EX-SJFESTLA: A New Intelligent Rule Scheduling Approach in Active Database Systems

Abbas Rasoolzadegan Mohammad Reza Meybodi

Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran

Abstract

Active database systems (ADBS) can react to the occurrence of predefined events automatically by defining a collection of active rules. One of the most important modules of ADBS is the rule scheduler which has considerable impact on performance and efficiency of ADBS. The Rule scheduler selects a rule to execute (evaluate) its action (condition) section in each time through the rules, which are ready for execution (evaluation). We have already evaluated and compared the existing rule scheduling approaches in a laboratory environment based on three-tier architecture. Five evaluation criteria were recognized and defined formally for evaluation and comparison of rule scheduling approaches including: Average Response Time, Response Time Variance, Throughput, Time Overhead per Transaction and CPU Utilization. In this paper, we first design and implement the before mentioned laboratory environment again to cover and simulate the behavior of ADBS more exactly and completely, then propose a new approach to improve the rule scheduling process based on improvement of triggered rule scheduling using learning automaton. Then, we compare it with the most effective existing approach in the mentioned framework. Results of experiments show that the new method improves the rule scheduling.

Keywords: Estimation of Rule Execution Probability, Active Database Management Systems, Rule Scheduling, Learning Automaton.

1. Introduction

Common (Traditional) database systems often have passive nature. It means operations such as: querying, updating, inserting, deleting, reporting, and etc are performed just upon user request. So database management system can't automatically react when special situations occur in the system. Many applications such as warehousing programs, automation of factories, systems with sophisticated financial calculations (e.g. stock market), and etc need automatic supervision to react appropriately when predefined events occur. For supporting this reactive behavior, a new database system has been designed and called Active Database Systems (ADBS).

Reactive behavior of ADBS is organized by creating Event-Condition-Action (ECA) rules (active rules). An ECA rule has three main sections: Event, Condition, and Action. When an event occurs, condition is evaluated and if the condition is true, the action will be executed. Below, you can see a simple example of ECA rule defined in an active database system for buying and selling stocks: [12]

```
DEFINE LowRisk
ON Stock.UpdatePrice
IF (Stock.policy = Low_risk) and
    (Stock.price < Stock.initprice * e) ; (0<e<1)
DO Stock.Buy
```

First of all, in ADBS the application runs until an event occurs, then the rule processing unit is activated and triggers (activates) the appropriate rule(s). Triggered rule(s) is (are) queued in the "triggered rules" buffer. Then a triggered rule is selected according to some special criteria based on a scheduling mechanism for the evaluation of condition. If condition is true, the rule is added to "ready to execute" rules
buffer. Then a "ready to execute" rule is selected using a rule scheduling approach and its action section will be executed. The executed rule may trigger some other rules subsequently; new triggered rules will be passed to the rule processing unit. When there aren’t any triggered rules, the application continues to run. The set of operations mentioned above is called rules processing cycle. In summary, there are five different rule processing steps:

1. Event Signaling: When a primitive event occurs, the primitive event detector signals it. Additionally, the composite event detector considers these primitive events contributed to composite events [2].

2. Rule Triggering: After an event is signaled, ECA rules that correspond to the signaled event are selected, and for each of them the corresponding rule instance is created. In each rule instance, there is some additional information based on scheduling approach, such as timestamp, deadline, execution time, etc. These rule instances are buffered to use in the next step.

3. Condition Evaluation: After buffering rule instances, their conditions are evaluated. Then, for each rule with a true condition, a transaction is generated according to its action section.

4. Transaction Selection: This step is also called transaction scheduling phase. In this phase, a selection algorithm [11] operates on the execution buffer and selects one transaction which is generated based on triggered rules, and sends the transaction to the execution unit.

5. Transaction Execution: Transactions generated based on triggered rules are executed in this phase.

One of the most important features that affects the rule processing phases a lot and plays an important role in the specification of ECA rules are coupling modes. The phases of rule processing discussed so far are not necessarily executed contiguously, but depend on the so-called coupling modes which are pairs of values (x, y) associated with each rule. The value ‘x’ couples event signaling and condition evaluation of a rule, whereas ‘y’ couples condition evaluation and action execution. Possible coupling modes are immediate, deferred and independent [5]:

- Immediate mode: in this mode, when an event occurs, corresponding rule is triggered then current transaction is suspended and action section of the triggered rule is executed, if the condition holds.

- Deferred mode: in this mode, after the occurrence of an event, condition evaluation and action execution of the triggered rule is deferred until the end of the current transaction. In deferred mode, the action of triggered rule should be executed before current transaction commits.

- Independent mode: when an event occurs in independent mode, there are no time-constraints and restrictions on condition evaluation and action execution of the triggered rule.

The approach used for rule scheduling has great and direct effect on some criteria such as Average Response Time, Throughput and generally on ADBS performance. One of the weak points of ADBS is the rule scheduling approaches which have already been presented. Some of the existing approaches were designed for special situations and the rest of them don’t have enough performance and efficiency. Rule scheduling approaches in ADBS is an important research topic.

This paper has five sections. In section two, we analyze existing rule scheduling approaches in ADBS. In section three, we introduce a framework to compare and evaluate existing rule scheduling approaches. In this framework, five evaluation criteria have been proposed: Average Response Time, Response Time Standard Deviation, Throughput, Time Overhead per Transaction and CPU Utilization.

At the end of this section the approach which has the most positive impact on performance and efficiency of ADBS has been introduced by analyzing the weaknesses and strengths of existing approaches. In section four we introduce a new algorithm for estimation of condition correctness probability of triggered rules using learning automaton and develop a new scheduling approach based on it. Then we show the positive impact of this algorithm on performance of ADBS. Finally, in section five, there is a conclusion of subjects presented in this paper.

2. Existing Rule Scheduling Approaches

In ADBS, the process of priority allocation to rules, ready for execution, is called rule scheduling. As we have also mentioned before, a rule gets ready for execution if and only if 1) it gets activated because of occurrence of the corresponding event in the system and 2) its condition seems true in evaluation time.

