
 1

 
Kernel Recursive Least Squares-Type Neuron for 

Nonlinear Equalization 
 

            *** Ferdowsi university, khoshbin@um.ac.ir 
 

  
Abstract —The nonlinear channel distotions and the 
nonminum  phase channel characteristics modelling, are a 
significant  part in channel equalization problems . on the 
other hand, the nonlinear system requiring equalization is 
often noninvertible, resulting in a drastic loss of information. 
So far, Hammerstein and wiener models, Artificial Neural 
Networks (ANN), radial basis function (RBF) have been 
widely used as nonlinear methods in different applications, 
such as equalization. The kernel methods are well known for 
their great modelling capacity of nonlinear systems in 
addition to their modest complexity. A new kernel recursive 
least square-type neuron (NKRLS) equalizer is proposed 
which improves aforementioned nonlinear methods problems 
such as, classical training algorithm drawbacks to parameter 
definition, slow convergence, local minima, non-convex 
optimization, loss of universal approximation . NKRLS does 
that thanks to its nonparametric and universal approximation 
properties. NKRLS cosnsists of Kenel recursive least square 
followed by a simple neuron. In the first part of paper the new 
proposed KRLS-type neuron algorithm is introduced. The 
second part of paper corroborates our results with simulation 
results. 
 

Index Terms — Reproducing Kernel Hilbert spaces , Kernel 
recursive least squares, Neural network, Equlization. 

I. INTRODUCTION 

 
ernel methods have been recently considered as 
indispensible component of nonlinear supervised and 

unsupervised learning algorithm versus their linear 
counterparts [1]. They are applied in wide range of areas from  
pattern analysis [2] , [3], identification or equalization in 
communication systems [4], [5] to time series analysis and 
probability density estimation [6]_[8]. Thanks to kernel 
function, Kernel methods exploit an efficient nonlinear 
mapping from finite dimensional data space to a very high 
dimentional Hilbert space called feature space [1]-[3]. Thus  
the all benefit of working in higher dimension is obtained. 
Kernel recursive least square is considered as the most 
successful method [9], enabling actual and desired output pairs 
well matching and fast rate of convergence in kernel adaptive 

filtering. KRLS has been Recently a very hot research area of 
regression tasks that results in works such as sliding window 
kernel recursive least square (SW_KRLS) [10], extended 
kernel recursive least square (EX_KRLS) [11]. Both 
exponentialy weighted kernel recursive least square 
(EW_KRLS) and random walk kernel recursive least square 
are special cases of  EX_KRLS.   
    During the data transmition over communication channel, 
the data are affected by linear and nonlinear distortions. Linear 
ditortions include inter-symbol interference (ISI), co-channel  
interference (CCI) in the presence of white Gaussian noise 
(AWGN). Nonlinear distortions are caused due to the 
subsystems such as amplifiers, modulator, demodulator, etc. In 
order to suppress all these channel distortions for the best 
recovery of symbols, different adaptive equalization 
techniques were proposed. Nonlinear equalizers are superior 
to linear ones in applications where the channel distortion is 
too severe for a linear equalizer to handle. In particular a 
linear equalizer does not perform well on channels with deep 
spectral nulls in their amplitude characteristics or with 
nonlinear distortion. In an attempt to compensate for the 
distortion, the linear equalizer places too much gain in the 
vicinity of the spectral nulls, thereby enhancing the noise 
present in these frequencies. Linear equalizers view 
equalization as inverse problem while nonlinear equalizers 
view equalization as a pattern classification problem where 
equalizer classifies the input signal vector into discrete classes 
based on transmitted data. Given minimum and non-minimum 
phase channels, problem starts when equalizing non-minimum 
phase channels [12]. For this channel, a simple linear decision 
boundary cannot classify the symbols easily. It needs a 
nonlinear decision boundary or even a hyper-plane in high-
dimensional channel space. Such a decision boundary cannot 
be achieved using a linear filter.  Conventional nonlinear 
methods in nonlinear equalization include Hammerstein and 
wiener models, Artificial Neural Networks (ANN), radial 
basis function (RBF) networks, Volterra models, Recurrent 
Networks. For instance, the first method suffers from loss of 
universal approximation , second and third methods suffers 
from non-convex optimization and local minima [13]-[14]. 
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                                              TABLE I1 
             NEURAL NETWORKS VERSUS KERNEL FILTERS 

