ارزیابی تحمل به انجماد در زنوتیپ‌های عدس
در شرایط کنترل شده

احمد نعیمی
دانشیار فیزیولوژی کیاهان زراعی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران

حسین رضایی
دانشیار فیزیولوژی کیاهان زراعی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران

کورش شجاعی نووریست
دانشجو دکتری فیزیولوژی کیاهان زراعی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران

چکیده
چکیده

متن در زبان فارسی

(198)
مقده

عدس (Lens culinaris Medik.) یکی از سابع اوشمشند پروتئینگیاهی است که تولیدی این در آراستی نسبتاً قلی در ایران می‌باشد. عملکرد جهانی عدس در طول 50 سال گذشته به وسیله رشد داشته، این در حالی است که در همین دوره متوسط عملکرد این محصول در ایران حدود 27 درصد کاهش نشان می‌دهد. به طوری که در شرایط کوتیا میانگین عملکرد عدس در ایران تقریباً نصف میانگین عملکرد جهانی آن و برابر با 511 کیلوگرم در هکتار می‌باشد (FAO, 2009).

با توجه به عملکرد کم این گیاه و ارزش غذایی مناسب آن در نامن نیازهای بروتئینی جمعیت روبه افراد کشور، توجه بیشتر به این محصول و بررسی محصولاتی و مشکلات تولید آن، ضروری می‌باشد.

برخی تنش‌های غیرنیتی مانند گرما و انجام به‌عنوان مهم‌ترین محدودیت‌های تولید عدس در غرب آسیا از جمله ایران ذکر شده است (ل) (2000); (Nezami et al., 2004). در این مناطق کشت بهار عدس به دلیل کشت بذر آن در خاک نسبتاً سرد اواخر زمستان تا اوایل بهار با حاصل کاشت در حد رسید نسبتاً زیاده است (YazdiSamadi et al., 2004).
کیاهان با نش انجماد مواجته می‌شوند و با این‌ویژه جهت موفقیت کشتم پاییزه عدس
نیاز به استفاده از زننده‌های متصل به یاه
Yazdi Samadi et al., 2000

تشن انجماد می‌تواند سبب ایجاد
خسارتهای غیرقابل برگشت به سلول‌های
گیاهی شود که این خسارت‌ها ناشی از
فشارهای مکانیکی حاصل در اثر شکل گیری
برون سلول کرتستالهای یخ و نیز
پس‌اولیک‌هایی سلول و افزایش غلظت نمک‌ها
Steponkus, 1984; Liang et al., 2008

ساختار واحد ساختارهای سلولی و
اجزای سلولی بوده که بتواند هم فشار
مکانیکی و هم نشانه‌ای اسمرو از
انجماد
آزمون‌های زمینه‌سازی انجام شده است
اعتقاد بر این است که در این حالت به دلیل
قرار گرفتن گیاهان در معرض زمینه‌ای
واقعی، به گونه‌ای به صورت مناسبی انجام
خواهد شد، ولی علی رغم مزیت‌های
آزمایش‌های مرحله‌ای، برخی از این است که
به‌دلیل وجود تنوع زمینه مکان، شدت و
دوام سرما در این شرایط، مشکلات خاصی
از جمله عدم بروز سرما و یا شدت زیاد
سرما و از بین رفت مواد آزمایشی، وجود
دارد (Stoddard et al., 2006). علاوه بر
این در شرایط مزروعه میزان بقای گیاهان
تحت تاثیر عوامل متعددی از جمله پوشش
برف، دما، رطوبت خاک و سابی عوامل
Ali et al., 1999; و با تاریخ
(3) Nezami et al., 2006

1Reactive Oxygen Species
آزمایشگاه‌ها تحت شرایط کنترل‌شده که در آنها میزان پرورش‌ها را تحت شرایط یکنواخت و با سرعت بیشتر انجام دادن، مورد توجه قرار گرفته‌اند. در همین راستا برخی از محققان، تحلیل به سرمایه ارقام نمودند (Nezami et al., 2006; Nezami et al., 1999; Koo et al., 2008; Fowler et al., 1996; Liang et al., 2008). در شرایط کنترل‌شده، مورد ارزیابی قرار داده‌اند. نتایج آزمایشی که بر روی دخانیات فرنسکی در شرایط مزروعه و کنترل شده انجام شد، نشان داد که بین نتایج هر دو آزمایش همبستگی قوی وجود دارد (Auld et al., 1983) و لذا به نظر می‌رسد که از آزمون‌های کنترل شده نیاز بوده جهت بکری‌بزاری برای تحلیل به انجام استفاده کرد.