In this section, we briefly describe the approaches used for rules scheduling. In this paper, we use “rule” and “transaction” terms interchangeably. Figure (1) shows the formal specification of a scheduling method in general.

Figure 1. The formal specification of scheduling method in general

2.1. Random Scheduling Approach

Random selection is one of the easiest approaches for rule scheduling in ADBS [8]. This approach has been implemented in RPL and Ode active database systems [11]. In the Random approach, ADBMS selects randomly one of the activated rules.

The most important characteristic of this approach is its simplicity at the cost of efficiency. The formal specification of the random scheduling method in ADBS is obtained by replacing line 5 in figure (1) with the following pseudo code.

\[S') \text{ Random \\ Generator} \equiv |i \in N | 1 \leq i \leq n \text{ and i selected randomly} \]

\[\text{Rule \\ Scheduling} (\text{ReadyToExecute \\ Rule \\ Base}) = \]

\[\forall R, R_\text{ReadyToExecute \\ Rule \\ Base}(R_1, \ldots, R_d) R \equiv \]

\[\text{ReadyToExecute \\ Rule \\ Base}(R_{\text{Random \\ Generator}(n)}) \]
2.2. Static Priority Scheduling Approach

In this approach, the system assigns a numeric priority to each ECA rule but the priorities need not to be unique. In the Ariel and POSTGRES systems, each rule is assigned a priority between -1000 and +1000. When an activated rule should be selected to run, the rule that has the minimum static priority is selected [8], [13], [17]. The formal specification of static priority method in ADBMS is obtained by replacing line 5 in figure (1) with the following pseudo code.

$$5') \text{Activate}(R) \equiv \{ \text{Create Instance of } R \text{ and Set DeadLine}(R) \}$$

$$5') \text{Rule Scheduling (ReadyToExecute_Rule_Base) } \equiv$$

$$\begin{cases} R_i \in \text{ReadyToExecute_Rule_Base}, [(R_i,P_i), \ldots,(R_n,P_n)], \text{ R,} \\
\text{Selected } | \text{ } R_i \in \text{ReadyToExecute_Rule_Base } | i \leq \text{n} \\
\text{ } | \text{ } R_j \in \text{ReadyToExecute_Rule_Base } | 1 \leq j \leq n, P_i \leq P_j \}\}$$

2.3. FCFS Scheduling Approach

FCFS (First Come First Serve) scheduling approach is one of the classic approaches used for rule scheduling in ADBS [8], [14]. When an event occurs and rules are triggered, an instance of each triggered rule is generated. This instance of triggered rule contains a timestamp which shows the time when the rule is triggered. When an activated rule is selected to run, the activated rule that has the earliest timestamp is selected. This scheduling approach is used in SAMOS. The formal specification of FCFS method in ADBMS is obtained by replacing lines 5 in figure (1) with the following pseudo code.

$$5') \text{Set_TimeStamp} \equiv \{ \text{R's TimeStamp } \text{- Current Time} \}$$

$$\text{Activate}(R) \equiv \{ \text{Create Instance of } R \text{ and Set_TimeStamp}(R) \}$$

$$\text{Rule Scheduling (ReadyToExecute_Rule_Base) } \equiv$$

$$\begin{cases} R_i \in \text{ReadyToExecute_Rule_Base}, [(R_i,T_i), \ldots,(R_n,T_n)], \text{ R,} \\
\text{Selected } | \text{ } R_i \in \text{ReadyToExecute_Rule_Base } | i \leq \text{n} \\
\text{ } | \text{ } R_j \in \text{ReadyToExecute_Rule_Base } | 1 \leq j \leq n, T_i \leq T_j \}\}$$

2.4. Concurrent Execution Scheduling Approach

HiPAC active database system [12] supports this method. Rule processing in HiPAC is invoked whenever an event occurs and triggers one or more rules. HiPAC executes all triggered rules concurrently. This means that if during rule execution, additional rules are triggered, they are executed concurrently. Another ADBMS called FAR [5] also uses concurrent rule execution. This method differs from most other rule scheduling methods in its handling of multiple triggered rules. So we can not quantitatively compare it with other rule scheduling methods which are serial.

2.5. EDF based Scheduling Approach

Earliest Deadline First (EDF) is one of the best classic algorithms for rule scheduling in real-time systems till now [1], [5], [7]. This approach has been presented for Real-time Active Database (RADB). In this approach rules are scheduled based on their deadline. This approach has three different versions: (1) EDFDIV, (2) EDFDIV, and (3) EDFSL. The EDFDIV is a static baseline policy where the rules priorities do not change with time. EDFDIV and EDFSL are dynamic policies where rules priority change depending on the amount of dynamic work they have generated [16]. The formal specification of EDF based method in ADBMS is obtained by replacing line 5 in figure (1) with the following pseudo code.

$$5') \text{Rule Scheduling (ReadyToExecute_Rule_Base) } \equiv$$

$$\begin{cases} R_i \in \text{ReadyToExecute_Rule_Base}, [(R_i,T_i), \ldots,(R_n,T_n)], \text{ R,} \\
\text{Selected } | \text{ } R_i \in \text{ReadyToExecute_Rule_Base } | i \leq \text{n} \\
\text{ } | \text{ } R_j \in \text{ReadyToExecute_Rule_Base } | 1 \leq j \leq n, T_i \leq T_j \}\}$$

2.6. E_SJF Scheduling Approach

This method is based on Shortest Job First algorithm. The SJF algorithm is one of the most effective classic scheduling approaches [4], [10]. This algorithm is not useful for rule scheduling in ADBS due to the active work load nature of it [16]. So there is some defined preprocesses for preparing rule base to use the SJF algorithm for rule scheduling in E_SJF (Extended SJF) approach [10]. The difference between SJF and E_SJF is in the manner of transactions (rules) execution time calculation. In E_SJF approach, the execution time of each rule (parent) is related to the number of its immediate and deferred child rules. According to the interference manner of the execution time of immediate and deferred child rules in the execution time of their parent rules, there are four versions of E_SJF which are named E_SJFEXA, E_SJFPRO, E_SJFPRO-V.1.8, and E_SJFPRO-V.2.8 [10].

