Integrating the Pressure-Sensitive Nonassociative Plasticity by Exponential-Based Methods

A nonassociative plasticity model of Drucker–Prager yield surface coupled with a generalized nonlinear kinematic hardening is considered. Conforming to the plasticity model, two exponential-based methods, called fully explicit and semi-implicit, are recommended for integrating its constitutive equations. These techniques are proposed for the first time to solve nonlinear hardening materials. The integrations are thoroughly investigated by utilizing stress and strain-updating tests along with a boundary value problem in diverse grounds of accuracy, convergence rate, and efficiency. The results indicate that the fully explicit scheme is more accurate and efficient than the Euler’s, but the same convergence rate as the classical integrations is also perceived. Having a quadratic convergence, the semi-implicit is noticeably the most accurate and efficient procedure to use for this plasticity model among the algorithms in question. Since the plasticity model is in a great consistency with discontinuously reinforced aluminum (DRA) composites, the suggested formulations can be utilized pragmatically. The tangent moduli of the proposed and Euler’s strategies are derived and examined, as well, due to their vital role in achieving the asymptotic quadratic convergence rate of the Newton–Raphson solution in nonlinear finite-element analyses. [DOI: 10.1115/1.4024173]

Keywords: plasticity, exponential-based integration, Drucker–Prager’s criterion, tangent modulus

1 Introduction

The prevailing account of metallic materials was that they are pressure independent and as a result the associative plasticity models were taken into account in their nonlinear analyses. This is one of the basic tenets of the classical metal plasticity based on the Bridgman’s works [1,2]. In subsequent investigations, different experiments demonstrated that there are also a considerable number of metallic materials being pressure sensitive and declining the conventional account.

For instance, Spitzig et al. [3,4] performed the basic researches in this ground where they examined the stress–strain behavior of high-strength steels like AISI 4310, AISI 4330, and HY-80 to show the pressure sensitivity of their yield and flow stresses. Spitzig and Richmond [5] proved that iron-based materials and aluminum are also sensitive to hydrostatic pressure with a linear relationship between flow stress and hydrostatic pressure and incompressible plastic deformation. This fact was also confirmed by Wilson [6]. Examining 2024-T351 aluminum and using nonlinear finite-element analysis, he demonstrated that the Drucker–Prager yield criterion [7] essentially matched the experimental results while the results of von-Mises were overestimated. Subsequently, Singh et al. [8] concluded that the pressure dependence flow stress model by Spitzig and Richmond [5] appeared the most promising since it gave a relatively better agreement with most of the experimental observations. Improving the elastoplastic theory for grey cast iron, Altenbach et al. [9] experimentally showed that the elastoplastic behavior of the material cannot be described using classical approaches and there is also sensitivity to the influence of the hydrostatic pressure on the plastic behavior. They also deduced that there should be a nonassociative flow rule with employing a plastic potential to have a good agreement with experiments. The same results were also concluded by Chait [10] for Titanium alloys, and by Gil et al. [11], Iyer and Lissenden [12], and Lewandowski et al. [13] for nickel base alloys such as Inconel 718.

The aforementioned characteristics for these metallic materials lead to a certain plasticity model where the flow rule is nonassociative, and the plastic deformation is incompressible. Conforming to this account, Lei and Lissenden [14] presented a plasticity model for DRA composites, which particularly suits their experimental results and also the work of others. These composites are widely used metallic materials showing the same characteristics as the aforementioned metals. Some of their great features are specific stiffness, tailorable thermal expansion coefficient, ductility, and wear resistance. The plasticity model consists of a Drucker–Prager yield criterion, a nonassociative flow rule with incompressible plastic deformation, and a generalized nonlinear kinematic hardening. As a significant part of this plasticity whose integrations will be discussed, here, a brief account of the developments of the kinematic hardening rules is presented.

Prager proposed the simplest kinematic hardening asserting that the direction of the plastic strain increment is the same as the back stress evolution [15,16]. His linear kinematic hardening could appropriately predict the Bauschinger effect in cyclic loading. However, the nonlinear kinematic hardenings are required to forebode ratcheting whenever a structure undergoes a cyclic load. Generally, the hardening rules can be categorized into two general types of coupled and uncoupled models corresponding to the defined kinematic hardening mechanism which is coupled or uncoupled with the plastic modulus [17]. For the coupled, several models can be addressed by Armstrong and Frederick [18], Chaboche [19,20], Ohno and Wang [21], Abdel-Karim and Ohno [22], Kang [23], Chaboche [24], Abdel-Karim [25], and Rezaiee-Pajand and Siniaie [26]. The kinematic hardening rules proposed by Mroz [27], Dafalasis and Popov [28], and Tseng and Lee [29] are placed in the category of the uncoupled models.

The material’s constitutive equations characterize the stress as a function of the deformation history. Integrating these equations, stresses are updated and an important part of the nonlinear finite-
element analysis is fulfilled. Although the analytical exact integrating methods [30–37] have been developed for a few plasticity models and are rarely used for their restrictions, still the general approach is utilizing the numerical integrations due to their universality, flexibility and tolerance toward all kinds of materials and plasticity models. The problem is, though, these approximate procedures usually involve many iterations and calculations, and their accuracy and performance are in a direct relationship with the final outcomes of the nonlinear analyses. Therefore, it is of great importance to use the numerical integrating algorithms with as much accuracy and efficiency as possible.

In overall, the integrating schemes are divided into two general groups of implicit and explicit algorithms. The return mapping integration schemes proposed by Wilkins [38], Rice and Tracey [39], and Ortiz and Popov [40] are samples of the implicit cluster of integrating tactics. In the recent decade, the implicit backward Euler integrating scheme, which is one of the well-known return mapping techniques, was extended for different types of plastic constitutive models by Kobayashi and Ohno [41], Kobayashi et al. [42], Kang [43], Kan et al. [44], and Coombs et al. [45].

The forward Euler (FE) formulation is a famous classical technique among the explicit integrations. Another group of explicit formulations, introduced in the recent decade, are exponential-based integrations. These methodologies are developed in an augmented stress space through an additional component of time in the Minkowski space-time. Investigating the characteristics of the Minkowski space-time, Hong and Liu [46–48] argued that the constitutive equations of the von-Mises plasticity with linear kinematic hardening could be represented by a system of linear differential equations. Liu [49–51] developed the method for the von-Mises mixed-hardening and Drucker–Prager plasticity. Another integration process based on the exponential map techniques was developed by Auricchio and Beirão da Veiga [52] to solve the constitutive equations of the von-Mises plasticity model with a linear mixed-hardening mechanism. Artioli et al. [53] improved their integrating algorithm into two consistent exponential-based tactics consistent with the yield condition. Enhancing the algorithm from a first-order scheme to second-order integrations, Artioli et al. [54,55] and Rezaiee-Pajand and Nasirai [56] presented exponential-based integrations of second-order accuracy for von-Mises plasticity model with linear isotropic and kinematic hardening. Rezaiee-Pajand and Nasirai [57] followed the effort by presenting a numerical scheme based on exponential maps for incorporating the constitutive equations of the Drucker–Prager plasticity model with no hardening. Considering the von-Mises plasticity model with a class of multicomponent nonlinear kinematic hardening, Rezaiee-Pajand et al. [58,59] developed the exponential-based formulations and extended them to nonlinear mixed-hardening models. Recently, two new exponential-based approximate formulations for associative Drucker–Prager plasticity model were developed by Rezaiee-Pajand et al. [36] assuming linear hardening. They also derived an accurate solution for the constitutive equations.

As a practical objective, in this study, the plasticity model proposed by Lei and Lissenden [14] is considered. This model consists of a nonassociative Drucker–Prager yield criterion with Chaboche’s nonlinear kinematic hardening and incompressible plastic deformation. This plasticity model is in a great correlation with the DRA composites which inspired the authors to develop two consistent exponential-based methods for integrating their constitutive equations. These two schemes were first devised in Refs. [51,57] for the Drucker–Prager plasticity with no hardening. In this investigation, they are advanced for the nonassociative Drucker–Prager plasticity with nonlinear kinematic hardening, which are totally new and had never been carried out before. Considering a broad range of numerical tests, including stress and strain-updating assessments alongside a boundary value problem, the results of the suggested algorithms are compared to those of the classical integrations, Backward and Forward Euler’s tactics. To investigate the computational efficiency or performance of the formulations, accuracy and computational times of the proposed algorithms and Euler’s integrations are computed and compared. Having developed the consistent tangent moduli of the developed schemes and the Euler’s, their accuracy and asymptotic quadratic convergence rate, when used with a Newton–Raphson solution, are examined.

Simplifying the presentation of the formulations, all second-order tensors are represented by nine-component column vectors via arranging the tensor components in a vector format. Symmetry of the second-order tensors contributes to six independent components in each vector, which is a great aid. It is also worth mentioning that the definition of the trace operator and the Euclidean norm need to be modified.

2 Basic Models

To develop the required basic equations, it is considered a nonassociative Drucker–Prager plasticity model with nonlinear kinematic hardening and the plastic deformation which is incompressible. The strains are assumed in the realm of small strains. The Drucker–Prager yield surface can consider the hydrostatic pressure effect on failure through the second term of its relationship, which is an asset to the von-Mises, as follows:

\[
F = \frac{1}{2}s'(s' - (\tau_y - \beta p'))^2 = 0, \quad \tau_y - \beta p' > 0 \tag{1}
\]

In this relationship, \(s'\) and \(p'\) are deviatoric and hydrostatic parts of the shifted stress, respectively. The parameter \(\tau_y\) is dubbed yield stress in pure shear, and \(\beta\) is a material constant. The shifted stress is defined as a result of deducting the back stress vector, \(\mathbf{a}\), from the total stress vector, \(\mathbf{a}\). The shifted stress, \(\sigma'\), and the total strain, \(\epsilon\), vectors are decomposed into their deviatoric and volumetric parts. The volumetric shifted stress, also called the hydrostatic shifted stress, is subjected to volumetric part of the strain with proportion factor of the material bulk modulus, \(K\). The following are the related relationships existing between these parameters:

\[
\mathbf{a}' = \mathbf{a} - \mathbf{a} \tag{2}
\]

\[
\sigma' = \mathbf{s}' + p'I \quad \text{with} \quad p' = \frac{\text{tr}(\sigma')}{3} \tag{3}
\]

\[
\epsilon = \mathbf{e} + \frac{\epsilon}{3}I \quad \text{with} \quad \epsilon = \text{tr}(\sigma) \tag{4}
\]

\[
p = Ke_v \tag{5}
\]

where \(\mathbf{e}\) and \(\epsilon\) are the deviatoric and volumetric parts of the total strain, \(\epsilon\). To build up the framework, it is needed for these parameters to be divided into their elastic and plastic parts, as follows:

\[
\mathbf{e} = \mathbf{e}^e + \mathbf{e}^p \tag{6}
\]

\[
\mathbf{e}^e = \mathbf{e}^e + \mathbf{e}^p \tag{7}
\]

\[
\epsilon_v = \epsilon_v^e + \epsilon_v^p \tag{8}
\]

The rate of the plastic strain is defined by the following equation:

\[
\dot{\epsilon}^p = \dot{\gamma} \frac{\partial Q}{\partial \mathbf{e}} \tag{9}
\]

where \(\dot{\gamma}\) and \(Q\) are known as the plastic multiplier and plastic potential, respectively. Note that in this equation and all other comings, the superposed dot introduces that the denoted parameter is contingent on the pseudotime. Pseudotime is defined as a response to the need for visualizing the stress and strain histories. From now on, for short, pseudotime is called time. In this study, the flow rule is nonassociative. As a result, the function of the yield surface, \(F\), cannot be employed as the plastic potential.
Hiring the von-Mises yield function, the potential is defined by the next relation

\[ Q = \frac{1}{2} \sigma^T s' \]  

(10)

Using Eqs. (9) and (10), the plastic strain rate is achieved as

\[ \dot{\varepsilon}^p = \dot{\gamma} s' \]  

(11)

Due to incompressible plastic deformation, the volumetric part of the plastic strain vanishes, which leads to the next result

\[ \dot{\varepsilon}^p = 0 \rightarrow \dot{\varepsilon}^p = \dot{\varepsilon}^p \]  

(12)

Merging Eqs. (11) and (12), the subsequent connection will form

\[ \dot{\varepsilon}^p = \dot{\gamma} s' \]  

(13)

To regulate the evolution of the back stress, the succeeding Chaboche’s nonlinear kinematic hardening is adopted

\[ a = \sum_{i=1}^{m} \bar{a}_i \]  

(14)

\[ \dot{\bar{a}}_i = H_{kin,i} \dot{\varepsilon}^p - H_{al,i} \dot{\gamma} \]  

(15)

where \( m \) specifies the number of components of the back stress, \( H_{kin,i} \) is a material constant called kinematic hardening modulus signifying strain hardening, and \( H_{al,i} \) shows the nonlinearity of the considered kinematic hardening. The latter factor is also a constant parameter pertaining to the type of the material.