با توجه به مطالب ذکر شده و کمیوند اطلاعات در خصوص تحلیل به انجام عدس در شرایط کنترل شده، این تحقیق جهت ارزیابی تحلیل به انجام چند وزن‌تیپ عدس در شرایط کنترل شده اجرا شد.

مواد و روش‌ها

بی‌دور پنج وزن‌تیپ عدس (که در آزمایشات کشت پایه‌ی در شرایط مزروعه تحلیل مناسب را به انجام نشان داده بودند)
از آزمایشات انجام بیان ذیل هست: به نحوی پایش‌های شدید که قشر نازکی از این محلول روزی برگ‌ها را پوشاند، برای اعمال تیمار انجام گیاهان تحت 9 تیمار دمای (صفر، 3، 6، 9، 12، 15، 18، 21 و 24 درجه سانتی‌گراد) در نرم‌کننده قرار گرفتند. به‌منظور ایجاد تعادل در دمای محیط آزمایش، گیاهان در هر تیمار دمایی، به مدتهاکی ساعت نگهداری شدند. در سپس از غروب صبح و جهت کاهش سرعت ذوب آنها، به‌لااقل به اندازه‌ای که با دمای 1 درجه سانتی‌گراد مبتنی و به مدتهاکی ساعت در آن جا نگهداری و سپس به گلخانه‌های منتقل شدند و پس از 21 روز، دیده شد که نهایاً رشد مجید آنها مورد ارزیابی قرار گرفت. در صورت بقاء از طریق تیمار گیاهان زنده در 21 روز پس از اعمال تیمار پیش‌گذشته به تعداد گیاهان قبل از تیمار پیش‌گذشته ضریب 100 محاسبه شد.

به‌منظور ارزیابی رشد مجدد گیاهان مبانی طول و وزن خشک ساقه و شاخ‌ها و نیز تعداد گره در ساقه اندازه‌گیری شدند. جهت تعیین نمایی کشش‌های 50 درصد گیاهان (LT50) و دمای کاهش 50 درصد وزن خشک گیاهان (RD50) به‌ترتیب در صورت بقاء و وزن خشک به‌عنوان متغیر

\[Y = \frac{a}{1+\left(10^{b}\right)} \]

در این معادله، \(a \) دمای انجام، \(b \) کیکی از دمای تعادل و نشان‌دهنده حداکثر درصد یا بقای a کیکی دیگر از دمای تعادل و x0 و x0 نشان‌دهنده شیب منحنی در نقطه \(x \) که در آن \(Y \) برای 50 درصد مقدار حداکثر خود است (LT50) می‌باشد. جهت تعیین ضرایب (RD50) محاسبه شدند. پس از تعیین 50 و LT50 برای هر یک از گیاهان، داده‌های مربوط به استفاده از طرح یک‌طرفه کامل تصادفی آنالیز شدند.

تجزیه واریانس داده‌های آزمایش به‌صورت فاکتوریل در قالب طرح یک‌طرفه کامل تصادفی با سه تکرار، با استفاده از نرم‌افزار متیو 1 و بردار داده‌ها با استفاده از برنامه‌ای ساده‌ترین انجام گرفت. جهت مقایسه مبانی طول و وزن خشک ساقه و شاخ‌ها از آزمون چند‌آمیسی دانک استفاده شد.