We explain the E_SJF approach more exactly than other approaches because the new approach introduced in section 4 is an improvement of E_SJF. The formal specification of E_SJF method in ADBMS is obtained by replacing line 5 in figure (1) with the following pseudo code.

$$5') \text{Rule Scheduling (ReadyToExecute_Rule_Base) } \equiv$$

$$\begin{cases} R_i \in \text{ReadyToExecute_Rule_Base}, [(R_i,ExecT_j), \ldots,(R_n,ExecT_j)], \text{ R,} \\
\text{Selected } | \text{ } R_i \in \text{ReadyToExecute_Rule_Base } | i \leq \text{n} \\
\text{ } | \text{ } R_j \in \text{ReadyToExecute_Rule_Base } | 1 \leq j \leq n, \text{ ExecT}_i \leq \text{ ExecT}_j \}\}$$

Although calculation of rules execution time is possible in run time, it leads to an inefficient scheduling approach because of its too much time overhead. So all versions of E_SJF, calculate execution time of the rules before system’s run time. As we mentioned before, executing of active rules depend on condition evaluation result of those rules in evaluation time. In another word, execution probability of the activated rules equals to the condition correctness probability of those rules. So we should estimate execution probability of the activated rules before system’s run time. More precise
estimation of rule execution probability leads to more precise calculation of rule execution time [10].

The condition section of the rules consists of conditional expressions, database query statements, recalling the procedures, functions, and logical composition of them. Suppose that condition section of rule R is defined as $[A \land B] \cup (C \land D)$. A, B, C, and D are logical statements. So correctness probability of condition of rule R is calculated as below:

$$P[(A \land B) \cup (C \land D)] = P(A \land B) + P(C \land D) - P(A \land B \land C \land D)$$

Supposing that A, B, C, and D exist definitely, with putting their values in equation (1), we will have:

$$P((A \land B) \cup (C \land D)) = P(A) * P(B) + P(C) * P(D) - P(A) * P(B) * P(C) * P(D)$$

(1)

If correctness probability of logical statements A, B, C, and D exist definitely, with putting their values in equation (1), we can calculate the correctness probability of condition of R precisely. But correctness probability of a conditional statement often doesn't exist before its execution. So we should estimate correctness probability of conditions before system's run time. All versions of Ex-SJF, i.e. Ex-SJFEXA, Ex-SJFPRO, Ex-SJFPRO-V.1.8, and Ex-SJFPRO-V.2.8 construct rule execution tree to anticipate the children of rules [4]. In fact, the difference between these versions is in the estimation manner of the execution probability of their children.

2.6.1. Ex-SJFEXA Scheduling Approach

In this approach condition correctness probability of each rule (rule execution probability) is considered 1 [16]. So rules execution time is calculated by equation (2) supposing $P(R) = 1$ [4].

$$X(R) = L(R) + \sum_{j=1}^{n_{\text{def}}} P(R_j)*X_{\text{def}}(R_j) + \sum_{j=1}^{n_{\text{imm}}} P(R_j)*X_{\text{imm}}(R_j)$$

(2)

- $P(R_j)$: The correctness probability of condition section of deferred rule R_j activated by R.
- $P(R_j)$: The correctness probability of condition section of immediate rule R_j activated by R.
- $X_{\text{def}}(R_j)$: The execution time of rule R_j, triggered in immediate mode.
- $X_{\text{imm}}(R_j)$: The execution time of rule R_j, triggered in deferred mode.
- $L(R)$: The primary execution time of rule R.
- $n_{\text{def}}(R)$: Number of deferred rules triggered by R during its execution.
- $n_{\text{imm}}(R)$: Number of immediate rules triggered by R during its execution.
- $X(R)$: The execution time of rule R calculated by this approach.

2.6.2. Ex-SJFPRO Scheduling Approach

In this approach, correctness probability of each conditional statement in the condition section of rules is equally considered 0.5. So correctness probability of the condition of R mentioned in last section according to equation (1) will become:

$$P(R) = P[(A \land B) \cup (C \land D)] = \frac{1}{2^4} = \frac{1}{16}$$

As mentioned above, execution time of each rule in this approach is also calculated by equation (2) [4].

2.6.3. Ex-SJFPRO-V.1.8 Scheduling Approach

In this approach, at first, execution time of each rule is calculated like Ex-SJFPRO [3], [10]. Then in every time which rule R_i with the shortest execution time among activated rules is selected for condition evaluation, correctness probability of each logical statement of condition section of R_i, i.e. $P(R,LS_i)$ is repeatedly calculated and stored based on equation (3).

$$P(R,LS_i) = \frac{T_1}{T_2}$$

(3)

Where T_1 shows the frequency that LS_i has been evaluated and has been true so far and T_2 shows the frequency that R has been activated so far.

This process is repeated for each logical statement of condition section of the corresponding rule until the change rate of correctness probability of that logical statement, achieves the desired value (e.g., 0.0000001 and in general mode ϵ). At this time, new value is replaced with primary default value (i.e. 0.5). It is evident that the smaller the value ϵ, the more exact calculation of $P(R,LS_i)$.

When correctness probabilities of all logical statements of a condition are updated, correctness probability of that condition is updated, too. Ultimately execution time of rule R is updated, when condition section correctness probability and all R’s children execution time are updated. So, after passing a short time from system executing (which this time is very insignificant in compare with total executing time of system), execution time of all rules are calculated with a satisfied precision (which amount of this precision is depend on value ϵ).

The formal specification of Ex-SJFPRO-V.1.8 method is obtained by replacing pseudo code presented in table (1) instead of line 5 in figure (1).

2.6.4. Ex-SJFPRO-V.2.8 Scheduling Approach

Both Ex-SJFPRO-V.2.8 and Ex-SJFPRO-V.1.8 are designed and implemented based on estimation of rule execution probability. The difference of these two approaches is in the manner of estimating [3]. In this sub section we are going to illustrate the operation of this technique. As we mentioned before, condition section of each rule is composed of some logical statements.

