.58 �4.47 81.87 15.57 �4.46 81.79
12 �1835 11.50 �5.55 61.22 11.50 �5.54 61.18 11.52 �5.56 61.36 11.51 �5.55 61.28
13 �2408 7.38 �4.20 33.31 7.38 �4.19 33.28 7.39 �4.20 33.41 7.39 �4.20 33.36
14 �2752 5.34 �3.11 17.88 5.34 �3.11 17.87 5.34 �3.12 17.97 5.34 �3.11 17.92
15 �2867 4.11 �2.80 11.16 4.10 �2.80 11.15 4.10 �2.80 11.24 4.10 �2.80 11.21
22 �792 14.43 �3.53 97.14 14.42 �3.53 97.10 14.46 �3.54 97.44 14.44 �3.53 97.29
23 �1408 11.27 �4.47 72.90 11.26 �4.46 72.84 11.29 �4.48 73.17 11.28 �4.47 73.03
24 �1848 7.25 �2.97 31.98 7.25 �2.97 31.94 7.26 �2.98 32.2 7.25 �2.98 32.09
25 �2118 5.67 �2.12 10.54 5.67 �2.11 10.52 5.67 �2.13 10.74 5.67 �2.12 10.64
26 �2200 4.77 �0.60 �11.34 4.77 �0.60 �11.34 4.77 �0.61 �11.13 4.77 �0.60 �11.22
33 �648 11.71 �1.71 92.44 11.7 �1.71 92.40 11.74 �1.72 92.8 11.72 �1.71 92.63
34 �1152 9.55 �2.11 66.94 9.54 �2.11 66.89 9.57 �2.12 67.31 9.56 �2.11 67.13
35 �1512 6.30 �1.15 20.21 6.30 �1.15 20.17 6.31 �1.16 20.53 6.31 �1.16 20.37
36 �1728 4.92 �0.23 �14.05 4.91 �0.23 �14.06 4.92 �0.23 �13.74 4.92 �0.23 �13.88
37 �1800 4.65 0.52 �35.79 4.65 0.52 �35.77 4.64 0.52 �35.46 4.65 0.52 �35.59
44 �600 10.63 0.00 88.73 10.62 0 88.68 10.66 0 89.11 10.64 0 88.93
45 �1067 8.80 0 62.83 8.79 0 62.77 8.82 0 63.23 8.81 0 63.04
46 �1400 5.83 0 13.99 5.83 0 13.95 5.84 0 14.35 5.84 0 14.18
47 �1600 4.64 0 �22.52 4.63 0 �22.52 4.64 0 �22.17 4.64 0 �22.32
48 �1667 4.55 0 �45.89 4.54 0 �45.87 4.54 0 �45.51 4.54 0 �45.66
52 �600 �0.92 0 5.86 �0.92 0 5.86 �0.96 0 6.27 �0.94 0 6.10
72 �1848 3.85 �0.78 �30.12 3.85 �0.78 �30.10 3.83 �0.76 �29.82 3.84 �0.77 �29.94
81 �2867 4.11 2.80 11.16 4.10 2.80 11.15 4.10 2.80 11.24 4.10 2.80 11.21
85 �1032 �5.40 1.87 32.17 �5.40 1.87 32.15 �5.44 1.88 32.38 �5.42 1.88 32.28
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Table 8
Initial properties of elastic cable subjected to a
temperature rise ΔT¼100 K.

Item Data

Cross-sectional area 1 m2

Elastic modulus 3.0e7 N/mm2

Cable self-weight 1 N/m
Thermal expansion coefficient 6.5e−6 1/K
Unstressed cable length 100 m

Fig. 9. Various configurations and end forces of the cable (m).

Table 9
Comparison of reaction forces (N) of elastic cable subjected to a temperature rise ΔT¼1

Researchers Pevrot and Goulois [33] Yang and Tsay [30]

Reactions Reactions

Location (m) H V H V

0.02 0.00 20.02 0.01 20.02
20 3.061 19.93 3.061 19.93
40 9.172 19.24 9.172 19.24
60 22.15 15.73 22.15 15.73
80 504.0 −328 504.1 −328
100 4 170 000 −2 511 000 4 255 700 −255

Table 7
Comparison of time of analysis of saddle net.

Element type No. of segments Time (s) Maximum error (%)

PCCC NA 37.42 –

PDCC 3 30.07 0.026
PDCC 5 31.84 0.021
PDCC 10 31.57 0.018
PDCC 15 31.26 0.017
PDCC 30 31.62 0.016
PDCC 75 31.70 0.016
It is noteworthy that Eqs. (26) and (27) are reported by Thai and
Kim [24] as well.
3. Stiffness matrix and internal force vector

In the proposed elements, the explicit form of the stiffness
matrix and the internal force vector are available. Figs. 3 and 4
illustrate the process of deriving the stiffness matrix and internal
force vector for a cable with a specific initial length or pretention
force. Since there is no explicit solution for the determination of
internal forces, the nonlinear system of equations must be solved
in an iterative procedure such as Newton–Raphson method with
quadratic convergence.
4. Numerical examples

According to the above discussions, in order to check the
accuracy and capability of the present models, the necessary codes
were developed in finite element package Opensees [27]. Various
examples for evaluating proposed models are discussed. The
abbreviated names of the used models are presented in Table 1.
For the pretensioned cable, a very small quantity is considered as
the weight per unit length of the cable.

