Book of Abstracts of the 64th Annual Meeting of the European Federation of Animal Science
Effect of grape pomace supplementation on broiler performance and eating quality
E.N. Sossidou, E. Kasapidou, V. Dotas, I. Ioannidis and P. Mitlianga

Effect of microwave irradiation on in vitro gas production parameters of linseed

Comparison of the effects of three different diets on growth curves
H. Onder, B.Z. Sarıçoğak and S.H. Abaci

Intake and body gain of beef heifers as affected by concentrate content and fiber digestibility
B.S. Marques, M.V. Carvalho, D.O. Souza, B.S. Mesquita and L.F.P. Silva

Effects of live yeast on performance of young Holstein calves
M. Terre, M. Gauthier, G. Maynou and A. Bach

Effect of dietary Lys levels on expression of cationic amino acid transporters and myosin in pigs
H. García, N. Arce, F. Grageola, V. Díaz, A. Araiza, M. Cervantes and A. Morales

Effect of free or protein-bound amino acids on amino acid transporters and myosin expression in pigs
F. Grageola, A. Morales, H. García, A. Araiza and M. Cervantes

Nutritional evaluation of several extruded linseed product by in vitro gas production technique

Use of electronic nose for corn silage screening
M. Moschini, A. Gallo, G. Guberti, C. Cerioli, P. Fortunati and F. Masoero

Effect of quebracho tannins on the biohydrogenation of linoleic and linolenic acid: in vitro study
M. Mele, A. Bucciani, A. Serro, G. Conte, S. Minieri, F. Monnelli, D. Benvenuti, A. Pezzati and S. Rapaccini

Blood features of lactating dairy cows fed sunflower cake as partial replacement of soybean meal
A. Dal Prá, L. Migliorati, M. Capelletti, F. Petrella, G. Pirlo and F. Abeni

Milk production and composition and blood and liver parameters of dairy cows fed various fat sources
R.M. Prado, I.N. Prado, G.T. Santos, C. Benchaab, M.-F. Palin and H.V. Petit

The nutritional value of corn grains for growing pigs: influence of the way of preservation
J. Daniel, P. Collu, A. Samson, J.G. Cazaux and M. Vilainho

Energy maintenance requirements of goats

Do cows under chronic subacute ruminal acidosis attempt to self-medicate?
E. Hendriksen, O. Alzahal and B.W. McBride

Phosphorus excretion in dairy cows not affected by forage particle size or rumen degradable protein
L. Puggaard, P. Lund and J. Sehested

Intake and ruminal kinetics of sugarcane as affected by fiber digestibility and conservation

The use of pomegranate pulp silage in growing lamb rations
B. Kotsampasi, V. Christodoulou and V.A. Bampidis
Session 30

Nutritional evaluation of several extruded linseed product by in vitro gas production technique

M. Danesh Mesgaran¹, J. Amini¹, A.R. Yakhji¹, A.R. Heravi Moussavi¹ and M. R. Ghaemi²
¹Ferdowsi University of Mashhad, Department of Animal Science, 91775-1163, Mashhad, Iran, ²Shafashir Toos Co., Research Department, Mashhad, Iran; ghaemi.mohammadhreza@gmail.com

The present study was conducted to determine effect of different processing and extrusion method on in vitro digestibility of organic matter (DOM), metabolizable energy (ME) and net energy for lactation (NEL) values. Commercial products containing extruded linseed including Nutex Compact® (containing 56% extruded linseed) and LINOMAX®, and a pure extruded linseed (155-160 °C for 15-20 s) sample were evaluated. Samples grounded to pass through a 1-mm screen and subjected to in vitro gas production technique. Mixed rumen micro-biota obtained from four ruminally fistulated Holstein steers (420±13 kg, body weight) fed twice daily a diet containing 5.8 kg alfalfa hay and 3.0 kg concentrate mixture. Approximately 200 mg of each sample was weighed into a 125 ml flask (n=9) and then 50 ml rumen fluid-buffer mixture (in a 1:2 ratio) added into each bottle under CO₂ flush, followed by incubation in a water bath at 38.6 °C. Gas volume was recorded at 24 h of incubation. Metabolizable energy (ME), NEL and DOM values of the samples were calculated using following equations:

\[
ME (MJ/kg DM) = 1.56 + 0.139 \times GP + 0.0074 \times XP + 0.0178 \times XL; NEL (MJ/kg OM) = 0.10 + 0.051 \times GP + 0.0051 \times XP + 0.0 \times XL; OOM (g/kg OM) = 14.88 + 0.8893 \times GP + 0.0448 \times XP + 0.0651 \times XL.
\]

Where GP is net gas produced after 24 h of incubation (ml/0.2 g OM), and XP, XL and XA are crude protein, crude fat and ash content of the feed (g/kg OM), respectively. The results showed that gas production for Nutex Compact®, LINOMAX® and pure extruded linseed samples at 24 hours were 21.4, 14.8 and 12.7 ml/0.2 g, respectively (P<0.05). The OOM of samples were 49.06, 39.6 and 31.28%, respectively. The ME contents were 10.47, 10.62 and 9.11 MJ/kg OM, respectively and the NEL contents were 5.97, 5.92 and 4.87 MJ/kg OM, respectively (P<0.05).

Session 30

Use of electronic nose for corn silage screening

M. Moschini, A. Gallo, G. Giuberti, C. Cerio/i, P. Fortunati and F. Masoero
Università Cattolica del Sacro Cuore, Feed and Food Science and Nutrition Institute, Via Emilia Parmense 84, 29122, Italy; maurizio.moschini@unicatt.it

Corn silages were randomly collected in the Po valley during the year 2012. Samples were taken from 18 concrete wall bunkers and from 3 different positions of freshly cut face: core or C, (1 meter high from the bottom), side or S (1.5 meter high from the bottom, 0.3 meter from the walls) and top or T (0.5 meter from the top). Collected samples were stored at 4 °C and subjected within 24 h to electronic nose analysis (Pen3 – Airensense AnalyticsGmbH, Schwerin, Germany) equipped with metal oxide semiconductor sensors (W1C, W3C, W6S, W3C, W1S, W1W, W2S, W2W, W3S). Each sample was weighed (20 g) into airtight glass jar, then jars were closed and let it stand at room temperature for 30 minutes to allow for headspace equilibrium. After reaching equilibrium, the headspace gas was pumped to sensors of the electronic nose (flow rate 400 ml/min). The measurement phase lasted 60 seconds with data collection interval of 1 second. A stand-by phase (320 seconds) was observed between each sample reading to allow for a cleaning of the system. Only one reading (at 59 second) for each sensor entered a data matrix of 54 rows (silage samples) and 9 columns (sensors). A correlation matrix was obtained from collected data and a principal component analysis (PCA) was performed using the FACTOR procedure of SAS. The PRIN method with Kaiser’s criterion (eigenvalue≥1.00) and the orthogonal Varimax rotation were used to extract latent constructs and to produce loading vectors and sample scores. Three principal components (PC) were extracted: PC1 (W1C, W3C, W5C, W1S, W2S, W2W; eigenvalue=5.60), PC2 (W6S, W3S; eigenvalue=1.75), PC3 (W1W; eigenvalue=1.00). The PC1 allowed for clustering the silage samples into two populations being C and S+T, whereas the PC2 and PC3 tended to discriminate between S and T samples. Results suggest electronic nose could be a valuable laboratory tool for discriminating corn silages exposed to different preservation processes.

EAAP – 64th Annual Meeting, Nantes 2013