Table (2) shows the condition section of some rules and (3) shows the domain of the conditional variables of condition section of the rules mentioned in table (2). For example condition section of rule R_i is true if data item A (DI$_A$) is greater than data item B (DI$_B$).
Table 1. Pseudo code of rule execution time calculation and method of rule selection in E-SJF PRO-V.1.8

When Active Rule R is selected among Active Rules for condition evaluation by Scheduling Approach, LS_Probability() is called for all conditional Statements of condition part of Rule R

```
LS_Probability(LS)
{ Counter1 = Counter1+1
  IF Check_Correctness (LS) Then
    Counter2 = Counter2+1
  LS -> New_Probability = counter2/counter1
  IF E <= LS -> New_Probability - LS -> Old_Probability <= E Then
    LS -> fixed=True
    Condition_Probability(R -> C)
  LS -> Old_Probability = LS -> New_Probability
}
```

```
Condition_Probability(R -> C)
{ For Each LS of R -> C That LS -> fixed=False Do
  LS_Probability(R -> C -> LS)
  IF R -> C -> LS -> Fixed=False Then
    R -> C -> Fixed=True
  Return (R -> C -> Fixed=False)
}
```

```
Calc_Execution_Time(R -> parents)
{ IF R = NULL Then Return (0)
  For Each Child of R DO
    IF R -> Child -> C -> Fixed=True Then
      R -> Fixed=True
    IF (R -> Fixed=True) or (R -> visited = False) Then
      I = 0
    For Each Child of R DO
      I = I + Calc_Execution_Time (R -> Child)
    R -> visited = True
    R -> ExecutionTime = R -> ExecutionTime * Condition_Probability(R -> C) + I
  Return (R -> ExecutionTime) }
```

```
Rule_Scheduling (ReadyToExecute_Rule_Base) =
{ \forall R_i \in ReadyToExecute_Rule_Base, \{ (R_1, ExecT_1), ... (R_n, ExecT_n) \}, R_i Selected | {R_i \in ReadyToExecute_Rule_Base | 1 \leq i \leq n}
  \forall R_j \in ReadyToExecute_Rule_Base | 1 \leq j \leq n,
  \forall R_i \rightarrow ExecutionTime \leq R_j \rightarrow ExecutionTime,]
```

Table 2. Condition of some sample rules

<table>
<thead>
<tr>
<th>Rules</th>
<th>Condition Section of Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>DIA>DIB</td>
</tr>
<tr>
<td>R_2</td>
<td>DIC = {steel OR copper OR cement}</td>
</tr>
<tr>
<td>R_3</td>
<td>DIA=20 AND DIB<=DIA</td>
</tr>
<tr>
<td>R_4</td>
<td>DIA=20 AND DIB={brass}</td>
</tr>
</tbody>
</table>

Table 3. Domain of conditional variables of the above table's rules

<table>
<thead>
<tr>
<th></th>
<th>DIA</th>
<th>DIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0< DIA</td>
<td><100</td>
<td><50</td>
</tr>
<tr>
<td>-110< DIA</td>
<td><50</td>
<td><2000< DIB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIA</th>
<th>DIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>{shoe, steel, cement, copper, brass, carpet, orange, silver, gold}</td>
<td></td>
</tr>
</tbody>
</table>

According to this fact that both condition section of all rules and the domain of conditional variables of all condition sections are specified before run time and on the assumption that probability distribution of conditional variables is uniform and logical statements are independent, we can calculate correctness probability of each logical statement before system's run time mathematically. Assumption of equal probability distribution of conditional variables means that the occurrence probability of all valid values in the domain of those variables is equal.

Here we are going to calculate correctness probability of the condition of rule R1 according to assumptions and known information mentioned in tables (2), and (3). As it is shown in figure (2), DIA is greater than DIB in each point inside the trapezoid S1 and DIA is smaller than DIB in each point inside the triangle S2. So correctness probability of DIA>DIB, on the assumption that area of the trapezoid S1 is noted as S_{S1} and area of the triangle S2 is illustrated as S_{S2}, is calculated according to equation (4):

\[
P(R_1) = \frac{S_{S1}}{S_{S1} + S_{S2}} \tag{4}
\]

Then the appropriate values are assigned to the variables of equation (4), so we will have:

\[
P(R_1) = \frac{(110*100) + (100 + 50) * 25}{100 * 1600} = \frac{14750}{16000} = 0.92
\]

Figure 2. Calculation the correctness probability of the condition of rule R1

In the same manner, correctness probability of all rules (execution probability of the action section of all rules) is calculable before system's run time. After calculating the execution probability of action section of rules, we can calculate execution time of rules according to equation (2).
Table 4. Manner of recording the taken values with their taken intervals for DIA by passing the time

<table>
<thead>
<tr>
<th>Conditional Variable</th>
<th>Specific Intervals</th>
<th>δt_i (1000 min)</th>
<th>δt_i (1000 min)</th>
<th>δt_i (1000 min)</th>
<th>δt_i (1000 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>taken values</td>
<td>taken intervals (by min)</td>
<td>taken intervals (by min)</td>
<td>taken values</td>
<td>taken intervals (by min)</td>
</tr>
<tr>
<td>DIA</td>
<td>2</td>
<td>10</td>
<td>23</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>5</td>
<td>47</td>
<td>28</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>39</td>
<td>86</td>
<td>95</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>15</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Now system starts its work and scheduler, in each instant, select the rule which has the shortest execution time through activated rules with true condition to pass the operations of its action section to transaction execution unit for execution. But as we mentioned before, in this method, probability distribution of conditional variables is assumed uniform in calculating of the rules execution time. But in real systems, probability distribution of conditional variables isn't often equal. So we act as below to correct this assumption to calculate execution time of rules more exact during executing the system.

After the system starts to work, in specific intervals (δt_i), for every conditional variable of the condition section of the rules, all taken values with their taken intervals are recorded. Table (4) shows the above issue for DIA.