1. Temperature 50 Lethal
2. Ice Nucleation Active Bacteria
大会上 TOD غیابی‌های زراعی در شرایط تنش‌های محیطی، سال سوم، شماره‌های 1 و 2، بهار و تابستان 1390

نتایج و بحث

نتایج نشان داد که میانگین درصد بقاء گیاهان در پایان دوره بازیافت به طور

جدول 1- نتایج جزئی واریانس (میانگین مربوط) برای برخی صفات مورد بررسی در زنوتیپ‌های عدس تحت تأثیر دماهای انجامی در شرایط کنترل‌شده

| درجه میزان تغییرات | درصد نگهداری | طول در کیلو (سانتی‌متر) | تعداد هزینه در دهه | نرمال گیاه | کل گیاه
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>درجه 5</td>
<td>81</td>
<td>71.6</td>
<td>218</td>
<td>57</td>
<td>163</td>
</tr>
<tr>
<td>درجه 6</td>
<td>69</td>
<td>66.5</td>
<td>190</td>
<td>46</td>
<td>144</td>
</tr>
<tr>
<td>درجه 7</td>
<td>59</td>
<td>55.5</td>
<td>150</td>
<td>35</td>
<td>115</td>
</tr>
<tr>
<td>درجه 8</td>
<td>50</td>
<td>50.5</td>
<td>111</td>
<td>25</td>
<td>85</td>
</tr>
</tbody>
</table>

زنوتیپ‌های و دما بر این صفات معنی‌دار نبود (جدول 1).

زنوتیپ‌های MLC 60 دارای پیشرفت طول ساقه و شاخه بود و زنوتیپ‌های زیرین و

البته کمترین طول ساقه و شاخه را داشتند، به طوری که طول ساقه و شاخه در ZTC 60

به ترتیب 65 درصد بیشتر از MLC 60 به ترتیب 35 درصد بیشتر از

طول ساقه و شاخه در زنوتیپ رابط بود (جدول 1). بر خلاف درصد بقاء که در

درجه 4- درجه سانتی‌گراد به پایین کاهش معنی‌دار داشت که درجه

درجه سانتی‌گراد شد (جدول 2).

میانگین طول ساقه و شاخه به طور معنی‌داری (P< 0.1) تحت تأثیر زنوتیپ و

دماهای انجام قرار گرفتند، اما برهم کنش
جدول 2- مقایسه میانگین درصد بقای و صفات مربوط به رشد مجدد زنوتیپ‌های در دماهای انگیج‌ناهنج

<table>
<thead>
<tr>
<th>درصد بقای</th>
<th>تعداد گروه</th>
<th>طول زنون (سانتی متر)</th>
<th>یکسان</th>
<th>درصد بقای</th>
<th>یکسان</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.6</td>
<td>a</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>47.2</td>
<td>ab</td>
<td>77.7</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>45.0</td>
<td>abc</td>
<td>79.9</td>
<td>ab</td>
<td>15.0</td>
<td>ab</td>
</tr>
<tr>
<td>44.6</td>
<td>bc</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>43.2</td>
<td>bc</td>
<td>79.9</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>42.9</td>
<td>c</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>42.6</td>
<td>c</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>42.3</td>
<td>d</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>42.0</td>
<td>d</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>41.7</td>
<td>e</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>41.5</td>
<td>e</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>41.3</td>
<td>e</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>41.1</td>
<td>e</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>40.9</td>
<td>e</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>40.7</td>
<td>e</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>40.5</td>
<td>e</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>40.3</td>
<td>e</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>40.1</td>
<td>e</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
<tr>
<td>39.9</td>
<td>e</td>
<td>79.6</td>
<td>ab</td>
<td>15.6</td>
<td>ab</td>
</tr>
</tbody>
</table>

در هر سطح اندازه‌گیری بر چهار عامل به جدایی دارای یک حرف مشترک می‌باشند. بر اساس آزمون دایک فاقد تفاوت معنی‌داری در سطح اندازه‌گیری 5 درصد می‌باشد.
مختلف به تشخیص اسهال استفاده کرده‌اند. در ارزیابی تحمیل به انجام اقدامات کننده، حدود 12 درجه سانتی‌گراد اختلاف در ارقام متحمل و Nezami et al. (2007) نیز گزارش کردن که ارقام LT₅₀ از این نظر شاخصه شدنده (جدول ۳). سابر محفظان نیز از دمای کشنه ۵۰ درصد گیاهان (Fowler et al., 1996) و دمای کاهنده (Mahfoozi et al., 2006) نمره کننده ۵ درصد وزن خشک (Nezami et al., 2006; Azizi et al., 2007; RashedMohassel et al., 2009) می‌باشد.