Since the framework is formulated in deviatoric space, the deviatoric back stress is required to be obtained by the following formulae:

\[ a = a - \frac{\text{tr}(a)}{3} i \]  

(16)

\[ \dot{a} = \sum_{i=1}^{m} \dot{\bar{a}}_i \]  

(17)

\[ \dot{\bar{a}}_i = H_{kin,i} \dot{\varepsilon}^p - H_{al,i} \dot{\gamma} \]  

(18)

Using generalized Hooke’s law, the rate of the shifted stress is derived as a function of strain

\[ \dot{\sigma}' = 2G \dot{\varepsilon}' + \left( K - \frac{2}{3} G \right) \dot{\varepsilon}' i - \sum_{i=1}^{m} \left( H_{kin,i} \dot{\varepsilon}^p - H_{al,i} \dot{\gamma} \right) a_i \]  

(19)

Substituting \( a \), from Eq. (16) in Eq. (19) and comparing with Eqs. (3) and (4) result in the following relationships for the rate of the deviatoric, \( s' \), and volumetric, \( p' \), parts of the shifted stress, \( \sigma' \):

\[ s' = 2G \dot{\varepsilon}' - \sum_{i=1}^{m} \left( H_{kin,i} \dot{\varepsilon}^p - H_{al,i} \dot{\gamma} \right) a_i \]  

(20)

\[ p' = K \dot{\varepsilon}' + \sum_{i=1}^{m} H_{al,i} \dot{\gamma} \frac{\text{tr}(a)}{3} \]  

(21)

Employing Eqs. (7) and (13) with a little manipulation, Eq. (20) can be rewritten in the following form:

\[ s' = 2G \dot{\varepsilon}' - 2G \dot{\gamma} s' - \dot{\gamma} \sum_{i=1}^{m} H_{kin,i} + \dot{\gamma} \sum_{i=1}^{m} H_{al,i} a_i \]  

(22)

The coming relationships are the loading/unloading conditions in Kuhn–Tucker complementary form. These conditions are used to determine if the material is in the plastic or elastic phase. If \( \dot{\gamma} = 0 \) and \( F \leq 0 \), the material is in the elastic phase, and once the condition \( \dot{\gamma} > 0 \) and \( F = 0 \) is met, the material is in the plastic phase

\[ \dot{\gamma} \geq 0, \quad F \leq 0, \quad \dot{\gamma} F = 0 \]  

(23)

Employing the consistency condition

\[ \dot{\gamma} = 0 \quad \text{if} \quad F = 0, \]  

(24)

alongside Eqs. (1) and (22), the plastic multiplier is acquired, as follows:

\[ \dot{\gamma} = \frac{2G \dot{\varepsilon}' s' + 2\beta K (\tau_y - \beta p') \dot{\gamma}}{4G + 2 \sum_{i=1}^{m} H_{kin,i} \dot{\gamma} - \dot{\gamma} p' - 2 \sum_{i=1}^{m} H_{al,i} a_i} \]  

(25)

The last equality can be oversimplified having defined the constant parameter \( G \) and also used the yield-surface radius, \( R \), as

\[ 2G = 2G + \sum_{i=1}^{m} H_{kin,i} \]  

(26)

and

\[ R = \sqrt{2} \left( \tau_y - \beta p' \right) \]  

(27)

into

\[ \dot{\gamma} = \frac{2G \dot{\varepsilon}' s' + \sqrt{2} \beta K R \dot{\gamma}}{2GR^2 - \sum_{i=1}^{m} H_{al,i} a_i} \]  

(28)

## 3 Exponential Map Integration

In this study, it is desired to develop two consistent exponential mapping methods for integrating nonassociative Drucker–Prager’s constitutive equations with nonlinear kinematic hardening and incompressible plastic deformation. To develop the proposed algorithm based on the exponential concept, the original constitutive differential equations must be converted into quasi-linear ones. Mapping the original differential problem into an augmented stress space and defining an integrating factor, the task is performed and the following dynamical system will be the result:

\[ \mathbf{X} = A \mathbf{X} \]  

(29)

where \( \mathbf{X} \) is the augmented stress vector and \( A \) is dubbed the control matrix. This is an equivalent but rather different form of the initial differential problem, which has been improved to be conveniently solvable.

Equation (22) is simplified and reformed to the next relationship having multiplied the both sides by integrating factor \( X^0 \) and hired the parameter \( G \). It is also assumed for the integrating factor to satisfy the subsequent multiple equalities as though the first two parts could be derived from the third part

\[ X^0 s' + 2G \dot{\gamma} X^0 \dot{s}' = 2G X^0 \dot{\varepsilon}' + \dot{\gamma} X^0 \sum_{i=1}^{m} H_{al,i} a_i = \frac{d}{dt} (X^0 s') \]  

(30)

Considering the first and last parts of the former relation, also the middle and last ones, one can draw out the next two equations

\[ X^0 s' + X^0 \dot{s}' = X^0 \dot{s}' + 2G \dot{\gamma} X^0 \dot{s}' \]  

(31)

\[ \frac{d}{dt} (X^0 s') = 2G X^0 \dot{\varepsilon}' + \dot{\gamma} X^0 \sum_{i=1}^{m} H_{al,i} a_i \]  

(32)
Removing the similar segments from the both sides of the Eq. (31) gives rise to the coming relationship, from which the integrating factor is obtained

$$X^0 = \exp(2GT)$$  \hspace{1cm} (33)

It is helpful to mention that the initial condition of $X^0(t=0) = 1$ has been taken into account to derive this relationship. The reason is that, the material is undisturbed at the beginning of the loading process. Considering the Drucker–Prager’s yield function and Eq. (27), the following equalities are formed:

$$R^2 = S^T S' \quad \& \quad RR = S^T S'$$  \hspace{1cm} (34)

Having utilized the previous relationships and multiplied the middle and last parts of Equality (30) by $S^T$, the subsequent differential equation is derived

$$\frac{d}{dt}(X^0 R) = \frac{2G}{R} X^0 S^T \dot{e} + \frac{\gamma X^0}{R} S^T \sum_{i=1}^{m} H_{ai}, x_{ai}$$  \hspace{1cm} (35)

At this stage, there is a set of differential equations in the augmented stress space, Eqs. (32) and (35). Getting into these relationships, it can be perceived that a fixed term of parameters is recurred in both. Choosing a variable as a representative of this term helps the equations be much more comprehensible. The mentioned term is given below

$$\dot{\tilde{\mathbf{m}}} = \dot{e} + \frac{\gamma}{2G} \sum_{i=1}^{m} H_{ai}, x_{ai}$$  \hspace{1cm} (36)

Hence, the differential equations are transformed to the following condensed ones:

$$\frac{d}{dt}(X^0 S') = 2GX^0 \dot{\tilde{\mathbf{m}}}$$  \hspace{1cm} (37)

$$\frac{d}{dt}(X^0 R) = \frac{2G}{R} X^0 \tilde{\mathbf{m}}^T S'$$  \hspace{1cm} (38)

These differential equations can be suited into the below generalized shape

$$\dot{X} = AX \Leftrightarrow \frac{d}{dt} \begin{bmatrix} X^S \\ X^R \end{bmatrix} = \begin{bmatrix} Q_{0,y} + \frac{2G}{R} \dot{\tilde{\mathbf{m}}} \\ \frac{2G}{R} \tilde{\mathbf{m}}^T \end{bmatrix} \begin{bmatrix} X^S \\ X^R \end{bmatrix}$$  \hspace{1cm} (39)

where $X^S$ and $X^R$ are the components of the augmented stress vector defined as follows:

$$X^S = X^0 S' \quad \& \quad X^R = X^0 R$$  \hspace{1cm} (40)

Pursuing below conditions, one can manage to distinguish between the elastic and plastic phases. Material has entered the plastic stage once the both are simultaneously fulfilled; otherwise, it is still in the elastic phase.

$$\begin{align*}
(1) \quad & \|\dot{e}\|^2 = R^2, \text{ i.e., } \|X^S\|^2 = (X^R)^2 \\
(2) \quad & \gamma > 0, \text{ i.e., } 2Ge^2X^S + 2\beta KX^R \dot{\tilde{\mathbf{m}}} > 0.
\end{align*}$$

### 3.1 Fully Explicit Updating Stress.

The first proposed algorithm has a fully explicit character. For the Drucker–Prager plasticity, the algorithm was first devised by Liu [51] with no hardening and then developed for linear mixed hardening by the authors [36]. In this section, the scheme is advanced for the nonassociative plasticity of the same yield criterion but with generalized nonlinear kinematic hardening.

To update the stress, the dynamical system presented in Eq. (39) needs to be solved. Obviously, the augmented stress vector is time-dependent, which makes it too difficult to find a close solution of the system. Therefore, it is presumed for the control matrix to be independent of time. The result is a system of linear differential equations with constant coefficients and a close-form solution as follows:

$$X(t) = \exp(\lambda t)X(0)$$  \hspace{1cm} (41)

where the initial conditions are

$$X(0) = \begin{bmatrix} X^S_0 \\ X^R_0 \end{bmatrix} = \begin{bmatrix} s'_0 \\ \sqrt{2(\tau_0, 0 - \beta p'_0)} \end{bmatrix}$$  \hspace{1cm} (42)

and, $s'_0$ and $p'_0$ are the initial deviatoric and hydrostatic shifted stresses, respectively. To develop a numerical algorithm, a rectilinear strain-controlled route is adopted, which means that the $e$ and $\dot{\tilde{\mathbf{m}}}$ are unvarying within each time step. It is also assumed that the radius of the yield surface and the back stress vector are constant through each time increment. Note that the yield-surface features, such as $R$ and $a$, are not necessarily changeable during each load step, but in an explicit manner, they can be approximated by their values at the beginning of each time step. Based on these considerations, the coming solution to the dynamical system is expected

$$X_{n+1} = \exp(\lambda n + \Delta t)X_{n+2} = G_{n+2}X_{n+2}$$  \hspace{1cm} (43)

where $\lambda$ separates the elastic and plastic parts of the load increment and is computed via Eq. (A3) as described in Appendix A. The subscript $n + \alpha$ means that the parameters are employed by their values on the elastic border. Hence, $X_{n+2}$ and $G_{n+2}$ are defined as follows:

$$\begin{align*}
X_{n+2} & = \begin{bmatrix} X^S_{n+2} \\ X^R_{n+2} \end{bmatrix} = \begin{bmatrix} s_{n+2} \times \dot{X}^0_{n+1} \\ R_{n+2} \times X^0_{n+1} \end{bmatrix} \\
G_{n+2} & = \begin{bmatrix} 1 - g_{n+2} + (a_{n+2} - 1)\Delta \tilde{\mathbf{m}}^T \tilde{\mathbf{m}} \\ b_{n+2} \Delta \tilde{\mathbf{m}}^T \end{bmatrix}
\end{align*}$$  \hspace{1cm} (44)