At the end of every δt_i, occurrence probability of every value of the domain of every conditional variable is corrected based on taken interval by relevant variable during last δt [16]. This process is repeated for each value of the domain of every conditional variable until the changes rate of occurrence probability of that value reach the agreeable extent (e.g., 0.001 and in general mode ϵ). At this time, new value is replaced with primary default value calculated based on the assumption of uniform probability distribution. It is evident that the smaller value ϵ, the more exact calculation of distribution probability of the conditional variables that finally leads to more exact calculation of the rules execution time. When occurrence probability of all domain's values of all conditional variables existed in the condition part of a rule such as rule R are updated, correctness probability of the condition of rule R is mathematically calculated again (updated) based on the real probability distributions of its conditional variables and the new value is replaced with primary value. Ultimately execution time of rule R is updated based on equation (2), when correctness probability of its condition section and the execution time of all its children are updated. So, after passing a short time from start of executing the system (which this time is insignificant in compare with total executing time of system), execution time of all rules are updated with a satisfied precision (which amount of this precision is depend on value ϵ). We do all these calculations when the system is idle. In other words, we determine the length of δt in such a manner that its termination and idle times of system get concurrent.

3. Evaluation and Comparison of Existing Rule Scheduling Approaches

In [16] a framework is introduced for comparison and evaluation of existing rule scheduling methods. This framework contains five evaluation criteria according to their priorities (W_i in equation (5)): Average Response Time, Response Time Standard Deviation, Throughput, Time Overhead per Transaction and CPU Utilization. Table (5) defines these parameters formally.

In this framework a laboratory environment named Active Database System Simulator (ADSS) is designed and implemented to simulate the active database system behavior. So we can implement each rule scheduling approach and consider the performance of it in ADSS. Architecture, the manner of designing and implementation of ADSS and rule scheduling approaches are extensively described in reference [16]. An important characteristic of ADSS is flexibility. It means that we can implement each rule scheduling approach, only by replacing the scheduling algorithm in the ADSS.

Table 5. Formal definition of evaluation parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of Executed Rules</td>
</tr>
<tr>
<td>ART</td>
<td>Average Response Time</td>
</tr>
<tr>
<td>RSV</td>
<td>Response Time Standard Variance</td>
</tr>
<tr>
<td>U_CPU</td>
<td>CPU Utilization</td>
</tr>
<tr>
<td>TOPT</td>
<td>Time Overhead Per Transaction</td>
</tr>
</tbody>
</table>

$$T_{i^*} = Activation\ Time\ of\ i^{th}\ Rule$$

$$T_{i^*} = Start\ of\ Execution\ Time\ of\ i^{th}\ Rule$$

$$T = (T_{i^*} + Execution\ Time\ of\ N^{th}\ Rule) - T_{i^*}$$

$$T_{i^*} = \sum_{i=1}^{N} Real\ Execution\ Time\ of\ i^{th}\ Rule$$

$$U_{CPU} = \frac{T_{i^*}}{T} \times 100$$

$$RTSV = \frac{\sum_{i=1}^{N}(T_{i^*} - T)^2}{N}$$

$$Throughput = \frac{N}{T}$$

$$ART = \frac{\sum_{i=1}^{N}(T_{i^*} - T)}{N}$$

$$TOPT = \frac{T - T_{i^*}}{N}$$
The ADSS has three-tier architecture: “object manager unit”, “rule manager unit” and “transaction manager unit” [16]. Experiments are performed in three modes: “Deferred mode”, “Immediate mode”, and “Composite mode”. In the first mode system uses rules only in deferred mode. In the second mode, system uses the rules only in immediate mode and ultimately in the third mode, system uses rules in all immediate, deferred, and independent modes [1].

In the phases of design and implementation of ADSS, we added some features in order to simulate the behavior of active database management system, more completely and subsequently evaluate and compare rule scheduling approaches more exactly. Among them, we added two compilers to existing system in order to compile conditions and instructions. Therefore we can use real instructions and conditional statements in generating process of actions and conditions of active rules. So, we bring simulator and real environment close together as much as possible through compiling conditions and instructions, really, at run time.

In the previous version of ADSS, we had generated and used conditions and instructions virtually [16] but in the new version of ADSS, we considered and implemented the necessary parameters to cover all states and properties of active rules in the real systems. Figure (3) shows UI of active rule generator with mentioned parameters.

As you watch in "CEC Type" and "CCA Type" sections of this UI, we can define what percentage of event-condition and condition-action couplings of active rules are respectively, immediate, deferred, and independent. Moreover, the result of execution of program to generate some active rules has been shown.

Results of experiments in deferred, immediate and composite modes are shown in tables (6), (7), (8), respectively. The content of each cell shows the rank of corresponding scheduling method according to corresponding evaluation criteria. As can be seen in table (9), the final rank of approaches was calculated according to equation (5). The relation between final rank of an approach and the corresponding value of $S(k)$ is inversed.

![Figure 3. UI of active rules generator in ADSS](image-url)
Table 6. Results of simulation of available rule scheduling approaches in deferred mode

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Methods</th>
<th>Average Response Time</th>
<th>Standard Deviation</th>
<th>Throughput</th>
<th>Time Overhead per Transaction</th>
<th>CPU Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Random</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Static Priority</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FCFS</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EDF<sub>PD</sub></td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EDF<sub>SL</sub></td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>E<sub>a</sub>SJF<sub>EXA</sub></td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>E<sub>a</sub>SJF<sub>PRO</sub></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>E<sub>a</sub>SJF<sub>PRO-V.1.8</sub></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>E<sub>a</sub>SJF<sub>PRO-V.2.8</sub></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 7. Results of simulation of available rule scheduling approaches in immediate mode