جدول ۳- تجزیه واریانس دمای کشنه ۵۰ درصد گیاهان (LT₅₀) و دمای کاهنده ۵۰ درصد وزن خشک (RDFT₅₀)

| سیاله | LT₅₀ | درجه آزادی | مانع غیر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>لنکر</td>
<td>۲۵</td>
<td>۴</td>
<td>۰.۰۰۰**</td>
</tr>
<tr>
<td>زنوتیپ</td>
<td>۲۰</td>
<td>۴</td>
<td>۰.۰۰۰**</td>
</tr>
<tr>
<td>LDFT₅₀</td>
<td>۲۰</td>
<td>۴</td>
<td>۰.۰۰۰**</td>
</tr>
</tbody>
</table>

 Beard: به ترتیب معنادار استطلاع درهم و عدم معنی‌دار.

این اجرای، نشان دهنده ارتباط بین شکنی که وزن خشک محل نگهداری بود، گیاهان داشته‌اند. این موضوع نشان دهنده نقش نگهداری در بوی آرامگام گیاه پس از انجامدی می‌باشد و نیز زنوتیپ‌ها باید پس از انجام اقدامات به‌طور مناسب‌تر با رابطه‌ای ثابت‌تری تولید شاخص داشته باشند. در دوره‌ای با برداشت بازیافت احتمالاً تأثیرات بین دیگر دارای تولید نگهداری بود. از طرفی در زمان اعمال بیماری‌ها تشخیص انجام در شرایط نتایج محاسبه ضرایب همبستگی بین صفات مورد مطالعه نشان داد که صفات مانند وزن خشک گیاه (۰.۹۱)، طول ساقه (۰.۹۸) و وزن خشک شاخه پس از ورود به بازیافت (۰.۸۸) و بالاترین همبستگی را با دو عامل بیماری گیاهان داشته‌اند (جدول ۳). وزن خشک گیاهان یکی از جزء وزن خشک ساقه و وزن خشک شاخه تشکیل شده و بررسی این کار ارتباط وزن خشک کل گیاه‌ها با
در این شرایط بی‌هود بخشیده، اما تولید
شاخه‌های جانی احتمالاً تضمین مناسبی
جهت رشد گیاه در دوره بازیافت باشد.
Nezami et al. (2006) نیز در اوزبیکی
تحمل به تن تنش انجام در نخود گزارش
کرده‌اند که با افزایش شدت انجام سهم
انشاعات جانبی در بازیافت گیاه و رشد
مجدداً آن افزایش می‌یابد.

<table>
<thead>
<tr>
<th>روش</th>
<th>LT50</th>
<th>RDMT50</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-10.8</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>-12.3</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>-11.3</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>-12.1</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>-11.4</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>-11.4</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>-11.4</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>-12.1</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>-12.0</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>-11.4</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>-10.7</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>-11.4</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>-8.8</td>
<td>d</td>
</tr>
<tr>
<td>e</td>
<td>-12.1</td>
<td>a</td>
</tr>
</tbody>
</table>

در هر سون از آب هر میلی‌متری، به‌طور کلی هر کیلوگرم نشان داده می‌شود، بر اساس آزمون داخلی ذکر نشان می‌دارد در سطح احتمال 5% درصد می‌باشد.

مجدداً آنها به شدت تحت تأثیر فرار کرده و
 قادر به تولید گیاه مناسبی نیستند.
Nezami & Bagheri, 2005; Hekney et al.,
در این شرایط نشان داده که نشان داده
کاهش 50 درصد وزن خشک گیاه
قادر به چنین تغییری بین
(NDM50) بررسی‌ها نشان داده که نشان داده که
بر اساس آن بعنوان یک
بازیافت مناسب جهت ارزیابی
تولید گیاه به تن تنش انجام دارد، ولی در
برخی شرایط تن تنش انجماد ممکن است بسب
مجدداً نشان دهند، ولی رشد