 
    In order to show advantages and disadvantages of  kernel 
filters versus the Neural Networks, a comprehensive 
comparison is done in TABLE I that show the motivation of 
working with kernels. Given the aforementioned nonlinear 
methods drawbacks , for instance as in TABLE I, Multilayer 
Neural networks as parametric model with the major problems 
of non-convex optimization and local minima has given rise to  
the proposed nonparametric kernel model of KRLS-type 
neuron.    
   The KRLS-type neuron (NKRLS) exhibits properties such 
as kernel abilities, RLS features, and traditional neuron 
capabalities, universal approximation property, convex 
optimization property, and facilitating kernel trick property 
with regularzation. NKRLS is a neuron with structure 
proposed by [15] which is trained in KRLS, in other words 
NKRLS is a nonparametric classifier that can discriminate 
every nonlinear pattern without predefined parameters. The 
proposed method faces problems such as the computational 
and data storage complexity increment  with each training . In 
order to cope with these problems, sparsification is exploited. 
But in this paper, it is focused on the non-sparse version of all 
the algorithms. 

The organization of the paper is as follwos. Kernel  method 
is reviwed in section ΙΙ , the proposed  NKRLS algorithm is 
introduced in section ΙΙΙ . Then simulation results show the 
proposed algorithm superiority in section IV . finally the 
conclusions are presented in section V.  

.ΙΙ  A  KERNEL METHOD 

    A kernel [16] is described as continuous, symmetric,  

positive-definite function ( ) m mk .,. : R R R× → with mR as 

input domain. There are different types of kernels such as 
Gaussian (1), polynomial(2): 
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    According to mercer theorem [16]-[17] kernel expansion is 
proportional to eigenvalues iξ  and eigenfunctions iφ as 

follows: 
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1. Jose C.principe, Online kernel learning, Computational NeuroEngineering 
Laboratory (CNEL)University of Florida (www.cnel.ufl.edu). 

A  mapping ϕ  is defined as 

 
mR Fϕ →:  

 ( ) ( ) ( ) ( )u u uϕ ξ φ ξ φ =  1 1 2 2, ,... 4  

  
Dimension of  F is proportional to number of strictly positive 
eigenvalues, and can be finite or infinite. The main idea  of 
kernel method is equivalence of feature mapping inner 
products in feature space to kernel evaluation, which escapes 
from challenging task of feature mapping calculation in high 
dimentional feature space. This equivalence is defined as 
kernel trick.   
 

( ) ( ) ( ) ( )T u u k u uϕ ϕ =' , ' 5  

 
After this data mapping to high dimentional space, linear 
methods are employed in taking advantage of it. 