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Methods</th>
<th>Average Response Time</th>
<th>Standard Deviation</th>
<th>Throughput</th>
<th>Time Overhead per Transaction</th>
<th>CPU Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Random</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Static Priority</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FCFS</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EDF<sub>PD</sub></td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>EDF<sub>SL</sub></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>E<sub>a</sub>SJF<sub>EXA</sub></td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>E<sub>a</sub>SJF<sub>PRO</sub></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>E<sub>a</sub>SJF<sub>PRO-V.1.8</sub></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>E<sub>a</sub>SJF<sub>PRO-V.2.8</sub></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 8. Results of simulation available rule scheduling approaches in composite mode

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Methods</th>
<th>Average Response Time</th>
<th>Standard Deviation</th>
<th>Throughput</th>
<th>Time Overhead per Transaction</th>
<th>CPU Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Random</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Static Priority</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FCFS</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EDF<sub>PD</sub></td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EDF<sub>SL</sub></td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>E<sub>a</sub>SJF<sub>EXA</sub></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>E<sub>a</sub>SJF<sub>PRO</sub></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>E<sub>a</sub>SJF<sub>PRO-V.1.8</sub></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>E<sub>a</sub>SJF<sub>PRO-V.2.8</sub></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

The sum $\sum_{j=1}^{3} \sum_{i=1}^{5} W_i \cdot R_{a_k,j}(k)$ is used to calculate the rank $R_{a_k,j}(k)$ of approach k in the jth state, based on the ith evaluation metric. The total score $S(k)$ is the sum of the ranks of approach k, calculated by the following equation:

$$S(k) = \sum_{j=1}^{3} \sum_{i=1}^{5} W_i \cdot R_{a_k,j}(k)$$ (5)

where:

- $k \in \text{Rule Scheduling Approaches Set}$
- W_i is the weight of the ith evaluation metric
- $j = 1, 2, 3$ indicates deferred, immediate, and composite state, respectively

Results of experiments show that E_a-SJF_{PRO-V.2.8} has generally the most positive impact on performance (Average Response Time, Response Time Standard Deviation, and Throughput) and efficiency (Time Overhead per Transaction and CPU Utilization) of ADBS. In another word rule execution time is calculated in E_a-SJF_{PRO-V.2.8} approach (by adding an estimation module) more precise than the three previous versions of E_a-SJF approach and this subject finally leads to improvement of rule scheduling process. Process of estimation of rule execution probability doesn't impose computational overhead on system so doesn't have negative impact on Time Overhead per Transaction and CPU Utilization [10].

According to the obtained results, we are going to present a new version of E_a-SJF in the next section by applying a more precise technique of estimation of condition correctness probability of triggered rules to improve scheduling process more than this.

4. **E_X-SJF_{EXTLA} as New Proposed Rule Scheduling Approach**

This approach is designed based on estimation of rule execution probability like E_X-SJF_{PRO-V.1.8} and E_X-SJF_{PRO-V.2.8} approaches. But in new approach we have attempted to improve the rule scheduling based on improvement of estimation of condition correctness probability of triggered rules using learning automaton. As we have already mentioned, processing cycle of active rules consists of two scheduling phases including: 1) triggered rules scheduling to evaluate their condition parts, and 2) ready-to-execute rules scheduling to execute their action parts. All approaches which have already been introduced, have the same mechanism for both mentioned scheduling phases.

For example, in both scheduling phases of E_X-SJF_{PRO-V.2.8} approach, active rules are scheduled based on their execution time but in the new approach, scheduling mechanisms of triggered rules and ready-to-execute rules are different from each other. In another word, the new approach schedules ready-to-execute rules like E_X-SJF_{PRO-V.2.8} approach. But it has different mechanism for scheduling
triggered rules based on learning automaton. \(\text{Ext-SJF}^{E_{\text{ELA}}} \) schedules triggered rules based on correctness probability of their conditions using Learning automaton. Learning automaton estimates the correctness probability of condition parts of triggered rules during the execution of active database system. But now, we are going to define learning automaton and related concepts, before description of its position and function in triggered rules scheduling.

4.1. Learning Automaton

Learning automata are adaptive decision-making devices operating on unknown random environments. [9], [15]. A learning automaton has a finite set of actions and each action has a certain probability (unknown to the automaton) of getting rewarded by the environment of the automaton. The aim is to learn to choose the optimal (i.e. the action with the highest probability of being rewarded) through repeated interaction on the system. If the learning algorithm is chosen properly, then the iterative process of interacting on the environment result in selection of the optimal actions. Figure (4) shows interactions of the automaton and the environment.

Figure 4. The automaton and the environment

An environment can be described by triple \(E = \{V, \beta, c\} \), where \(V = \{\alpha_{1}, \ldots, \alpha_{r}\} \), shows a set of inputs, \(\beta = \{\beta_{1}, \ldots, \beta_{m}\} \), shows a set of outputs, and \(c = \{c_{1}, \ldots, c_{l}\} \), is set of probability distributions over \(\beta \). If the response of the environment takes binary values, learning automata model is \(P \)-model where \(\beta_{1} = 1 \) and \(\beta_{2} = 0 \) are considered as penalty and reward, respectively and if it takes finite output set with more than two elements that take values in the interval \([0,1]\), such a model is referred to as \(Q \)-model, and when the output of the environment is a continuous variable in the interval \([0,1]\), it is referred to as \(S \)-model. Learning automata can be classified into two main families: fixed structure learning automata and variable structure learning automata (VSLA).

A fixed structure learning automata can be represented by a tuple \(\{V, \beta, F, G, \phi\} \) where \(V = \{\alpha_{1}, \ldots, \alpha_{r}\} \), is an action set of automaton, \(\beta = \{\beta_{1}, \ldots, \beta_{m}\} \), is an environment response set, \(\phi = \{\phi_{1}, \phi_{2}, \ldots, \phi_{l}\} \), is set of internal states, \(F: \phi \times \beta \rightarrow \phi \), is state transition function that determines the state of automaton at instant \(n + 1 \) from its state and inputs at instant \(n \), and \(G: \phi \rightarrow \alpha \), is output function, which determines the output of automaton at instant \(n \) from its current state and input.

