ارزیابی تولید آب - شوری - عملکرد در ذرت علوفهای در استان خراسان رضوی

زهره شیرمحمدی علی اکبر خانی١ - حسین انصاری١ - امین علیزاده١ - محمد کاظمی١

چکیده

برگیرنده کاشت شاخه بخش کشاورزی و دامپروری در حوزه این استان خراسان رضوی و نیمه خشک در مقایسه با کمود آب کمیت و کاهش کیفیت آب کشاورزی تولید غنایی بیشتر با آب کمتر از بهره‌برداری شناوری استفاده از تولید آب - شوری بوده که این یافته‌ها در گرده‌بری برای برنامه‌ریزی و سیاست‌گذاری تولیدهای کشاورزی در این اقلیت‌های همواره به نظر می‌رسد. در سال‌های ۱۳۹۹ و ۱۳۹۰ در شهروندی سرخ استان خراسان رضوی انگر کوکه (Euck) می‌باشد این آزمایشات با توجه به طبقه‌بندی مختلف انگریزی و رعایت اصول و محدودیت متابع آب توزیع نامناسب بارش سالانه در طول فصول و عدم مدیریت صحیح متابی معاینات آب فاقد شدید معقل در مناطق قوه می‌گردد. مشکل کم‌آبی آب به پایین کمیت و کیفیت آب در اکثر مناطق خشک و نیمه خشک ایران یزد است خراسان رضوی واضع و منتظر اقتصاد است. در این راه از آب‌های زیر کانال به پایداری رتبه‌بندی و نظارت و سازش داده شده که در این مطالعه بهترین اثر در زیر کانال دانشگاه فردوسی مشهد (Email: mshirmohamady@yahoo.com) و نویستگان مستولی.
چهار مرحله مختلف رشد (اعمال کم‌اپاری و یوپوست در کل دوره رشد، اعمال کم‌اپاری در مرحله رشد روزی‌هب، گلدی و دانه‌سرخ) به‌صورت یافتن اینکه انجام رشد شیبی در مرحله مختلف رشد اعمال کرزی این‌بود که در هر مرحله از رشد کیاوی و اکتشاف منطقی در کاهش عملکرد خواهد داشت. شکل توانی تحت بررسی، به فرم های ختوی

ساده، گزارشی (کار داگلاس)، تابع درجه دوم و معنی‌داری بودند و بصورت روابط 1 تا 2 در تئوری رشد (کیاوی و عباسی، 2009: صفحه 1 و همکاران، 1991): خویشی ساده

\[Y = a_0 + a_1 I + a_2 EC_w \]

(1)

\[Y = a_0 I^{1+a} EC_w^{a_2} \]

(2)

\[Y = a_0 + a_1 I + a_2 I^2 + a_3 EC_w + a_4 EC_w^2 + a_5 IEC_w \]

(3)

\[Y = a_1 I^{1+a} EC_w^{a_2} \exp(a_3 I + a_4 EC_w) \]

(4)

که در این توانی \(Y \) عملکرد عکالت تازه حسب ترتب در هکات در هکاتریکی اب آبی‌ای حس سانتی متر و هم‌سر عکالت اب آبی‌ای حس سانتی متر و هم‌سرین مجتمعی‌باشند. داده‌های مورد استفاده در توانی ضریب‌ها تایمات‌های الدامده‌ای از طرح می‌باشد، یکی از توانی ضریب‌ها می‌باشد، به منظور توانایی این مدل‌ها شامل آبی‌ای، رشته معنی‌داری معنی‌دا
بحث و تناوب

نتایج تخمین ضرایب تابع تولید آب - شوری - عملکرد علوفه

درز به صورت خظی ساده، لگاریتمی، ردیج دوم و معنی‌داری از ضرایب تابع بر أساس شاخص‌های امراری در مراحل مختلف تفاوت در جدول‌ها بر آورد شده است. این نتایج معنی‌داری از آماره f نشان دهنده معنی‌داری کلی تابع و آماره 1 نشان دهنده معنی‌داری دو نوع تریگر در تابع می‌باشد. جنبهی آزمون F معنی‌دار بودن دانسته این است که برای کل مدل، رگرسیون و میزان باقی‌مانده های مدل در حذف قابل قبولی است (کبایی و عباسی، 2009، صالحی و همکاران، 1390).