The subsequent relationships are defined for $a_{n+2}, b_{n+2},$ and $\Delta \tilde{\mathbf{m}}$

$$\Delta \tilde{\mathbf{m}} = \frac{\Delta \tilde{\mathbf{m}}}{||\Delta \tilde{\mathbf{m}}||}$$  \hspace{1cm} (46)

$$\Delta \tilde{\mathbf{m}} = (1 - \alpha)\Delta e + \frac{\beta}{2G} \sum_{i=1}^{n} H_{ai}, x_{ai}$$  \hspace{1cm} (47)

$$a_{n+2} = \cosh\left(\frac{2G}{R_{n+2}} ||\Delta \tilde{\mathbf{m}}||\right)$$  \hspace{1cm} (48)

$$b_{n+2} = \sinh\left(\frac{2G}{R_{n+2}} ||\Delta \tilde{\mathbf{m}}||\right)$$  \hspace{1cm} (49)

The discrete plastic multiplier, $\lambda$, also called the proportional factor, is calculated utilizing the next relationships

$$\lambda = (1 - \alpha)\Delta t = \frac{(1 - \alpha)(2G\Delta e \times s_{n+2} + 2\beta K(\tau_0, 0 - \beta p'_0) \Delta e_v)}{2GR^2_{n+2} - s_{n+2}^2 \sum_{i=1}^{m} H_{ai}, x_{ai}}$$  \hspace{1cm} (50)

$$s'_{n+2} = s'_0 + 2G\Delta e$$  \hspace{1cm} (51)

$$p'_{n+2} = p'_0 + xK\Delta e_v$$  \hspace{1cm} (52)

$$R_{n+2} = \sqrt{2(\tau_0, 0 - \beta p'_0)}$$  \hspace{1cm} (53)
In this investigation, $\Delta e$ and $\Delta \epsilon$ represent the deviatoric and volumetric portions of the $n$th strain increment. To obtain the updated augmented stress, $\mathbf{X}_{n+1}$, the relationships (43)–(45) can be utilized to solve the system of the differential equations in Eq. (39). Due to incompressible plastic deformation, the hydrostatic shifted stress is readily updated by the subsequent relationship, likewise yield-surface radius

$$p'_{n+1} = p'_{n+2} + (1 - x)K\Delta \epsilon$$

$$R_{n+1} = \sqrt{2(\tau_{y,0} - \beta p'_{n+1})}$$

Having $X^R_{n+1}$ and $R_{n+1}$, the integrating factor $X^0_{n+1}$ has the below appearance

$$X^0_{n+1} = \frac{X^R_{n+1}}{R_{n+1}}$$

Finally, after computing $X^R_{n+1}$ and $X^0_{n+1}$ from the prior steps, the stress is updated, as follows:

$$s_{n+1} = \frac{X^R_{n+1}}{X^0_{n+1}}$$

What was acquired thus far was actually the updated deviatoric shifted stress, $s'$, which sometimes it was called deviatoric stress or stress for short. However, the main goal is to update the deviatoric stress, $s$. Evidently, the back stress vector stands between these two, which justifies the obligation to update the center of the yield surface. The following relationship cites the story:

$$s_{n+1} = s'_{n+1} + \mathbf{a}_{n+1}$$

where $s_{n+1}$ and $\mathbf{a}_{n+1}$ have the below forms

$$s_{n+1} = s_n + 2G(\Delta e - \Delta \sigma^p)$$

$$\mathbf{a}_{n+1} = \sum_{i=1}^{n} \mathbf{a}_{n,ij} + \sum_{i=1}^{n} H_{km}^{n}_{i} \Delta \sigma^p - \lambda \sum_{i=1}^{n} H_{kl} \mathbf{a}_{n,k}$$

It should be noted that the Equality (60) is achieved by integrating Eq. (18) from $t_n$ to $t_{n+1}$ and also estimating the $\mathbf{a}$ by its value at the outset of the load step, $\mathbf{a}_n$, which is a rational assumption since an explicit manner is being used. To achieve $s_{n+1}$, the only unknown parameter is $\Delta \sigma^p$. Using Eq. (13), the plastic part of the strain increment is attained, as follows:

$$\Delta \sigma^p = \lambda s'_{n+1}$$

The proportional factor is easily computed from Eq. (33) through succeeding formula

$$\lambda = \frac{1}{2G} \ln(X^0_{n+1})$$

Substituting $\lambda$ in Eq. (61) with the former equation leads to the next relationship for $\Delta \sigma^p$

$$\Delta \sigma^p = \frac{1}{2G} \ln(X^0_{n+1}) s'_{n+1}$$

Another approach to update the center of the yield surface is the reverse tactic, which means replacing the $s_{n+1}$ and $\mathbf{a}_{n+1}$ in Equality (58) with their equivalents from Eqs. (59) and (60) alongside using the Equality (62) for $\lambda$. This way leads to the following relationship for the plastic part of the deviatoric strain increment:

$$\Delta e = \frac{1}{2G} (s_n + 2G \Delta e - \bar{a} - s'_{n+1})$$

The factor $\bar{a}$ is also determined from the below relation

$$\bar{a} = \sum_{i=1}^{n} \mathbf{a}_{i,i} \left(1 - \frac{H_{0}^{a,i}}{2G} \ln(X^0_{n+1})\right)$$

### 3.2 Semi Implicit Updating Stress

In the previous technique, fully explicit, the characteristics of the yield surface were estimated by their values at the beginning of each time increment to solve the dynamical system in spite of being varied. Obviously, this seems a bit rough approximation where better ones could be taken. Thus, the authors decided to develop a numerical algorithm which is capable of utilizing better approximations of the yield-surface features. To reach the goal, another exponential-based integration is utilized. It is called semi-implicit since it uses the unknown features of the yield surface. The scheme was first devised by Rezaee Pajand and Nasirai [57] and was developed for a Drucker-Prager plasticity with no hardening. Here the scheme is progressed for the nonlinear kinematic hardening. In accordance with the strategy, the values of $R$ and $\mathbf{a}$ at the middle of each time increment are hired to gain better responses rather than $R_n$ and $\mathbf{a}_n$. It is expected that the greater estimations of $R$ and $\mathbf{a}$ will enhance the accuracy and convergence of the numerical approach.

Considering that the back stress vector, $\mathbf{a}$, and the value of the yield-surface radius, $R$, could be chosen in an arbitrary point of the load step and it might be a subject of debate, the numerical algorithm is derived in a broad form using parameter $\zeta$. This factor denotes a specified point of each load increment, $0 < \zeta < 1$. For example, the subscript $n + \zeta(1 - \zeta)$ alongside assuming $\zeta = 0.5$, denotes the amount of the intended parameter at the middle point of the plastic part of the $n$th load increment. Taking a rectilinear strain-controlled path and aforementioned procedure for specifying $\mathbf{a}$ and $R$, the augmented stress vector at time $t_{n+1}$ is updated by a two-step procedure.

At the first step, the deviatoric shifted stress, $s'$, back stress vector, $\mathbf{a}$, and the radius of the yield surface, $R$, are computed at the specified point, which is denoted by $n + \zeta(1 - \zeta)$, using their values on the yield surface, $s_{n+\zeta}$, $\mathbf{a}_{n+\zeta}$, and $R_{n+\zeta}$. Again, the whole process is carried out at the second step, but this time by hiring the computed stress, $s'_{n+\zeta}$, and the features of the yield surface, $s_{n+\zeta}$, $\mathbf{a}_{n+\zeta}$ and $R_{n+\zeta}$, from the previous step. This process leads to the updated deviatoric and back stresses at the end of the load increment, $s'_{n+1}$ and $\mathbf{a}_{n+1}$. In the subsequent parts, the required mathematical formulas of the aforementioned methodology will come.

#### 3.2.1 Step One

The system of the differential equations is changed at the first step to the below form

$$X_{n+\zeta(1-\zeta)} = \exp(\lambda_{n+\zeta(1-\zeta)} \Delta t) X_{n+\zeta}$$

In this relation, $G_{n+\zeta}$ is the exponential matrix of the dynamical system. At each plastic load increment, this matrix is specified at point $\zeta$, as follows:

$$G_{n+\zeta} = \left[ I_{9 \times 9} + (a_{n+\zeta} - 1) \Delta \mathbf{p}_{n+\zeta} \Delta \mathbf{p}_{n+\zeta}^T \right]^{h_{n+\zeta}} \left[ b_{n+\zeta} \Delta \mathbf{p}_{n+\zeta} \right]^{10 \times 10}$$

The scalars $a_{n+\zeta}$, $b_{n+\zeta}$ and the vector $\Delta \mathbf{p}_{n+\zeta}$ are obtained by the next relationships

$$\Delta \mathbf{p}_{n+\zeta} = \frac{\Delta \mathbf{p}_{n+\zeta}}{\Delta \mathbf{p}_{n+\zeta}}$$

$$\Delta \mathbf{p}_{n+\zeta} = \zeta(1 - \zeta) \Delta e + \frac{\zeta}{2G} \sum_{i=1}^{n} H_{kl} \mathbf{a}_{n,k}$$
\[ \dot{\lambda}_{n+1} = \frac{1}{2} (1 - \zeta) (2 G \Delta e^T \dot{S}'_{n+1} + 2 \beta K (\tau_n - \beta p_{n+1}) \Delta \epsilon_v) \]
\[ = \frac{2 G R_{n+1}^2 - 2 G \sum_{i=1}^{m} H_{ai} \Delta \epsilon_v}{2 G R_{n+1}^2 - 2 G \sum_{i=1}^{m} H_{ai} \Delta \epsilon_v} \]
\[ a_{n+1}^i = \cos \left( \frac{2 G (R_{n+1})}{||\Delta \mu_{n+1}^i||} \right) \]
\[ b_{n+1}^i = \sin \left( \frac{2 G (R_{n+1})}{||\Delta \mu_{n+1}^i||} \right) \]

where \( S_{n+1}, p_{n+1}, \) and \( R_{n+1} \) are calculated by Eqs. (51)-(53). The rest of the first step is the same as the technique described in the fully explicit updating method. In the following lines, the process will be briefly presented to avoid any confusion. The yield-surface radius and the volumetric shifted stress are calculated at the end of the first step by next equalities
\[ R_{n+1}(\zeta - 1) = \sqrt{2} (\tau_n - \beta p_{n+1}(\zeta - 1)) \]
\[ p_{n+1}(\zeta - 1) = p'_{n+1} + \zeta (1 - \zeta) K \Delta \epsilon_v \]

Having solved the system of equations in Eq. (66) and acquiring \( X^S_{n+1}(\zeta - 1) \) and \( X^R_{n+1}(\zeta - 1) \), the deviatoric stress is obtained at the specified point of \( n + \zeta (1 - 1) \), as follows:
\[ X^0_{n+1}(\zeta - 1) = \frac{X^R_{n+1}(\zeta - 1)}{R_{n+1}(\zeta - 1)} = \frac{X^S_{n+1}(\zeta - 1)}{R_{n+1}(\zeta - 1)} \]

It is also needed to attain the back stress vector at the point of \( n + \zeta (1 - 1) \), so it will be used in the next step. Utilizing the same approach as discussed previously, the center of the yield surface is updated through the coming relationship
\[ \dot{a}_{n+1} = \sum_{i=1}^{m} a_{n+1}^i = \sum_{i=1}^{m} \dot{a}_i + \sum_{i=1}^{m} H_i \Delta e_{n+1}^i (\zeta - 1) \]

where \( \dot{a}_i \) and \( H_i \) are defined as
\[ \Delta \mu_{n+1}(\zeta - 1) = \left[ \begin{array}{c} \Delta \mu_{n+1}^y (\zeta - 1) - 1 \Delta \mu_{n+1}^y (\zeta - 1) \\ \Delta \mu_{n+1}^y (\zeta - 1) \end{array} \right] \]
\[ a_{n+1}(\zeta - 1) = \cos \left( \frac{2 G (R_{n+1})}{||\Delta \mu_{n+1}(\zeta - 1)||} \right) \]
\[ b_{n+1}(\zeta - 1) = \sin \left( \frac{2 G (R_{n+1})}{||\Delta \mu_{n+1}(\zeta - 1)||} \right) \]