    ΙΙΙ . KERNEL RECURSIVE LEAST SQUARES-TYPE NEURON 

 
    Multilayer Neural network as parameteric  model, suffers 
from major losses, such as non-convex optimization , local 
minima,  and parameter  initialization sensitivity . The neural 
network is susceptible to overtraining and that the number of 
layers, the number of neurons per layer, and when to stop 
adapting must be determined in an ad hoc fashion . In the case 
of neural networks, the feature space is generated via multiple 
layers of nonlinear functions (i.e., neurons) acting on either 
filter states (first layer) or outputs of the previous layer. But 
the proposed structure represents the fature space via kernel 
Hilbert space and just one neuron. In order to suppress these  
problems,  nonparametric kernel recursive least squares–type 
neuron algorithm is proposed. There is no need to initialize 
parameter as in neural networks, therefore the KRLS-type 
neuron adapts itself with data structure. The NKRLS takes 
advantages of  kernel abilities, RLS features, and traditional 
neuron capabalities. The NKRLS is a neuron which is trained 
in KRLS, in other words NKRLS  is a nonparametric classifier 
that can discriminate every nonlinear pattern without 
predefined parameters . These advantages comes at the 
expense of a higher computational complexity. To derive 
kernel recursive least squares-type neuron, the structure  of 
kernel recursive least squares algorithm and RLS training 
algorithm for neural networks are exploited (Fig. 1.). the 
notations are established in this section. 
 
ΙΙΙ A.  Notations 

   
 

ϕ × (i)1n is input vector . 

( ) [ ]( ), ..., ( )
T

n nw i w i× =W i1 1  is weight vector.  

   
And define 
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Properties  ANNs Kernel filters 

Universal Approximators YES YES 
Convex Optimization NO YES 
Model Topology grows with data NO YES 
Require Explicit Regularization NO YES/NO(KLMS) 
Online Learning YES YES 
Computational Complexity LOW MEDIUM 
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Suppose the approximation [15]

Rewrite eq (14) it turns out

Fig. I. kern el recurs ive least squa res-type neuron str ucture

F(i) =diag [ , ,2(s( 1))..,.,(,2(s( i))]

f( b (j ))=d(j) ~f-1 ( d (j ) )=bU)

s (j )= ql (j) W(i) =tp(j)WT(r) (10)

Rewrite (10)

(8)

(9)

rei ) =R( i )W ( i )

Where r ( i) and R (i) is defined

i

r(i) = 2>2(s(j))b(j)qJ (j)
j =1

i
R ( i ) =L r ,2 ( S ( j) )Q? ( j ) tpT (j) + ..1. 1

j = 1

( 20 )

i-1

s ( ;) = L:>i( i -1)k ( u( j ) ,u( ;»
j = 1

And the final output is y (j) = f (s (j»

II 1.8 problem formulation

Then rewrite eq (19),(20)

rei)=<IJ (i)F(i)b(i)

R(i)= [ <1> (;)F(;)<1>T (;)+AIJ

Subsequently, the weight is expressed as

Wei)= R(i)- 1rei)

= [ <1> (i)F(i) <1>T(i) + AIr1<1> (i)F(j )b(i )

the regularized cost function for KRLS is expressed as
follows :

; 2

0( ;) = L::>I-jId(j) - r(wT(;)qJ(j»)1 + r'Allwll2
j=t

(13)

from inversion lemma [18]

Where it is supposed that r =I (forgetting factor). As in
(25)

KRLS the cost function is derived partially with respect to

, I aQ( ;)
wcig tt vector --= 0

awe;)

80(i ) i 8t(s(j»)
--= 2L: qJ(j)( r( b(j» -r(s(j») +2AW(i)
aW( i) j=1 as(j )

Where the output error is

(14 )

Rewrite eq (23)

W(i) = $ (I) [ AF-' (I) +$ T (1)$(1)r b(i)

= $ ( i )o( i )

the kernel coefficient is expressed as follows

(27)

And the activation function derivative with respect to s(j )

The inversed part of eq(27) is expressed in a recursive
form.i.c .
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Rewrite eq (27)  
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 KRLS-type neuron algorithm is summarized in algorithm 2. 
 