Example 1. An isolated cable spanning between two supports of
304.8 m distance at the same elevation is subjected to a concen-
trated load of 35.586 kN as shown in Fig. 5, where the sag at the
mid-span is 30.48 m. The other required data are summarized in
Table 2. The CCC, DCC and DCCWP elements are employed to solve
this problem. Two CCC elements, two DCC elements and one
DCCWP element are used for modeling this structure.

The externally concentrated loads are considered as internal
forces for the DCCWP element. In the discrete model, each cable
member is divided into five parts of the same length. Table 3
shows the comparison of the displacements related to the second
node generated with the use of the proposed elements and other
researchers. A good agreement can be seen between the results
obtained by using the DCC elements and those predicted by
continuous models, reflecting the point that this element can be
used to analyze a cable with a low curvature.

Example 2. The pretensioned cable net, shown in Fig. 6, was
experimentally and numerically investigated by Lewis et al. [31];
they used dynamic relaxation method to analyze this structure.
Sufian and Templeman [32] also analyzed this structure with the
use of the minimum energy method. Thai and Kim [24] calculated
the cable's displacements through using the catenary cable model
and Newton–Raphson procedure. This structure, as illustrated in
Fig. 6, includes 31 cable elements with elastic behavior. Moreover,
00 K.

Present study (DCC) Present study (CCC)

Reactions Reactions

H V H V

0.010 19.99 0.011 20.02
3.090 19.83 3.060 19.93
9.16 19.14 9.172 19.24
22.11 15.63 22.145 15.73

.9 504.48 −329.40 504.1037 −328.86
340 4 255 849 −2 555 047 4 258 491 −2 555 044
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some nodes of this structure are subjected to concentrated loads of
15.7 N, in the negative direction of z-axis. The cable's elastic
modulus and cross-sectional area are respectively 128.3 kN/mm2

and 0.785 mm2. The cables, before being subjected to external
loads, had been pretensioned under the force of 200 N. In order to
analyze this structure, the PCCC and PDCC models have been
applied. In the PDCC model, the cables were divided into four parts
of the same length. To investigate the effects of the laterally
distributed loads, the structure was subjected to a lateral load of
30 N/m in the X and Y directions. The results of the above-
mentioned analysis and the errors with respect to the experi-
mental values are shown in Table 4.

Example 3. Another example here is a spatial cable net including
4�4 quadrilaterals formed by 38 pretensioned cable segments,
and being 16�24 in plan (Fig. 7). It has central symmetry, and the
z-coordinate (z-coord) of the nodes of a quarter of the structure is
shown in Table 5. The cables parallel to x- and y-direction have
been pretensioned by forces of 90 kN and 30 kN, respectively. The
vertically concentrated loads applied to all the internal nodes of
this structure are 6.8 kN. The cables' cross-sectional areas in x- and
y-direction are respectively 350 mm2 and 120 mm2. The elastic
modulus of all the cables is considered to be 160 kN/mm2. The
cables using the PDCC element are divided into 10 parts. In Table 5,
our measured displacements using the suggested models have
been compared to the findings of Lewis et al. [31], and Thai and
Kim [24].

Example 4. The cable net in Fig. 8 includes 142 pretentioned cable
elements. The distances of the cables from each other are 5 m in
both horizontal directions. The structure has central symmetry
and vertical coordinates (z-coord) for a quarter of the structure
presented in Table 6. All cables have the same pretension force of
60 kN. All cables using PDCC element are divided into 10 parts of
the same length. The cables' cross-sectional area is 306 mm2 and
their modulus of elasticity is 147 kN/mm2. Free nodes of half of
this saddle net, are subjected to 1 kN external load in x- and z-
directions.

Table 6 shows the comparison between nodal displacements
generated by suggested models and the findings of Kwan [3] and
Thai and Kim [24].

To compare the capability and efficiency of the discrete
catenary cable and continuous models, the time consumed for
each analysis and errors in both models are presented in Table 7;
the results show that using the PDCC elements decreases the time
required for the analysis up to 15% with an acceptable error.

Example 5. The cable, with an increasing temperature up to
100 1K, holds the characteristics mentioned in Table 8. The left
end of the cable is fixed at the coordinates (0, 90), and the right
end maintains a constant vertical elevation of 30 m, and the
horizontal coordinate of the right end changes between 0 and
100 m, (Fig. 9). This case was analyzed by Pevrot and Goulois [33]
and Yang and Tsay [30]. To solve this problem, they made use of
the CCC and DCC elements. In all conditions, we use 30 parts of the
same length for the PDCC element; but for the case that the
horizontal space between the cable nodes is 0.02 m, in order to
converge to answers, 650 elements were used. Our obtained
results are presented in Table 9, comparing the capabilities of
different elements.

5. Conclusion

In this research, a novel formulation for spatial catenary cable
element was proposed. Two types of cable elements, continuous
and discrete, were discussed. The models were found to be
applicable for general loads such as uniformly distributed, three-
dimensional point, and thermal loads. Furthermore, the equations
were modified for pretensioned cables. It should be pointed out
that all necessary equations for practical analysis were presented
here in the form of closed equations. The tangent stiffness matrix
and corresponding internal force vector for both models were also
presented. Necessary algorithms for calculating the stiffness
matrix and the internal force vector for cables with/without
pretensioning effect were presented as well.

The acceptable convergence of the proposed models, their
simplicity and direct equations reflect their capability, found
through making comparison with other models, in analyzing some
given numerical examples. Moreover, the numerical examples
showed that both continuous and discrete models provided good
accuracy, while the latter was faster and reduced the time
consumed for analysis up to 15% for large cable structures within
acceptable errors.
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