<table>
<thead>
<tr>
<th>RDMT50</th>
<th>LT50</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>MLC-7</td>
</tr>
<tr>
<td>a</td>
<td>MLC-60</td>
</tr>
<tr>
<td>a</td>
<td>MLC-185</td>
</tr>
<tr>
<td>b</td>
<td>MLC-225</td>
</tr>
<tr>
<td>c</td>
<td>MLC-357</td>
</tr>
<tr>
<td>a</td>
<td>تغییر</td>
</tr>
<tr>
<td>b</td>
<td>ریخت</td>
</tr>
</tbody>
</table>
ژنوتیپ‌های حساس و متجمول از نظر رشد مجدد خواهند بود و از استباقات‌اشتایی که ممکن است به دلیل درصد بقاء مشابه آنها ابجا شود. اوجبیت می‌گردد.

Nezami et al. (2006) همبستگی بالایی میان LT50 مشاهده کردند. این محققان RDMT50 گزارش کردند که ژنوتیپ‌های RDMT50 سایر ژنوتیپ‌های متجمول به تنش انجماد نخود کمتر از ژنوتیپ‌های حساس می‌پاشند.

RashedMohassel et al. (2009) نیز گزارش کردند که ژنوتیپ‌های RDMT50 متحمل به انجماد زایمانه کمتر از اکوتیپ حساس بوده و اظهار داشتند که اکوتیپ‌های با RDMT50 کمتر در دوره بازیافت رشد بهتری نسبت به اکوتیپ‌های با LT50 بیشتر داشته است. مطالعه هERRICK (1996) بر روی سه گونه علفی نشان داد که گونه Dianthus deltoides یک کاهش دما تا 14 درجه سانتی‌گراد رشد مجدد بهتری نسبت به گونه Aaulexia و گونه Laowandaola داشت.

HEKENEY et al. (2006) بر روی محوری به انجماد خندن گونه از Dianthus deltoides نشان داد که پس از اعمال تنش انجماد، گونه‌های متجمول رشد مجدد بهتری نسبت به گونه‌های

1 Dianthus deltoides
2 Aaulexia
جدول ۶- ضایعات همیستسکی بین درصد بقا و صفت مربوط به رشد مجدد زنیت‌های عدس سپس از اعمال تیمار انجام در شرایط کنترل شده

<table>
<thead>
<tr>
<th></th>
<th>MT.</th>
<th>RDIMT</th>
<th>RDIMT.</th>
<th>LT.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد بقا</td>
<td>0.69</td>
<td>0.62</td>
<td>0.63</td>
<td>0.69</td>
<td>0.66</td>
</tr>
<tr>
<td>طول ساقه</td>
<td>0.69</td>
<td>0.62</td>
<td>0.63</td>
<td>0.69</td>
<td>0.66</td>
</tr>
<tr>
<td>طول شاخه</td>
<td>0.69</td>
<td>0.62</td>
<td>0.63</td>
<td>0.69</td>
<td>0.66</td>
</tr>
<tr>
<td>وزن ساقه</td>
<td>0.69</td>
<td>0.62</td>
<td>0.63</td>
<td>0.69</td>
<td>0.66</td>
</tr>
<tr>
<td>وزن شاخه</td>
<td>0.69</td>
<td>0.62</td>
<td>0.63</td>
<td>0.69</td>
<td>0.66</td>
</tr>
<tr>
<td>وزن کل کیسه</td>
<td>0.69</td>
<td>0.62</td>
<td>0.63</td>
<td>0.69</td>
<td>0.66</td>
</tr>
</tbody>
</table>

تعداد اجسام تولیدی در دیده‌بینی، به‌طور کلی به‌علاوه

LT.
RDIMT.
RDIMT.
RDIMT.
RDIMT.
18. Mehboobi, S., Limin, A. E., Ahakpaz, فیزیولوژی گیاهان زراعی ورودی ۱۳۸۵ آقابان حیات زنده و عشاق زاده، شهرام ریاحی نیا و فاصل فاضلی و نیز مدیریت و برسل محرم گلخانه نتفحیقیان، جهت مساعدت در اجرای این مطالعه تشکر و قدردانی می گردد.

References
freezing tolerance of two fennel (Foeniculum vulgare L.) ecotypes under controlled conditions. J. of Herbs, Spices & Medicinal Plants, 15: 131-140.