A VSLA is a quintuple \(\{V, \beta, P, T\} \), where \(V = \{\alpha_{1}, \ldots, \alpha_{r}\} \), is an action set of automaton, \(\beta = \{\beta_{1}, \ldots, \beta_{m}\} \), is an environment response set, and the probability set \(P = \{P_{1}, \ldots, P_{r}\} \), contains \(r \) probabilities, each being the probability of performing every action in the current internal automaton state. The function of \(T \) is the reinforcement algorithm, which modifies the action probability vector \(P \) with respect to the performed action and received response. Selection probability vector of actions at instant \(n \) is as follow (equation (6)):

\[
P(n) = \{P_{1}(n), P_{2}(n), \ldots, P_{r}(n)\} \quad \sum_{i=1}^{r} P_{i}(n) = 1, \quad P_{i}(n) = \text{Prob}[\alpha(n) = \alpha_{i}]
\]

Consider a variable structure automaton with \(r \) actions in a stationary environment (where the penalty probabilities \(C_{i} \) are constant) with \(\beta = \{0,1\} \). The general scheme for updating action probabilities is as follows:

If \(\alpha(n) = \alpha_{i} \):

- a) When \(\beta = 0 \); favorable response:
 \[
p_{j}(n+1) = p_{j}(n) + \sum_{j=1}^{r} f_{j}[p_{j}(n)]
 \]
 \[
p_{j}(n+1) = p_{j}(n) - f_{j}[p_{j}(n)] \quad \forall j, j \neq i
 \]

- b) When \(\beta = 1 \); unfavorable response:
 \[
p_{j}(n+1) = p_{j}(n) - \sum_{j=1}^{r} g_{j}[p_{j}(n)]
 \]
 \[
p_{j}(n+1) = p_{j}(n) + g_{j}[p_{j}(n)] \quad \forall j, j \neq i
 \]

Where \(f_{j} \) and \(g_{j} \) are nonnegative functions named reward and penalty functions respectively. These functions are defined in a linear enforcement learning algorithm as follows:

\[
f_{j}[p_{j}(n)] = ap_{j}(n) \quad 0 < a < 1
\]

\[
g_{j}[p_{j}(n)] = \frac{b}{r-1} - bp_{j}(n) \quad 0 \leq b < 1
\]

Where \(r \) is the number of automaton's actions, \(a \) is the reward parameter, and \(b \), is the penalty parameter. So the general scheme for learning algorithm is as follows:

If \(\alpha(n) = \alpha_{i} \):

- a) When \(\beta = 0 \); favorable response:
 \[
p_{j}(n+1) = p_{j}(n) + (1 - p_{j}(n))
 \]
 \[
p_{j}(n+1) = (1-a)p_{j}(n) \quad \forall j, j \neq i
 \]

- b) When \(\beta = 1 \); unfavorable response:
 \[
p_{j}(n+1) = (1-b)p_{j}(n)
 \]
 \[
p_{j}(n+1) = \frac{b}{r-1} + (1-b)p_{j}(n) \quad \forall j, j \neq i
 \]

If the learning parameters \(a \) and \(b \) are equal, learning automaton is called \(L_{R_{P}} \) (Linear Reward-Penalty), if \(b = 0 \), learning automaton is called \(L_{R_{I}} \) (Linear Reward Inaction), and if \(b < a \) learning automaton is called \(L_{R_{E}} \) (Linear Reward Epsilon Penalty).
4.2. How Does LA Help Us to Improve Rules Scheduling Process?

In the new approach, we schedule triggered rules based on correctness probability of their conditions using a LA with variable structure. This LA should update the selecting probability of its actions (triggered rules) according to responses received from the environment (correctness or incorrectness of conditions) that eventually leads to improve the performance of active rule scheduling process based on before mentioned evaluation criteria.

Moreover, the model of this LA is \(P \) in which the input from the environment can take only one of two values, 0 or 1. The response value of 1 corresponds to an “unfavorable” (failure, penalty) response, and occurs when the condition of selected triggered rule is false, while output of 0 means the action is “favorable” and occurs when the condition of selected triggered rule is true. LA should, in each instance, select one of triggered rules for condition evaluation.

The number of triggered rules in each instance is variable. Consequently the number of automaton’s actions are variable too. So it is necessary to do some processes on selection probabilities of automaton’s actions, whenever the number of triggered rules changes [6].

As we have also mentioned before, in the new approach, at first, condition correctness probability of rules are calculated based on the technique, presented in Ex-SJFPROV.2.8 approach. So on the assumption that \(S(0) \), shows the sum of condition correctness probability of rules at instant 0, according to the equation (6), selection probability of each action at first in scale 1 is calculated as follow:

\[
p_i(0) = \frac{S_i}{S(0)}
\]

At instant \(k \), on the assumption that the actions belonging to \(V(k) \) are active, selection probabilities of actions are updated as follow (equations (7), (8), (9)):

\[
S(k) = \sum_{\alpha \in V(k)} p_i(k)
\]

\(a \)

a) Favorable response from environment in response of \(\alpha \in V(k) \):

\[
p_i(k + 1) = p_i(k) - a S(k)
\]

b) Unfavorable response from environment in response of \(\alpha \in V(k) \):

\[
p_i(k + 1) = p_i(k) - a S(k)
\]

\(\forall j, j \neq i, \alpha_j \in V(k) \)

\(\forall j, j \neq q, \alpha_j \in V(k) \)

For each \(\alpha \notin V(k) \):

\[
p_i(k + 1) = p_i(k)
\]

Figure (5) shows updating cycle of the condition correctness probability of triggered rules using LA. It is mentionable that this cycle do its activities, if there are at least two triggered rules. But if there is only one triggered rule, that rule is selected for condition evaluation, without changing rules selection probability.