Having resolved the system of the differential equations and attaining \( X^S_{n+1}, X^R_{n+1}, \) and \( \Delta \mu_{n+1} \), one can update the deviatoric shifted stress at the last load step, \( s'_{n+1} \), using Eqs. (55)-(57). Updating the deviatoric stress, \( s_{n+1} \), requires that the new position of the yield-surface center be specified, which is designated by the back stress vector, \( a_{n+1} \). It is achieved by integrating the equalities (17) and (18) on the whole load interval
\[ \Delta e_{n+1} = \sum_{i=1}^{m} \int_{t_n}^{t_{n+1}} H_{ai} \dot{e}_d dt \]

Due to the fact that \( H_{b,n} \) and \( H_{ai} \) are constant during each load increment, \( \dot{e}_d \) should be estimated by a constant vector within
each load step to integrate the previous equation. It is usual for the back stress to be estimated at the beginning of each load step, particularly in the explicit manners, which is not a good appraisal. Therefore, exchanging it with the previously obtained vector from the first step, $\mathbf{x}_{n+1(1-\zeta)}$, will generate better and more dependable results owing to more accurate approximation for $\mathbf{a}$. Hence, the center of the yield surface is updated through the next equality

$$\mathbf{x}_{n+1} = \sum_{i=1}^{m} \mathbf{x}_{n+1,i} = \sum_{i=1}^{m} \mathbf{x}_{n,i} + \frac{m}{\mu} \sum_{i=1}^{m} H_{n,i} \Delta \mathbf{e}^p - \mathbf{a}_{n+1(1-\zeta)}$$

(87)

The last equation along with Eqs. (58), (59), and (62) give rise to Eq. (64) for $\Delta \mathbf{e}^p$ with the exception of $\mathbf{a}$ from the next equality

$$\mathbf{a} = \sum_{i=1}^{m} \left( \mathbf{x}_{n,i} - \frac{H_{n,i}}{2\mu} \ln(X_0) \mathbf{x}_{n+1(1-\zeta),i} \right)$$

(88)

One can also choose the simple direct way to obtain the $\Delta \mathbf{e}^p$ which is, of course, accompanied with lower accuracy and performance. This approach gives the below result

$$\Delta \mathbf{e}^p = \frac{1}{2\mu} \ln(X_0) \mathbf{s}_{n+1(1-\zeta)}$$

(89)

To sum up, the aforementioned technique for stress updating comes with superior accuracy and better convergence rate since it virtually merges two steps in one. It actually uses better estimations of $\mathbf{a}$, $\mathbf{R}$, and $\mathbf{s}$ in the incremental pace of the numerical algorithm to acquire the desired parameters, $\mathbf{s}_{n}^{(1)}$ and $\mathbf{s}_{n+1}^{(1)}$. Furthermore, it will increase the performance by means of declining the computational time alongside more accurate responses. It is also worth mentioning that in all the numerical tests to come, the parameter $\zeta$ is adopted 0.5 for being a logical choice taking the values at the middle of each load step. Figure 1 presents a general flow chart for the both proposed schemes to better perceive them.

4 Treatment of the Apex

There is a sharp point at the tip of the Drucker–Prager’s cone called apex. This causes a singularity in the yield-surface function. In order for it to cope, it is conventional to define a complementary cone working as an indicator to show whether the trial stress is placed inside the area of the apex influence or not [36,60]. For an associative plasticity model, this cone is postulated with its flank orthogonal to those of the convex set, considering that the plastic strain flow is defined via the subdifferential of the indicator function of the yield surface, see Fig. 2. For the assumed nonassociative plasticity model, the plastic strain flow is not orthogonal to the loading surface. In contrast, it is perpendicular to the hydrostatic pressure axis, since the von-Mises yield function

Fig. 1 Flow chart for the explicit exponential, EXF, and semi-implicit exponential, EXS, integrations
Fig. 2  Treatment of the apex for associative model

has been taken in its flow rule. Therefore, the complementary cone’s flank should be upright as in Fig. 3.

In overall, the stress-updating process would follow its routine method preceded before if the trial stress was situated outside of the complementary cone; otherwise, the $s^\text{TR}_{n+1}$ would be in the realm of the apex influence which suggests that the trial stress must fall back to the apex.

(1) The updated stress lies on the smooth portion of the cone, i.e., $||s^\text{TR}_{n+1}|| > 2G||\Delta e^p||$
(2) The updated stress settles on the apex of the cone, i.e., $||s^\text{TR}_{n+1}|| \leq 2G||\Delta e^p||$

For the first state, the process of updating stress was presented in Secs. 3.1 and 3.2. What appears later is the procedure that should be taken to update the stress in the event of the second condition

\[ s^\prime_{n+1} = 0 \]  \hspace{1cm}  (90)
\[ R_{n+1} = \sqrt{2(\tau_{y,0} - \beta p^\prime_{n+1})} \rightarrow p^\prime_{n+1} = \frac{\tau_{y,0}}{\beta} \]  \hspace{1cm}  (91)

After the deviatoric and hydrostatic shifted stresses were updated, the back stress vector must be updated to acquire the deviatoric stress, $s_{n+1}$. Considering Eq. (20), the following relationship is attained:

\[ s^\prime_{n+1} - s^\prime_n = 2G\Delta e^p - \sum_{i=1}^{m} H_{i,k} \Delta l_{e^p} + \lambda \sum_{i=1}^{m} H_{i,i} x_{n+i} \]  \hspace{1cm}  (92)

Evidently, updating the back stress vector means computing $\Delta e^p$, which concerns the rest of the operation. Employing Eqs. (7) and (92) and the subsequent equation to substitute for $\lambda$

\[ \lambda = \frac{2G\Delta e^p s^\prime_n + 2\beta K(\tau_{y,0} - \beta p^\prime_n) \Delta l_{e^p}}{2GR^2 - s^\prime_n \sum_{i=1}^{m} H_{i,i} x_{n+i}} \]  \hspace{1cm}  (93)

leads to the following equality:

\[ 2G\Delta e + s^\prime_n = 2G\Delta e^p - \lambda \sum_{i=1}^{m} H_{i,i} x_{n+i} \]  \hspace{1cm}  (94)

The left side of the former equation can be replaced with the next relationship

\[ s^\text{TR}_{n+1} - x_n = 2G\Delta e + s^\prime_n \]  \hspace{1cm}  (95)

Therefore, the plastic part of the strain increment is obtained by the below formula

\[ \Delta e^p = \frac{1}{2G} \left( s^\text{TR}_{n+1} - x_n + \lambda \sum_{i=1}^{m} H_{i,i} x_{n+i} \right) \]  \hspace{1cm}  (96)

5 Consistent Tangent Modulus

Through the Newton–Raphson algorithm, the tangent modulus, which is consistent with the integration scheme, is essential for achieving the asymptotic quadratic convergence rate in a finite-element analysis. In the following lines, the tangent operators are derived for the proposed integration schemes, fully explicit exponential map (EXF) and semi-implicit exponential map (EXS), as well as the forward Euler and backward Euler techniques. As displayed in Appendix C, the general relationship of the tangent operator is attained departing the deviatoric and volumetric parts of the stress

\[ \frac{\partial \sigma_{n+1}}{\partial e_{n+1}} = \left( \frac{\partial x_{n+1}^\prime}{\partial x_{n+1}} + \frac{\partial x_{n+1}}{\partial e_{n+1}} \right) \lambda_{dev} + K(H^T) \]  \hspace{1cm}  (97)

5.1 Forward Euler Consistent Tangent Modulus. Referring to Eq. (97), the derivatives $\partial x^\prime_{n+1}/\partial e_{n+1}$ and $\partial x_{n+1}/\partial e_{n+1}$ must be calculated. If $s^\prime$ represents the deviatoric shifted stress prior to implementing the correcting vector, $a^\prime$, the adjusted deviatoric shifted stress, $s^\prime$, will be computed by the below formulas

Fig. 3  Treatment of the apex for nonassociative model

Downloaded From: http://materialstechnology.asmedigitalcollection.asme.org/ on 05/25/2013 Terms of Use: http://asme.org/terms
\[ s'_{n+1} = s''_{n+1} + a_f n_{n+1}, \quad n_{n+1} = \frac{s''_{n+1}}{\|s''_{n+1}\|} \]  

(98)

Taking the derivative of the previous equation with respect to \( e_{n+1} \) leads to the next result

\[ \frac{\partial s'_{n+1}}{\partial e_{n+1}} = \frac{\partial s''_{n+1}}{\partial e_{n+1}} + \partial e_f \frac{\partial n_{n+1}}{\partial e_{n+1}} + a_f \frac{\partial n_{n+1}}{\partial e_{n+1}} \]  

(99)

Using Eqs. (A6), (A10), and (A11), the constituents of \( \partial s''_{n+1}/\partial e_{n+1} \) are computed, as follows:

\[ \frac{\partial s''_{n+1}}{\partial e_{n+1}} = 2G(1-z)\frac{\partial}{\partial e_{n+1}} \left( 1 - 2G \frac{\partial s''_{n+1}}{\partial e_{n+1}} - 2G \frac{\partial}{\partial e_{n+1}} \Delta e \right) + \left( \sum_{j=1}^{m} H_{n,j} x_{n,j} - 2G \Delta s''_{n+1} \right) \frac{\partial e_{n+1}^T}{\partial e_{n+1}} \]  

(100)

where the derivatives of \( s''_{n+1}, x, \) and \( \lambda \) are presented in Appendix D. \( \frac{\partial n_{n+1}}{\partial e_{n+1}} \) and \( \frac{\partial e_f}{\partial e_{n+1}} \) are computed through the coming relationships

\[ \frac{\partial n_{n+1}}{\partial e_{n+1}} = \frac{1}{\|s''_{n+1}\|^2} \left( \frac{\partial s''_{n+1}}{\partial e_{n+1}} \|s''_{n+1}\| - \frac{\partial s''_{n+1}^T}{\partial e_{n+1}} \|s''_{n+1}\| \right) \]  

(101)

in which \( \frac{\partial s''_{n+1}}{\partial e_{n+1}} \) has been gained from the previous equality. The computed \( \frac{\partial n_{n+1}}{\partial e_{n+1}} \) along with Eq. (A10) are utilized to obtain \( \partial e_f/\partial e_{n+1} \), as given below

\[ \frac{\partial e_f}{\partial e_{n+1}} = 2(n_{n+1}^T s''_{n+1}) \left( \frac{\partial n_{n+1}}{\partial e_{n+1}} s''_{n+1}^T + \frac{\partial n_{n+1}}{\partial e_{n+1}} n_{n+1} \right) - \frac{\partial e_f}{\partial e_{n+1}} s''_{n+1} \]  

(102)

Having \( \frac{\partial s''_{n+1}}{\partial e_{n+1}} \), the only remaining part to calculate the tangent modulus from Eq. (97) is obtained by the next equality, which has been achieved using Eq. (A9)

\[ \frac{\partial s_{n+1}}{\partial e_{n+1}} = \sum_{j=1}^{m} H_{k,n,j} \left( \frac{\partial \lambda}{\partial e_{n+1}} s''_{n+1} + \frac{\partial \lambda}{\partial e_{n+1}} n_{n+1} \right) - H_{n,j} \frac{\partial s''_{n+1}}{\partial e_{n+1}} \]  

(103)