 
Algorithm 2: KRLS-type neuron (NKRLS) ALGORITHM  
 
 
Initialization  
 

( ).f  define the activation function 

( )( ) ( ) ( )( ) ( )−= ⇔ =1b j j d j b jdf f
 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )Q F k a Qλ − 
 
 

= + =u u b11 1 1 1 1 1 1, ,  

Computation  
While ( ) ( ){ },u i d i  (i>1) available do 
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End  while 
 
 
 

V . NUMERICAL EXAMPLES 
 

Equiprobable sequence of BPSK signal ( )n ns  is transmitted 

through linear time invariant (LTI) [20] channel which results 

in the signal ( )n nw . Given the strategy  of 
i

l ii
h

=

=
= 2 2

0
1 [5,(28)] 

in the transfer function ( ) : , , ,i
l l i

i

i
H z z z C lh −=

=
= ∈ = 2

0
1 2 , Two 

LTI channel ( ) ( ) ( ) ( )( ): sin / cos sin / ,l l l lH z z zθ θ θ− −= + +1 22 2

z∀  , , ,C l∈ = 1 2  is considered where .θ =1 29 5 and θ = −2 35 .  

The signal ( )n nw  passes through nonlinearity of Fig. 2. 

Represented as : . . ,n n n np w w w n= + − ∀2 30 2 0 1  [5,(29)]. Independent 

identically distributed  (i.i.d) Gaussian noise ( )nnn  , with zero 

mean and SNR 10dB=  with respect to ( )nnp , is added to yeild 

the received signal ( )nnx .  

  The data space is considered to be the Euclidean 4 , thus the 

data are formed as ( ): , , , , ,x
T

n n n n nx x x x n− − −= ∈ ∀ ∈ ≥4
1 2 3 0 

where the superscript T stands for transposition. The traint 
arget (label) at time instant n, is the transmitted training 
symbol , ,ns nτ− ∀ ∈ ≥ 0  where :τ = 1 in our case [5]. In other 

words, The data space dimension :m = 4  and the parameter τ  
are the equalizer order and delay, respectively. The Gaussian 
(RBF ) kernel with kernel variance of 0.5 is considered for all 
the cases which offers fast convergence speed with low Bit 
error Rate levels. Regularization factor .λ = 0 01  and  nonlinear 
tangant hyperbolic activation function is selected with 
parameter c=0.4. All the NKRLS parameters are chosen in a 
way that maximize the performance . No sparsification is 
exploited in all the methods.  
      We  compared  the proposed  methodology  with   the  soft  
   
 
 
 
 
 
  

Fig.  2.  Model of  the  nonlinear channel   for  which  adaptive 
equalization  is needed 
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                                                 TABLEII 

KERNEL SIZE EFFECT ON NONLINEAR CHANNEL          
EQUALIZATION BER (dB) OF H1        

 

 
margin version of the stochastic gradient descent method 
NORMA [20,sec. III-A] and the classical kernel perceptron 
algorithm [2],[3], which is special case of NORMA method 
[20,sec. VI-A].  But the main comparison is with the powerfull 
Adaptive Projection Subgraidient Method (APSM) [21] . ALL 
the methods are validated on a number of 100 test data and 
each curve in the figures is the result of 100 uniformly 
averaged  experiments. By definition, the kernel perceptron 
method does not provide with any regularization [10]. 
Although NORMA offers regularization, this option is not 
considered here. The parameters of last three methods were  
chosen to maximize their performance as in [21, Fig. 6., Fig. 

Algorithm  
NNKRLS 

KERNEL 
VARIANCE 

0.02 0.2 0.5 1 

BER (dB)  0.055 0.038 0.029 0.045 

Fig.  3.  Equalization  performance  for the LTI systems H1   with  the 

RBF kernel variance : .σ =2 0 5  . 

 

Fig.  5 . Tracking   performance with the channel switch at time 
n=500 , from H1  toH2  , for the LTI systems in Fig. 2.  with  the 

RBF kernel variance : .σ =2 0 5  . 

Fig.  4.  Equalization  performance  for the LTI systems H2   with  the 

RBF kernel variance : .σ =2 0 5  . 

 

Fig.  6.  kernel size  effect on nonlinear channel   equalization ber (dB)   

for the LTI systems H1   with  the RBF kernel varianc : .σ =2 0 5  . 