After the system starts to work, in specific intervals (\(\delta t \)), condition correctness probability (execution probability) of active rules are updated according to the same technique mentioned in section 2.6.4. Moreover, at the first of each execution interval (\(\sigma t \)) of system, actions selection probabilities of learning automaton are updated proportionate to conditions correctness probabilities of active rules and actions selection probabilities of learning automaton at the end of last interval (\(\sigma t \)) according to equation (10):

\[
p_{R_i}(\sigma t_k) : \text{Selection probability of } i\text{th action (rule } R_i \text{) calculated by learning automaton at the end of } \sigma t_k
\]

\[
p_{R_i}(\sigma t_{k+1}) : \text{Selection probability of } i\text{th action (rule } R_i \text{) by learning automaton in the beginning of } \sigma t_{k+1}
\]

\[
\phi(t) = 1 - \frac{1}{k}
\]

\[
p_{R_i}(\sigma t_{k+1}) = \phi(t) p_{R_i}(\sigma t_k) + \frac{1}{\phi(t) + 1}
\]

Figure5. Updating cycle of the condition correctness probability of triggered rules using LA
After implementation of new approach in the framework mentioned in section 3, we evaluate its operation. Table (10) shows the percentage of optimizing the rule scheduling in EX-SJFEsTLA in compare with Ex-SJFPRO-V.2.8 (the most effective existing rule scheduling approach), based on three evaluated parameters: Average Response Time, Response Time Standard Deviation, and Throughput.

Table 10. Percentage of rules scheduling improvement in EX-SJFEsTLA in compare with Ex-SJFPRO-V.2.8

<table>
<thead>
<tr>
<th>Evaluation Criteria</th>
<th>Average Response Time</th>
<th>Response Time Standard Deviation</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate</td>
<td>8.6%</td>
<td>6.4%</td>
<td>7%</td>
</tr>
<tr>
<td>Deferred</td>
<td>9.8%</td>
<td>11.9%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Composite</td>
<td>7.8%</td>
<td>6.9%</td>
<td>12.3%</td>
</tr>
</tbody>
</table>

Results of experiments show that by adding a learning automaton, rule scheduling process, is improved. In other words triggered rules scheduling based on their condition correctness probability (not based on their execution time) leads to improve the Average Response Time, Response Time Variance and Throughput of ADBS. The new technique dose not impose any overhead on the ADBS. So the Time Overhead per Transaction and CPU Utilization of EX-SJFEsTLA and Ex-SJFPRO-V.2.8 are equal.

Just as we mentioned before, in new approach i.e. EX-SJFEsTLA, rule scheduling process is improved through improving triggered rule scheduling. We expect logically that such improvement occurs. Because just those triggered rules are executed that their conditions are true at the instant of evaluation, and others are sent out of processing cycle. But the time spent for selection and evaluation of this type of triggered rules is counted as wasted time of system’s function that effect directly on average response time, throughput, and indirectly on response time standard deviation. It is evident that the less priority of triggered rules which sent out of processing cycle, the more performance of system from before mentioned criteria viewpoint.

we reach this goal by scheduling triggered rules based on their condition correctness probability. A mechanism that estimate condition correctness probability of rules more exactly at run time, help us more to reach this goal. We consider the above points in the new approach. Computational overhead in this approach regarding Ex-SJFPRO-V.2.8 is just in updating of condition correctness probability of some triggered rules according to equation (8) which is insignificant

5. Conclusions

In this paper, at first Active Database System and rules processing cycle was defined. Then the position and importance of rules scheduling process was expressed. Afterwards existing rule scheduling approaches were introduced. Then we showed the results of comparison and evaluation of these approaches which had already been obtained by using a defined framework based on five evaluation criteria.

Then, to improve the most effective existing rule scheduling approach, a new algorithm for estimation of rule execution probability was proposed using learning automata, as well as a new rule scheduling approach based on this algorithm was developed. The new approach was called EX-SJF

Then the EX-SJFEsTLA and the most effective existing rule scheduling approach i.e. Ex-SJFPRO-V.2.8 were compared and evaluated in the mentioned framework with each other. Results of experiments show that EX-SJFEsTLA has the positive impact on Average Response Time, Response Time Standard Deviation, and Throughput of ADBS and doesn’t have any negative impact on Time Overhead per Transaction and CPU Utilization Figures (6) to (9) show some evaluation diagrams of rule scheduling approaches in various states based on mentioned criteria.

Figure 6. Average Response Time diagram of rule scheduling approaches in deferred mode
Figure 7. Throughput diagram of rule scheduling approaches in immediate mode

Figure 8. Time Overhead per Transaction diagram of rule scheduling approaches in composite mode
References

A. Rasoolzadegan and M. R. Meybodi: E_{X-SJF}^{STLA}; A New Intelligent Rule Scheduling Approach … (Regular Paper)

Abbas Rasoolzadegan is a PhD candidate of Software Engineering at Department of Computer Engineering and Information Technology (CEIT) at Amirkabir University of Technology. He joined CEIT in September 2004. He is currently working on improving software development process from formal specification of behavior based on visualization. He received his B.S. degree in Software Engineering (SE) from department of Computer Engineering at Shahid Sattari University of Air Sciences & Techniques, Tehran, Iran in 2000-2004. He got his M.S. degree in SE from CEIT in 2007. During his B.S. and M.S. study, he had worked as developer, designer, and also manager of the development team in several companies in Tehran, Iran. His research activities are in the areas of Formal software specification, SE, Requirements Engineering, Scheduling, Active Database Management System, Business Intelligence, Data Warehousing, and Decision Support Systems. He is the author/co-author of over 10 articles in archival journals and conferences on SE, and Artificial Intelligence. He was ranked the top student during all B.S. and MSc. semesters among software engineering students.
E-mail: rasoolzadegan@aut.ac.ir

Mohammad Reza Meybodi is a full professor of Computer Science at Department of Computer Engineering and Information Technology (CEIT) at Amirkabir University of Technology. His research interests are Theoretical Aspects of Learning Systems and Its Applications, Neural Network Engineering, Parallel Algorithms, Special Purpose Parallel Architectures, and Software Development. More information can be found in the following site: http://ceit.aut.ac.ir/softlab.
E-mail: mmeybodi@aut.ac.ir

1 E_{X-SJF}^{STLA}; Estimation-(using)-Learning Automata