### 5.2 Backward Euler Consistent Tangent Modulus

To formulate the consistent tangent modulus of the backward Euler algorithm for the considered plasticity, it requires that the derivatives of \( s''_{n+1} \) and \( x_{n+1} \) with respect to \( e_{n+1} \) be found. Referring to Appendix B, one can hire Eq. (B1) to reach \( \frac{\partial s''_{n+1}}{\partial e_{n+1}} \)

\[ \frac{\partial s''_{n+1}}{\partial e_{n+1}} = \frac{1}{1 + 2G \lambda - \lambda^2 C_1} \left( \frac{\partial s_{n+1}}{\partial e_{n+1}} + (-2G + 2 \lambda C_1 - \lambda^2 C_2) \frac{\partial e_{n+1}^T}{\partial e_{n+1}} s''_{n+1} \right) + \frac{\partial \lambda}{\partial e_{n+1}} \left( C_3 - \lambda C_4 \right) \]  

(104)

For absence of complexity and ambiguity, the scalars \( C_1 \) and \( C_2 \) also the vectors \( C_3 \) and \( C_4 \) are defined in the following shapes:

\[ C_1 = \sum_{j=1}^{m} H_{n,j}/H_{k,n,j} \]  

(105)

\[ C_2 = \sum_{j=1}^{m} H_{n,j}^2/(1 + \lambda H_{n,j})^2 \]  

(106)

\[ C_3 = \sum_{j=1}^{m} H_{n,j} H_{n,j}/(1 + \lambda H_{n,j}) \]  

(107)

\[ C_4 = \sum_{j=1}^{m} H_{n,j}^2/(1 + \lambda H_{n,j})^2 \]  

(108)

To differentiate \( x_{n+1} \) with respect to \( e_{n+1} \), Eq. (B3) will be utilized, which eventually leads to the succeeding results

\[ \frac{\partial x_{n+1}}{\partial e_{n+1}} = \sum_{j=1}^{m} \frac{\partial x_{n+1,j}}{\partial e_{n+1}} \]  

(109)

\[ \frac{\partial x_{n+1,j}}{\partial e_{n+1}} = \frac{H_{k,n,j}}{1 + \lambda H_{n,j}} \left( \frac{\partial \lambda}{\partial e_{n+1}} s''_{n+1} + \frac{\partial \lambda}{\partial e_{n+1}} n_{n+1} \right) - \frac{H_{k,n,j} H_{n,j}}{1 + \lambda H_{n,j}} \frac{\partial s''_{n+1}}{\partial e_{n+1}} \]  

(110)

As it is perceived from the former relationships, calculating \( \frac{\partial s''_{n+1}}{\partial e_{n+1}} \) and \( \frac{\partial x_{n+1}}{\partial e_{n+1}} \) is contingent on coming by the derivative of the proportional factor with regards to \( e_{n+1} \) that will be managed using Eq. (B5). The below relationship for \( \partial x/\partial e_{n+1} \) is the outcome of differentiating the aforementioned equality with respect to \( e_{n+1} \)

\[ X_{n+1}^R = b_{n+1} \Delta \hat{u}^T X_{n+1}^S + a_{n+1} \Delta X_{n+1}^R \]  

(113)

In these formulas, the subscript \( n + 2 \) denotes the variables on the yield surface. Using Equalities (44) and (51)–(53) lead to the below values for \( X_{n+2}^S \) and \( X_{n+2}^R \)

\[ X_{n+2}^S = X_{n+2}^S + 2G \Delta X_{n+2}^S \Delta e \]  

(114)
By exploiting the pervious equalities, the following derivatives can be found:

\[
\frac{\partial X_n^{(e+1)}}{\partial e_n^{(e+1)}} = \frac{\partial X_s^{(e+1)}}{\partial e_n^{(e+1)}} + (\Delta \mu^T X_s^{(e+1)}) \Delta \mu \left( \frac{\partial \Delta \mu}{\partial e_n^{(e+1)}} \right)^T \\
+ \Delta \mu ((a_{n+1} - 1) Q_i^T + Q_i^T) + ((a_{n+2} - 1)(\Delta \mu^T X_s^{(e+2)}) \\
+ b_{n+2}X_R^{(n+2)}) \left( \frac{\partial \Delta \mu}{\partial e_n^{(e+1)}} \right)
\]

The vectors \( Q_1 \) and \( Q_2 \) are defined as below:

\[
Q_1 = \left( \frac{\partial \Delta \mu}{\partial e_n^{(e+1)}} X_s^{(e+1)} + \frac{\partial X_s^{(e+1)}}{\partial e_n^{(e+1)}} \Delta \mu \right)
\]

\[
Q_2 = \left( \frac{\partial \Delta \mu}{\partial e_n^{(e+1)}} X_R^{(e+1)} + b_{n+2}X_R^{(e+2)} \right)
\]

The following relations will be resulted if Eqs. (114) and (115) are used:

\[
\frac{\partial X_s^{(e+2)}}{\partial e_n^{(e+1)}} = 2G \frac{\partial x}{\partial e_n^{(e+1)}} X_s^{(e+1)} + 2G X_s^{(e+1)}
\]

\[
\frac{\partial X_R^{(e+2)}}{\partial e_n^{(e+1)}} = -\sqrt{2} \beta K X_s^{(e+1)} \frac{\partial x}{\partial e_n^{(e+1)}} - \Delta \nu
\]

The \( \frac{\partial x}{\partial e_n^{(e+1)}} \) is presented in the Appendix D. Appendix E gives the derivatives of \( a_{n+1}, b_{n+2}, \) and \( \Delta \mu \) with respect to \( e_n^{(e+1)} \) introduced in relations (116) to (119).

Now that \( \frac{\partial X_s^{(e+1)}}{\partial e_n^{(e+1)}} \) and \( \frac{\partial X_R^{(e+1)}}{\partial e_n^{(e+1)}} \) are known, one can manage to obtain \( \frac{\partial X_{s+1}^{(e+1)}}{\partial e_n^{(e+1)}} \) using Eqs. (66) and (57)

\[
\frac{\partial X_{s+1}^{(e+1)}}{\partial e_n^{(e+1)}} = R_{s+1} \frac{\partial X_s^{(e+1)}}{\partial e_n^{(e+1)}} + R_{s+1} \left( X_R^{(e+1)} \right)^T \left( \frac{\partial X_{s+1}^{(e+1)}}{\partial e_n^{(e+1)}} \right)
\]

To derive the derivative of the back stress vector with respect to the deviatoric strain, \( \frac{\partial x_{n+1}}{\partial e_n^{(e+1)}} \), Eq. (60) is hired, which results in the coming relationship

\[
\frac{\partial x_{n+1}}{\partial e_n^{(e+1)}} = \sum_{i=1}^{m} H_{i,n+1} \frac{\partial \Delta \rho^0}{\partial e_n^{(e+1)}} + \sum_{i=1}^{m} H_{i,n+1} \frac{\partial \Delta \nu}{\partial e_n^{(e+1)}}
\]

In this equality, \( \frac{\partial \Delta \rho^0}{\partial e_n^{(e+1)}} \) is calculated akin to the one described in Appendix D for the forward Euler. To obtain \( \frac{\partial \Delta \rho^0}{\partial e_n^{(e+1)}} \), one can use either Eqs. (63) or (64) corresponding the two approaches explained in Sec. 3.1. Following the first approach and Using Eq. (63) alongside Eq. (56), the next formula can be derived

\[
\frac{\partial \Delta \rho^0}{\partial e_n^{(e+1)}} = \left[ \frac{s_i}{2G(x_n^{(e+1)})^2} \frac{\partial x}{\partial e_n^{(e+1)}} + \frac{Gx_n^{(e+1)} \frac{\partial x}{\partial e_n^{(e+1)}}}{x_n^{(e+1)}} \right] \left( \frac{\partial x_{n+1}}{\partial e_n^{(e+1)}} \right)^T
\]

\[
+ G \ln x_n^{(e+1)} \left( \frac{\partial x}{\partial e_n^{(e+1)}} + 2 \xi \right)
\]

where \( \frac{\partial X_{s+1}^{(e+1)}}{\partial e_n^{(e+1)}} \) is known by Eq. (121) and \( \frac{\partial x}{\partial e_n^{(e+1)}} \) is presented in Appendix D. On the other hand, having pursued the second approach and used Eq. (64), \( \frac{\partial \Delta \rho^0}{\partial e_n^{(e+1)}} \) is computed in the following form:

\[
031010-10 / Vol. 135, JULY 2013
Transactions of the ASME
\]
the whole process again, but this time using $&nabla;_{s_{e_{n+1}-1}}/\partial e_{n+1}$ and $\partial s_{e_{n+1}}/\partial e_{n+1}$ instead of $\partial s_{e_{n+1}}/\partial e_{n+1}$ and $\partial s_{e_{n+1}}/\partial e_{n+1}$, respectively. It means that the following relationship, which has been obtained from Eqs. (56) and (57), computes $\partial s_{e_{n+1}}/\partial e_{n+1}$:

$$
\frac{\partial s_{e_{n+1}}}{\partial e_{n+1}} = \frac{R_{n+1} X_{R_{n+1}}}{X_{R_{n+1}}} \frac{\partial X_{N_{n+1}}}{\partial e_{n+1}} + \frac{R_{n+1} X_{S_{n+1}}}{X_{S_{n+1}}} \left( \frac{\partial X_{S_{n+1}}}{\partial e_{n+1}} \right)^T
$$

To avoid lengthening, $\partial X_{S_{n+1}}/\partial e_{n+1}$ and $\partial X_{R_{n+1}}/\partial e_{n+1}$ are introduced in Appendix F. Equation (87) is utilized to reach the below relationship for $\partial s_{e_{n+1}}/\partial e_{n+1}$:

$$
\frac{\partial s_{e_{n+1}}}{\partial e_{n+1}} = \sum_{i=1}^{m} H_{i} \frac{\partial \Delta \rho}{\partial e_{n+1}} + \sum_{i=1}^{m} H_{i} \frac{\partial \Delta s_{e_{n+1}}}{\partial e_{n+1}} \left( \frac{\partial s_{e_{n+1}}}{\partial e_{n+1}} \right)^T
$$

Equation (125) in which, $\partial s_{e_{n+1}}/\partial e_{n+1}$ is calculated via Eq. (125), in which, $\partial s_{e_{n+1}}/\partial e_{n+1}$ is derived using Equality (88), as follows:

$$
\frac{\partial s_{e_{n+1}}}{\partial e_{n+1}} = \sum_{i=1}^{m} \frac{-H_{i}}{2G} \frac{\partial s_{e_{n+1}}}{\partial e_{n+1}} + \frac{H_{i}}{2G} \frac{\partial s_{e_{n+1}}}{\partial e_{n+1}} \left( \frac{\partial s_{e_{n+1}}}{\partial e_{n+1}} \right)^T
$$

where $\partial X_{S_{n+1}}/\partial e_{n+1}$ and $\partial s_{e_{n+1}}/\partial e_{n+1}$ have already been attained through Eqs. (131) and (132), respectively. $\partial X_{N_{n+1}}/\partial e_{n+1}$ will be presented in Appendix F and other parameters are also known by means of prior relationships.

### 6 Verifying the Suggested Formulations

A body of point-wise numerical examples is presented in this section to validate the proposed algorithms. Three general types of numerical tests are taken to investigate the accuracy and performance of the formulations, including stress and strain-updating tests along with a boundary value problem. At the first category, for a given strain history, stresses will be updated using the classical integrations of Forward and backward Euler and the newly developed exponential-based techniques consisting of fully explicit and semi-implicit. Having updated the stresses via the four integrating methods, the results are compared in three major grounds of accuracy, convergence rate, and performance using illustrative graphs and lucid tables.

The second category of numerical experiences is adopted to ascertain the tangent operators of the classical and suggested schemes. In this group of examples, the derived tangent operators of the proposed schemes are examined using the strain-updating examples, which means computing strain histories for a variety of stress paths. The examination includes accuracy investigation and verification of the asymptotic quadratic convergence rate of the developed consistent tangent moduli.