Fig.  7.  Equalization  performance  for the LTI systems H1   with  the 

RBF kernel variance : .σ =2 0 5  versus SNR variation. 
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7., Fig. 8.] such as appropriate soft margin, concurrent 
processing (q=16 q∈ > 0 ) , extrapolation parameter

( : ,nμ = 1 n∀ ∈ > 0  ) .  we set a large value of radius for the 

sparsification projection ball in APSM which represents 
nonsparse case.     
     The Proposed equalizer performance versus the other three 
equalizers are observed in Fig. 3 and Fig. 4 ( first and second 
N at NNKRLS stands for Nonlinear and Neuron respectively). 
It is evident that the proposed method has a considerably  
faster convergence speed with lower bit error rate than the 
others . In other words, the proposed method requires less 
pilot overhead in order to reach lower bit error rate levels. But 
APSM outperform the stochastic descent graidient NORMA 
and kernel perceptron in terms of convergence speed. 
Moreover, concurrent processing version of APSM with q=16 
results also into a lowest bit error rate. It has been proved in 
[21] that kernel variance in the neihbourhood of 0.2, exhibited 
slow convergence and higher bit error rate levels for APSM, 
NORMA and kernel perceptron. It must be mentioned that H 2  

has larger eigenspread than H1 . Thus the performance of all 

the equalization algorithms in Fig. 4 deteriorate with the data 
received from H 2 .   

  The tracking performance of the adaptive equalizer  after 
initial convergence is demonstrated for a sudden channel 
change , from H1  to H 2  in Fig. 5.  

The channel changes at the time instant n=500.  All the 
parameters remain the same as  before. The superiority of the 
ttracking performance of the proposed algorithm is abserved 
from the figure. Note that the performance  levels  before  the 
channel  change  is approximately settling to the same as in 
Fig.3 . Also after the channel change, the performance is 
settling to the same as in  Fig.4 .  
    Kernel size effect on the proposed nonlinear channel  
equalization bit error rate is examined in TABLEII.  It is 
observed from Fig. 6. that too small and too large kernel 
variance parameter,  results into slower convergence and 
higher bit error rate levels. Finally the bit error rate 
performance with snr variations is demonstrated in Fig. 7. it is 
observed that the proposed nonlinear equalizer BER, 
converges considerably faster with the lower level bit error 
rate at 16 dB than the other equalizers.  APSM converges at 19 
dB in comparison with perceptron and NORMA which 
converges at 22 dB.  Thus,  APSM, NORMA and kernel 
perceptron requires approximately 3-6 dB more snr, in order 
to match the same performance as the proposed NKRLS  
method.  

VI . Conclusion 
 
    A new kernel recursive least square-type neuron (NKRLS) 
equalizer is proposed which improves nonlinear methods 
problems such as, classical training algorithm drawbacks to 
parameter definition, slow convergence, local minima, non-
convex optimization, loss of universal approximation.. KRLS-
type neuron equalizer in RKHS, is equipped with universal 
approximation property, convex optimization property, and 
facilitating kernel trick  property with reregularzation.  Given 
the nonlinear channel distotions and the nonminum  phase 

channel characteristics, simuation results demonstrated that 
the proposed algorithm exhibits faster convergence with lower 
bit error rate levels , in comparison to the recently developed 
nonlinear equalizers APSM , NORMA and classical kernel 
perceptron techniques. Also, it was illustrated that The 
tracking performance of the proposed algorithm , undergone 
by an abrupt sudden channel change, outperforms the  other 
nonlinear equalizers. Next,  the kernel variance significance 
on rate of convergence and levels of bit error rate, 
demonstrated that too small and too large kernel variance  
results into slower convergence and higher bit error rate 
levels. Finally, APSM, NORMA and kernel perceptron has a 
degradation of   approximately 3-6 dB snr, in comparison to  
the proposed NKRLS  method performance. 
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