In order for these tests to have a comprehensive comparison, two different histories of strains and two different histories of stresses are adopted for the stress and strain-updating tests, respectively. To avoid the discretization errors, all the strain and stress histories are considered linear. It is also necessary to mention that, due to the absence of the analytical solutions of the investigated problems, the results of the numerical techniques are compared with those of backward Euler method with a very small load-step size (100,000 steps per second), which is considered as the exact solution.

Eventually, a boundary value problem is chosen to be solved using each algorithm in a nonlinear finite-element code to verify the proposed strategies and the tangent operators in rendering the asymptotic quadratic convergence rate in actuality. The problem is comprised of a rectangular strip having an elliptical hole in its center under a uniform load.

As it was mentioned earlier, this study is to introduce two new exponential-based integrations for the pressure-sensitive non associative plasticity model proposed by Lei and Lissenden [14] for DRA composites. Therefore, the mechanical properties of the DRA system 6092/SiC/17.5p-T6 are taken into account drawn from Ref. [14]. The linear elastic parameters of the material are given below:

$$
E = 102,000 \text{ MPa} \quad \nu = 0.325 \quad G = 38,500 \text{ MPa}
$$

The yield-surface parameters include the following values:

$$
\tau_{y,0} = 220/\sqrt{2} \text{ MPa} \quad \beta = 0.078/\sqrt{2}
$$

This DRA system consists of the subsequent material hardening parameters:

$$
H_{in1} = 220,000 \text{ MPa} \quad H_{nl1} = 3200
$$
$$
H_{in2} = 24,000 \text{ MPa} \quad H_{nl2} = 400
$$
$$
H_{in3} = 3200 \text{ MPa} \quad H_{nl3} = 35
$$

For the sake of brevity and conciseness, abbreviations below are used to represent the methods:

**FE**: Forward Euler integrating method and its tangent modulus

**BE**: Backward Euler integrating method and its tangent modulus

**EXF**: Fully explicit exponential map integrating method and its tangent modulus

**EXS**: Semi-implicit exponential map integrating method and its tangent modulus

#### 6.1 Stress-Updating Tests

This section is subject to a broad set of numerical tests, where the new algorithms are examined in three different areas, including the accuracy, performance, and accuracy convergence rate. Figures 4 and 5 illustrate the two biaxial nonproportional strain histories considered for the purpose. Each strain history is regulated by two strain components varied proportionally to the first yielding strain, $\varepsilon_{y,0}$, in a uniaxial loading history. Other strain components are considered equal to zero.

**Test 1**: $\varepsilon_{11}$ and $\varepsilon_{12}$

**Test 2**: $\varepsilon_{11}$ and $\varepsilon_{22}$

$$
\varepsilon_{y,0} = \frac{\sqrt{2} \tau_{y,0}}{2G}
$$

![Fig. 4 Strain history 1](image-url)
To investigate the accuracy of the new formulations, stress relative error of the Euler’s and the suggested methods are calculated and compared with each other. The error is obtained through the following relationship, where $\sigma_n$ and $\sigma_{n+1}$ are, respectively, the numerical and the exact updated stresses at time $t_n$.

$$E_n^\sigma = \frac{\| \sigma_n - \sigma_{n+1} \|}{\| \sigma_{n+1} \|}$$

Figures 6–9 display the plotted errors of the Euler’s, FE and BE, and the suggested schemes, EXF and EXS, against the time for the practical time step size of $\Delta t = 0.025$. Since EXS is much more accurate that cannot be perceived in one diagram with others, it is compared to EXF in different graphs for each strain history.

As it is obvious in all diagrams, the accuracy of the updated stresses from FE is less than the other three methods by a long way. The precision of BE and EXF are either approximately the same or EXF is better than BE but not much. Remarkably, EXS has a greater accuracy compared to the others. The preciseness of EXS is in a huge extent that even for a large step size like $\Delta t = 0.1s$, it has already achieved such good results that are comparable with those of BE or EXF with small step sizes of
\[ \Delta t = 0.025 \text{ and } 0.0125 \text{ s}. \] See, for example, Figs. 10 and 11. The reason is the convergence rate.

The convergence rates of the recommended strategies, EXF and EXS, are verified by computing their relative errors for different load-step sizes, as it is shown in Figs. 12 and 13. The diagrams prove that the EXS rapidly converges on the exact solution. Having computed the average stress errors of the new and classical tactics and plotted them against each other, their convergence rates are thoroughly investigated, as it is shown in Fig. 14. While linear convergence rate is discerned for EXF, like BE and FE, the convergence rate of EXS is quadratic. That is why its convergence begins from large step sizes such as \( \Delta t = 0.3 \text{ s} \) and by \( \Delta t = 0.025 \text{ s} \) it has a nearly exact response with the accuracy of \( 10^{-5} \). At this point, a significant question is, how long does it take for EXF or EXS to get to the response? Are they fast enough to defeat the classical methods of FE and BE? These questions are replied by computational efficiency or performance.

Performance is the most important fact of the numerical approaches, which means putting accuracy in front of the computational time. To investigate performance of the integrating schemes, the following relationship is adopted:

\[
\eta = \frac{\text{Accuracy}}{\text{Computational time}} = \frac{1}{E_A \times T_{CPU}} \tag{138}
\]
where, $\eta$, $T_{CPU}$, and $E_A$ represent the performance, CPU time, and average error, respectively. Here, accuracy has been defined as the inverse of average error. To compare the performance of the suggested formulations with the classical integrating ones, average errors and CPU times are computed for 200 cycles of the strain history 1, whereby one can have more measurable CPU times and more accurate average errors. To have a better examination of the performance, this act is performed for a variety of load-step sizes. The results are presented in Table 1. Total error, $E_T$, which is the sum of the stress relative errors, divided by the number of points where the errors are calculated gives the average error. Moreover,

### Table 1 Performance of the integrating schemes for 200 cycles of the strain history 1

<table>
<thead>
<tr>
<th>Integration scheme</th>
<th>Load-step size</th>
<th>$E_T$</th>
<th>$E_A$</th>
<th>$T_{CPU}$ (s)</th>
<th>$\eta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>0.2</td>
<td>25.2065</td>
<td>0.3600</td>
<td>8.52</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>10.0374</td>
<td>0.1434</td>
<td>14.25</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>4.8820</td>
<td>0.0697</td>
<td>23.76</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>2.4112</td>
<td>0.0344</td>
<td>42.68</td>
<td>0.68</td>
</tr>
<tr>
<td>FE</td>
<td>0.2</td>
<td>581.1668</td>
<td>8.3012</td>
<td>1.13</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>44.9087</td>
<td>6.6415</td>
<td>2.10</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>14.4703</td>
<td>2.067</td>
<td>4.04</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>7.9068</td>
<td>0.1129</td>
<td>7.83</td>
<td>1.13</td>
</tr>
<tr>
<td>EXF</td>
<td>0.2</td>
<td>8.5027</td>
<td>0.1214</td>
<td>1.51</td>
<td>5.45</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>3.6410</td>
<td>0.0520</td>
<td>2.73</td>
<td>7.04</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>1.7678</td>
<td>0.0253</td>
<td>5.17</td>
<td>7.64</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>0.8687</td>
<td>0.0124</td>
<td>10.16</td>
<td>7.94</td>
</tr>
<tr>
<td>EXS</td>
<td>0.2</td>
<td>2.5244</td>
<td>0.0361</td>
<td>2.41</td>
<td>11.49</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.4566</td>
<td>0.0065</td>
<td>4.52</td>
<td>34.04</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.0916</td>
<td>0.0013</td>
<td>8.57</td>
<td>89.76</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>0.0248</td>
<td>0.0003</td>
<td>16.89</td>
<td>197.35</td>
</tr>
</tbody>
</table>

### Table 2 Computational time of the schemes for 200 cycles of the strain histories 1 and 2

<table>
<thead>
<tr>
<th>Integration scheme</th>
<th>Strain history 1</th>
<th>Strain history 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total error</td>
<td>CPU time (s)</td>
</tr>
<tr>
<td>FE</td>
<td>0.092</td>
<td>659.08</td>
</tr>
<tr>
<td>BE</td>
<td>0.092</td>
<td>673.28</td>
</tr>
<tr>
<td>EXF</td>
<td>0.092</td>
<td>96.08</td>
</tr>
<tr>
<td>EXS</td>
<td>0.092</td>
<td>8.57</td>
</tr>
</tbody>
</table>
Table 2 presents the computational efforts of the schemes in achieving the same accuracy as each other rendering another means of performance investigation. As it is evident in both tables, the performances of the new integrating schemes are much better than the Euler's schemes, particularly the EXS. Thanks to the very accurate responses alongside short CPU times, the EXS is the most efficient algorithm among the others. It is also deduced that by shortening the load-step size, the performance of FE, BE, and EXF tend to converge on a constant amount while the computational efficiency of the EXS will increase constantly. It is worth emphasizing that among the four presented integrating methodologies, unquestionably, the best integration for this nonassociative plasticity model is the EXS. The reason is its great preciseness and performance that it can be named virtually as an accurate integration than an approximate one.

6.2 Strain-Updating Tests. In this section, two different point-wise tests are considered to investigate the consistent tangent modulus of the suggested exponential map processes, EXF and EXS. In each test, for a given stress history, strain will be updated using the tangent operators of the suggested schemes and the ones of the forward Euler and backward Euler methods. The two stress histories are illustrated in Figs. 15 and 16. Using the strain-updating results of the forward Euler technique with a very fine load-step size of $\Delta t = 1 \times 10^{-5}$ as the exact solution, the accuracy of the EXF and EXS are assessed. The coming relationship obtains the relative strain error, $E_n^\varepsilon$:

$$E_n^\varepsilon = \frac{\|e_n - \bar{e}_n\|}{\|e_n\|}$$ (139)

where $e_n$ represents the exact strain vector at time $t_n$ and $\bar{e}_n$ stands for the numerical solution. Figures 17–20 display the relative strain errors of the methods in question compared to one another for both stress histories. Since the new exponential-based methods are much more accurate than the classical ones, EXF and EXS are graphed in separate diagrams similar to what were given for the stress relative errors. The results are presented for the practical load-step size of $\Delta t = 0.025s$. Clearly, the EXF and EXS are much more accurate than FE and BE. The EXS also presents much better responses compared to the EXF. To examine the quadratic convergence rate of the tangent operators, it is needed to calculate the relative Euclidean norms of the errors for each time step, which are defined as below

### Table 3 Relative Euclidian norms to demonstrate the tangent operators, stress path 1

<table>
<thead>
<tr>
<th>Iteration</th>
<th>FE</th>
<th>EXF</th>
<th>EXS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1.000 \times 10^3$</td>
<td>$1.000 \times 10^3$</td>
<td>$1.000 \times 10^3$</td>
</tr>
<tr>
<td>2</td>
<td>$1.078 \times 10^{-5}$</td>
<td>$6.332 \times 10^{-6}$</td>
<td>$6.319 \times 10^{-6}$</td>
</tr>
<tr>
<td>3</td>
<td>$1.106 \times 10^{-7}$</td>
<td>$1.457 \times 10^{-8}$</td>
<td>$1.455 \times 10^{-8}$</td>
</tr>
<tr>
<td>4</td>
<td>$2.551 \times 10^{-10}$</td>
<td>$4.069 \times 10^{-11}$</td>
<td>$4.065 \times 10^{-11}$</td>
</tr>
<tr>
<td>5</td>
<td>$3.100 \times 10^{-12}$</td>
<td>$6.250 \times 10^{-13}$</td>
<td>$6.245 \times 10^{-13}$</td>
</tr>
</tbody>
</table>

### Table 4 Relative Euclidian norms to demonstrate the tangent operators, stress path 2

<table>
<thead>
<tr>
<th>Iteration</th>
<th>FE</th>
<th>EXF</th>
<th>EXS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1.000 \times 10^2$</td>
<td>$1.000 \times 10^2$</td>
<td>$1.000 \times 10^2$</td>
</tr>
<tr>
<td>2</td>
<td>$1.300 \times 10^{-3}$</td>
<td>$1.700 \times 10^{-4}$</td>
<td>$1.700 \times 10^{-4}$</td>
</tr>
<tr>
<td>3</td>
<td>$1.300 \times 10^{-7}$</td>
<td>$1.700 \times 10^{-8}$</td>
<td>$1.700 \times 10^{-8}$</td>
</tr>
<tr>
<td>4</td>
<td>$1.300 \times 10^{-11}$</td>
<td>$1.700 \times 10^{-12}$</td>
<td>$1.700 \times 10^{-12}$</td>
</tr>
</tbody>
</table>

Fig. 19 Strain relative errors by FE, BE, and EXF for stress history 2

Fig. 20 Strain relative errors by EXF and EXS for stress history 2
In the former equality, $e_n$ is the converged strain and $e_i^n$ presents the converged strain at the $i$th iteration. To verify the quadratic convergence rate of the developed tangent operators, Tables 3 and 4 were prepared to illustrate the relative Euclidean errors of the tangent modulus of FE, EXF, and EXS in successive iterations for both stress histories in two arbitrary times, $t = 2\,s$ and $t = 6\,s$.

At this stage, it is worth emphasizing that the quadratic convergence rate of the tangent operators has no connection with the convergence rate (accuracy order) of the integration schemes. Regardless of the convergence rate of an integration method, their tangent operators must always be capable of achieving the asymptotic quadratic convergence rate of the Newton–Raphson solution in nonlinear finite-element analyses.

6.3 Boundary Value Problem. In the following, a boundary value problem is solved by utilizing all the algorithms under discussion to feature the schemes’ performance as well as proving the derived tangent operators in practice. Hence, using the path-
the schemes in a boundary value problem

Table 7 The accuracy, computational time, and performance of the schemes in a boundary value problem

<table>
<thead>
<tr>
<th>Integrating scheme</th>
<th>$N_{inc}$</th>
<th>$E_T$</th>
<th>$T_{CPU}$ (s)</th>
<th>$n_a$</th>
<th>$\eta$</th>
<th>$\eta_{inc} = \frac{1}{N_{inc}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>5</td>
<td>0.082</td>
<td>178.05</td>
<td>5</td>
<td>0.064</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0461</td>
<td>328.92</td>
<td>5</td>
<td>0.066</td>
<td>1</td>
</tr>
<tr>
<td>FE</td>
<td>5</td>
<td>0.328</td>
<td>259.47</td>
<td>12</td>
<td>0.012</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.1342</td>
<td>386.37</td>
<td>9</td>
<td>0.019</td>
<td>0.28</td>
</tr>
<tr>
<td>EXF</td>
<td>5</td>
<td>0.0028</td>
<td>169.88</td>
<td>7</td>
<td>2.102</td>
<td>32.84</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0013</td>
<td>304.82</td>
<td>6</td>
<td>2.524</td>
<td>38.24</td>
</tr>
<tr>
<td>EXS</td>
<td>5</td>
<td>0.0008</td>
<td>215.22</td>
<td>7</td>
<td>5.808</td>
<td>90.75</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0002</td>
<td>393.61</td>
<td>6</td>
<td>12.703</td>
<td>192.47</td>
</tr>
</tbody>
</table>

independent strategy alongside the Newton–Raphson solution, an implicit nonlinear finite-element code is provided by the authors to compare the precision, computational effort and efficiency of the suggested integrations with the Euler’s, likewise, better verifying the consistent tangent operators. The typical boundary value problem of a rectangular strip with a central elliptical opening is opted under the plane strain conditions. As it is shown in Fig. 21, the strip undergoes symmetric uniform loads applied perpendicularly on its all sides. Obviously, only one-quarter of the strip needs to be analyzed owing to its symmetry, see Fig. 21.

Assuming the thickness of unit for the strip, the quarter is discretized by 192 four-node isoparametric bilinear quadrilaterals as if displayed in Fig. 22. Furthermore, the biaxial nonproportional load history depicted in Fig. 23 is considered for the analyses. To better present the problem, the deformation of the strip and the elements endured plastic deformation are featured in Fig. 24 for the successive times of $t = 1 - 8$ s. The elements having plastic strain are also depicted in Fig. 24 by gray color to see their involvements in plastic computations. Note that the displacements have been enlarged 50 times to be easily discernible. Moreover, the quadratic convergence rate of the tangent moduli are demonstrated deriving the Euclidian norm of the out-of-balance forces of Newton’s iterations, which are presented in Tables 5 and 6 for two given increments of 10th and 60th.

Accuracy is defined as the inverse of the total error. To assess the accuracy of the algorithms, the total errors of nodes’ displacements are computed through the following relationship:

$$E_T = \frac{1}{N} \sum_{i=1}^{N} \left\| \epsilon_i - \epsilon_i^N \right\|$$

with $\epsilon_i = \{u_1, u_2, \ldots, u_{node}\}$ and $\epsilon_i^N$ in which, $N$ stands for the total number of load increments. The vector $\epsilon_i$ specifies the reference global displacements of the nodes in $i$th increment computed by 100 subincrements. Additionally, $\epsilon_i^N$ denotes the global displacement vector when the proposed and classical schemes are employed.

The total CPU times are also recorded to evaluate the formulations’ speed during the finite-element analyses. Eventually, hiring
the same procedure as used in the stress-updating tests, the computational efficiency or performance is appraised employing Eq. (138) with the difference of using total error, $E_T$, instead of average error, $E$. Table 7 delivers the results for two numbers of sub-increments; $N_{inc} = 5$ and 10. To better interpret the results, the maximum number of iterations during each analysis is also added to the table represented by $n$. Overall, the same results as observed in the stress and strain-updating tests are beheld here, too. Clearly, the tangent operators are working properly where the residual forces plunge down from $10^{-3}$ to $10^{-5}$ with the iterations as few as 5 or 6, see Tables 5 and 6. In case of the accuracy and computational efficiency assessments presented in Table 7, the first thing obvious is the considerable influence of the integration procedures on the outcomes of a small simple finite-element problem. This could surely intensify in almost all other pragmatic engineering problems for the plasticity computations that must be carried out in each Gauss point whose numbers soar as the structures become bigger and more complicated. Unquestionably, the most promising strategies in integrating the constitutive equations of the plasticity are the exponential-based methods. The EXF and EXS are far more accurate and efficient than the BE and FE. Among the exponentials, the EXS features great performance having an incredible precision alongside quadratic convergence rate.

7 Conclusions

A nonassociative plasticity model of Drucker–Prager’s yield criterion along with nonlinear kinematic hardening is taken into consideration in which the plastic deformation is incompressible. This plasticity model was chosen since it fits the plastic behavior of a broad range of engineering metallic materials, specially DRA composites and many others like high-strength steel, aluminum, plain carbon, titanium, etc., as it was demonstrated by Lei and Lissenden [14].

Two consistent exponential-based formulations were proposed for integrating the constitutive equations of the plasticity model. These techniques, for short called EXF and EXS, have only been developed up to linear hardening and no hardening, respectively. In this investigation, they were evolved for the generalized nonlinear kinematic hardening. To verify the EXF and EXS, formulas of forward and backward Euler methods, FE and BE, were derived and briefly presented corresponding to the plasticity model. The vantage of EXS is to use better estimations of the stress and the yield-surface’s features in each incremental step of the numerical procedure. A broad set of numerical tests were adopted to assess the integrating strategies in three major areas of accuracy, convergence rate, and computational efficiency or performance. After purely evaluating the schemes by the stress and strain histories at a given Gauss point, a typical boundary value problem was also solved implementing each technique in order to exhibit their performance in a real practice.

The greater accuracy and performance of the exponential-based tactics, especially the EXS, were obvious in the tests. It was also discerned that the EXS has second-order accuracy, which generates an increasing efficiency, whereas the EXF linearly approaches to the exact solution. Moreover, the direct correlation between the accuracy and efficiency of the integration schemes and the precision and computational effort of the nonlinear finite-element analyses were also obvious in the boundary value problem. As it was observed, the finite-element analyses performed using the exponential-based schemes were much more accurate and efficient than those carried out through the forward and backward Euler’s techniques.

The consistent tangent moduli of the proposed and Eulers’ methodologies were also developed to achieve the quadratic convergence rate when used in nonlinear finite-element analyses through a Newton algorithm. In order for the tangent operators to be examined, two diverse stress histories were chosen as well as the boundary value problem. For each stress history, the updated strains via the tangent operators of the EXF and EXS were derived and compared to those of FE and BE. Much more accurate strains by the EXF and EXS were concluded than FE and BE. Furthermore, having computed the relative Euclidean errors of the stress histories and the residual forces of the nonlinear finite-element analysis, the quadratic convergence rates through all developed tangent operators were proven, too. In short, while the exponential-based integrations are explicit strategies with great speed and easy implementation, they have the advantages of the implicit tactics such as appreciable robustness and consistency with the yield surface and therefore, they are highly recommended for the finite-element codes.

Nomenclature

\begin{align*}
\alpha & = \text{back stress tensor} \\
\Lambda & = \text{control matrix} \\
E & = \text{Young’s modulus} \\
E_T & = \text{total error} \\
E_A & = \text{average error} \\
\mathcal{E}, \mathcal{E}^e, \mathcal{E}^p & = \text{deviatoric strain tensor, elastic deviatoric strain tensor, plastic deviatoric strain tensor} \\
F & = \text{yield-surface function} \\
G, \bar{G} & = \text{shear modulus, extended shear modulus} \\
\mathcal{G} & = \text{exponential/factor matrix} \\
H_{\text{kin}}, H_A & = \text{kinematic hardening moduli} \\
I & = \text{array representation of second-order identity tensor} \\
I_{4,4} & = \text{fourth-order symmetric identity tensor:} \\
I_{4,4} &= \frac{1}{2} (\delta_{ij} \delta_{kl} + \delta_{il} \delta_{kj}) \\
\tilde{I} & = \text{deviatoric projection tensor:} \\
\tilde{I}_{dev} &= \mathbb{I} - \frac{1}{3} (\mathbb{I}^T) \\
K & = \text{bulk modulus} \\
n & = \text{identity tensor of deviatoric stress} \\
\rho, \rho^p & = \text{volumetric/hydrostatic stress, volumetric/hydrostatic shifted stress} \\
Q & = \text{plastic potential function} \\
R & = \text{radius of yield surface} \\
s, s^p & = \text{deviatoric stress tensor, deviatoric shifted stress tensor} \\
s^p & = \text{deviatoric shifted stress tensor prior to correction} \\
t & = \text{pseudotime} \\
T_{\text{CPU}} & = \text{CPU time} \\
\mathcal{X} & = \text{global displacement vector} \\
\mathcal{X}^0 & = \text{integrating factor} \\
\mathbb{X} & = \text{augmented stress vector} \\
\alpha & = \text{scalar separating elastic and elastoplastic parts of a load increment} \\
\beta & = \text{deviatoric back stress tensor} \\
\beta & = \text{material constant in Drucker–Prager yield criterion} \\
\varepsilon_{y,0} & = \text{first yielding strain} \\
\psi & = \text{volumetric/hydrostatic strain} \\
\varepsilon, \varepsilon^P, \varepsilon^P & = \text{strain tensor, elastic strain tensor, plastic strain tensor} \\
\tilde{\varepsilon} & = \text{plastic multiplier} \\
\tilde{\varepsilon} & = \text{discrete plastic multiplier} \\
\eta & = \text{performance of a numerical integration} \\
\sigma, \sigma^p & = \text{stress tensor, shifted stress tensor} \\
\nu & = \text{Poisson ratio} \\
\tau_y & = \text{yield stress in pure shear} \\
\zeta & = \text{indicator of the specified point at the middle of an elastoplastic load increment} \\
\end{align*}

Appendix A: Forward Euler Integration

As it is customary for the forward Euler algorithm, a trial solution is considered as

\begin{align}
\mathbf{s}_{n+1}^{\text{TR}} &= \mathbf{s}_n + 2G\Delta \mathbf{e}, \\
\mathbf{z}_{n+1}^{\text{TR}} &= \mathbf{z}_n, \\
\mathbf{p}_{n+1}^{\text{TR}} &= \mathbf{p}_n + K \Delta \mathbf{w}_n, \\
\mathbf{\tau}_{y,n}^{\text{TR}} &= \mathbf{\tau}_{y,n},
\end{align}

(A1)

The trial solution is admissible so long as the coming condition is met.
otherwise, the strain increment involves a plastic portion to be specified. The next equalities give the information where \( \alpha \) and \( 1 - \alpha \) designate the elastic and plastic parts, respectively:

\[
\alpha = \frac{\sqrt{B^2 - 4AC} - B}{2A}
\]

with

\[
\begin{align*}
A &= 4G^2\Delta e\Delta e - 2(\beta K\Delta \psi)^2 \\
B &= 4G^2\Delta e\Delta e + 4\beta K(\tau_{y,n} - \beta p_n^T)\Delta \psi, \\
C &= \alpha^2 - 2(\tau_{x,n} - \beta p_n^T)^2
\end{align*}
\]

Using the parameter \( \alpha \), the deviatoric and volumetric parts of the shifted stress are calculated at the turning point of the load step from elastic to plastic, as follows:

\[
s_n^{T+1} = s_n^T + 2G\alpha\Delta e
\]

\[
p_n^{T+1} = p_n^T + K\Delta \psi
\]

The plastic multiplier is acquired via Eq. (50). Having computed \( \lambda \) and used Eqs. (13), (17), (18), (21), (22), and (27), the parameters are updated as follows:

\[
s_n^{T+1} = s_n^{T+1} + 2G(1 - \alpha)\Delta e - 2G\lambda s_n^{T+1} + \lambda \sum_{i=1}^m H_{ikl}a_{x_{nk}},
\]

\[
p_n^{T+1} = p_n^T + K(1 - \alpha)\Delta \psi
\]

\[
\tau_{x,n+1} = \tau_{x,n} = \tau_{x,0}
\]

\[
a_{x,n+1} = \alpha_n + \sum_{i=1}^m (H_{kinl}\Delta e^0 - H_{ikl}a_{x_{ni}}) \text{ with } \Delta e^0 = \lambda s_n^{T+1}
\]

To enforce the consistency of the yield condition, the following corrector vector is required:

\[
\alpha = \sqrt{\left(\mathbf{n}_n^T s_n^{T+1}\right)^2 - \left|s_n^{T+1}\right|^2 + 2(\tau_{y,n+1} - \beta p_n^{T+1})^2 - \mathbf{n}_n^T s_n^{T+1}}
\]

\[
s_n^{T+1} = s_n^{T+1} + \alpha t_n^{T+1}
\]

Appendix B: Backward Euler Integration

The trial solution, Eq. (A1), and the associated condition, Eq. (A2), are utilized pursuing the scheme. If the tentative assumption is rejected, a plastic corrector is needed. The correction is executed by omitting the plastic part from the strain increment while calculating the stresses. Consequently, the variables are computed through the subsequent relationships:

\[
s_n^{T+1} = s_n^{TR} - 2G\lambda s_n^{T+1} + \lambda \sum_{i=1}^m H_{ikl}a_{x_{nk}},
\]

\[
\Delta e^0 = 0 \rightarrow p_n^{T+1} = p_n^{TR} + K\Delta \psi
\]

Equation (18) is hired to update the back stress vector, as follows:

\[
a_{x_{nk}} = \frac{a_{x_{nk}}}{1 + H_{ikl}\lambda} + \frac{H_{ikl}}{1 + H_{ikl}\lambda} s_n^{T+1}
\]

Replacing \( a_{x_{nk}} \) in Eq. (B1) with the former expression gives rise to the next relationship for \( s_n^{TR} \):

\[
\|s_n^{TR}\| \leq R_n^{TR} = \sqrt{2}(\tau_{y,n+1} - \beta p_n^{TR}).
\]
\[ \frac{\partial W}{\partial \kappa_{n+1}} = -8G\beta(\gamma_0 - \beta' \frac{\partial^2 \mu_{n+1}}{\partial \kappa_{n+1}^2} \sum_{j=1}^{n} H_{aj} \lambda_{j}) \]  
(D9)

where \( \frac{\partial \sigma_{n+1}}{\partial \kappa_{n+1}} \) is known by Eq. (D1) and \( \frac{\partial \sigma_{n+1}}{\partial \kappa_{n+1}} \) is derived below

\[ \frac{\partial \mu_{n+1}}{\partial \kappa_{n+1}} = K \Delta \kappa \frac{\partial \mu}{\partial \kappa_{n+1}} \]  
(D10)

Appendix E: Derivatives Mentioned in the Consistent Tangent Modulus of Fully Explicit Exponential Map Method

\[ \frac{\partial \Delta \mu}{\partial \kappa_{n+1}} = \frac{1}{||\Delta \mu||} \frac{\partial \Delta \mu}{\partial R_{n+1}} - \Delta \mu \left( \frac{\partial \Delta \mu}{\partial R_{n+1}} \right)^T \]  
(E1)

\[ \frac{\partial \Delta \mu}{\partial \kappa_{n+1}} = (1 - \lambda) \frac{\partial \Delta \mu}{\partial \kappa_{n+1}} + \lambda \left( \frac{\partial \Delta \mu}{\partial \kappa_{n+1}} \right)^T \]  
(E2)

\[ \frac{\partial a_{n+1}}{\partial \kappa_{n+1}} \] and \( \frac{\partial b_{n+1}}{\partial \kappa_{n+1}} \) are also derived using Eqs. (48) and (49). The next results will be obtained

\[ \frac{\partial a_{n+1}}{\partial \kappa_{n+1}} = \frac{2G}{R_{n+1}} \left( \frac{\partial \Delta \mu}{\partial \kappa_{n+1}} ||\Delta \mu|| - \frac{\partial R_{n+1}}{\partial \kappa_{n+1}} \sinh \left( \frac{2G}{R_{n+1}} ||\Delta \mu|| \right) \right) \]  
(E3)

\[ \frac{\partial b_{n+1}}{\partial \kappa_{n+1}} = \frac{2G}{R_{n+1}} \left( \frac{\partial \Delta \mu}{\partial \kappa_{n+1}} ||\Delta \mu|| - \frac{\partial R_{n+1}}{\partial \kappa_{n+1}} \cosh \left( \frac{2G}{R_{n+1}} ||\Delta \mu|| \right) \right) \]  
(E4)

\[ \frac{\partial R_{n+1}}{\partial \kappa_{n+1}} = -\sqrt{2}K \Delta \kappa \frac{\partial R_{n+1}}{\partial \kappa_{n+1}} \]  
(E5)

It should be noted that \( \frac{\partial \lambda}{\partial \kappa_{n+1}} \) and \( \frac{\partial \lambda}{\partial \kappa_{n+1}} \) have already been presented in Appendix D.

Appendix F: Derivatives Mentioned in the Consistent Tangent Modulus of Semi-Implicit Exponential Map Method

\[ \frac{\partial X^S_{n+1}}{\partial \kappa_{n+1}} \] and \( \frac{\partial X^R_{n+1}}{\partial \kappa_{n+1}} \) are calculated by equalities (120) and (121). \( \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \) is obtained using relationships (68) and (69), as follows:

\[ \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} = \frac{1}{||\Delta \mu_{n+1}||} \left( \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} ||\Delta \mu_{n+1}|| - \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \Delta \mu_{n+1} \right)^T \]  
(F1)

\[ \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} = \zeta(1 - \lambda) \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} + \frac{m}{2G} \left( \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \right)^T \]  
(F2)

where \( \frac{\partial \lambda}{\partial \kappa_{n+1}} \) has already been calculated through Eqs. (D2)–(D5). \( \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \) is also derived utilizing Eq. (70) which results in the relationships like (D6)–(D9) except for the below fact that there should be the factor \( \zeta \) multiplied to these relationships

\[ \frac{\partial \mu_{n+1}}{\partial \kappa_{n+1}} = \zeta \frac{\partial \mu_{n+1}}{\partial \kappa_{n+1}} \]  
(F3)

To derive \( \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \) and \( \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \), one can use Eq. (71) which contribute to the below equalities

\[ \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} = \frac{2G}{R_{n+1}} \left( \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \Delta \mu_{n+1} \right)^T \]  
(F4)

\[ \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} = \frac{2G}{R_{n+1}} \left( \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \Delta \mu_{n+1} \right)^T \]  
(F5)

To achieve \( \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \), one can employ Eqs. (76)--(78). Thus, the following results are obtained:

\[ \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} = \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \frac{G}{G + \sum_{j=1}^{m} H_{aj} \lambda_{j}} \left( \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \Delta \mu_{n+1} \right)^T \]  
(F6)

\[ \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} = \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \frac{G}{G + \sum_{j=1}^{m} H_{aj} \lambda_{j}} \left( \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \Delta \mu_{n+1} \right)^T \]  
(F7)

Using Eqs. (82) and (83), one can have the coming formulas

\[ \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} = \left( \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \right)^T \]  
(F8)

\[ \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} = \left( \frac{\partial \Delta \mu_{n+1}}{\partial \kappa_{n+1}} \right)^T \]  
(F9)

where \( \frac{\partial \lambda}{\partial \kappa_{n+1}} \) is obtained through Eqs. (D6)–(D9) substituting the subscript \( n + \lambda \) for \( n + \lambda \). The derivatives \( \frac{\partial X^S_{n+1}}{\partial \kappa_{n+1}} \) and \( \frac{\partial X^R_{n+1}}{\partial \kappa_{n+1}} \) are computed through the following relationships acquired from Eqs. (79) to (81):

\[ \frac{\partial X^S_{n+1}}{\partial \kappa_{n+1}} = \frac{\partial X^S_{n+1}}{\partial \kappa_{n+1}} + \left( \frac{\partial X^S_{n+1}}{\partial \kappa_{n+1}} \right)^T \]  
(F10)
In these relationships, \( \dot{\mathbf{X}}^{S} / \partial \mathbf{e}_{n+1} \) and \( \partial \mathbf{X}^{R} / \partial \mathbf{e}_{n+1} \) have been calculated through Eqs. (120) and (121), \( \partial \mathbf{e}_{n+1} / \partial \mathbf{e}_{n+1} \), and \( \partial \mathbf{e}_{n} / \partial \mathbf{e}_{n+1} \) are achieved through Eqs. (DE)–(ES) replacing subscript \( n + \tau \) with \( n + (\xi (1 - \tau)) \) in which \( \partial \mathbf{e}_{n} / \partial \mathbf{e}_{n+1} \) is calculated by Eq. (127) and \( \partial \mathbf{e}_{n} / \partial \mathbf{e}_{n+1} \) is obtained as follows:

\[
\frac{\partial \mathbf{e}_{n+1}}{\partial \mathbf{e}_{n+1}} = (1 - \xi) \frac{\partial \mathbf{K} \Delta \mathbf{e}_{n}}{\partial \mathbf{e}_{n+1}}
\]

which has the below shape

\[
\frac{\partial \mathbf{e}_{n+1}}{\partial \mathbf{e}_{n+1}} = \sqrt{2(\xi - 1)} \frac{\partial \mathbf{K} \Delta \mathbf{e}_{n}}{\partial \mathbf{e}_{n+1}}
\]

References


Journal of Engineering Materials and Technology

JULY 2013, Vol. 135 / 031010-21

Downloaded From: http://materialstechnology.asmedigitalcollection.asme.org/ on 05/25/2013 Terms of Use: http://asme.org/terms