خطا نشان دهنده این است که مقدار از شبیه‌سازی‌ها بیشتر با کمتر از مقدار متغیرات آماره‌گیری شده می‌باشد. خطا علل اشاره‌گری که نشان دهنده چندگانه‌ای مدل بوده و مقدار زیاد آن یانگ کارد ضعیف مدل می‌باشد. ضریب تبعین پارتکسی تابع با کمتر از مقدار اجراگیری شده می‌باشد. A-Mar. EF. مقدار پیش‌بینی شدن با استفاده از معادله (CRM) مقدار باقی‌مانده (RMSE) نیز تقلیل مدل در پرآورد بیشتری با گذر از مقدار اجراگیری شده را نشان می‌دهد. مقایسه معنی‌دار آماره اینگریک برآورد شده مدل دقیق. نتایج مقدار پیش‌بینی شدن که این مقدار باقی‌مانده و CRM و ME به ترتیب برای صفر، یک، صفر و صفر خواهد بود.

منشور بررسی تغییرات عملکرد به اثر تغییر در یک واحد آب مصرفی عملکرد به اثر تغییر در میزان شوری آب ابزاری از شاخص اثر از تغییر میزان آب مورد نیاز به نهایی نخ و همچنین به مقدار تمامی این آب مورد نیاز به نهایی نخ (MRTSECW) به ترتیب به صورت بررسی میزان خسارت وارد به ازای کاهش مصرف آب و افزایش میزان شوری از تابع آتش نهایی تولید (VMP) از تابع آتش نهایی تولید (VMP) استفاده شده. نتایج در روابط 10 تا 15 ارائه شدهاند.

جدول 1 ضرایب تابع تولید آب - شوری عملکرد علوفه و شاخص‌های امراری ارزیابی تابع تولید در تیمارهای اعمال نش این در تمام مراحل

<table>
<thead>
<tr>
<th>ضرایب تابع تولید</th>
<th>تابع درجه دوم</th>
<th>تابع لگاریتمی</th>
<th>Tابع حاصل</th>
<th>a0</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
<th>a5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>433/16/32</td>
<td>344/45/60</td>
<td>341/46/60</td>
<td>.91</td>
<td>.5</td>
<td>.2</td>
<td>.7</td>
<td>.4</td>
<td></td>
</tr>
<tr>
<td>CRM</td>
<td>10/4/9</td>
<td>1/0/5</td>
<td>.9/1/6</td>
<td>.61</td>
<td>.8</td>
<td>.5</td>
<td>.7</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>1/0/1</td>
<td>1/0/1</td>
<td>.9/1/6</td>
<td>.61</td>
<td>.8</td>
<td>.5</td>
<td>.7</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>1/0/1</td>
<td>1/0/1</td>
<td>.9/1/6</td>
<td>.61</td>
<td>.8</td>
<td>.5</td>
<td>.7</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>1/0/1</td>
<td>1/0/1</td>
<td>.9/1/6</td>
<td>.61</td>
<td>.8</td>
<td>.5</td>
<td>.7</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>1/0/1</td>
<td>1/0/1</td>
<td>.9/1/6</td>
<td>.61</td>
<td>.8</td>
<td>.5</td>
<td>.7</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>1/0/1</td>
<td>1/0/1</td>
<td>.9/1/6</td>
<td>.61</td>
<td>.8</td>
<td>.5</td>
<td>.7</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>1/0/1</td>
<td>1/0/1</td>
<td>.9/1/6</td>
<td>.61</td>
<td>.8</td>
<td>.5</td>
<td>.7</td>
<td>.2</td>
<td></td>
</tr>
</tbody>
</table>

*: و ** به ترتیب غیر معنی‌دار و معنی‌دار در سطح استحصال .05 و 1 درصد از نشان می‌دهد.
جدول ۲- ضرایب تابع تولید آب- شهری عامل‌کرد علفه و شاخص‌های آماری ارزیابی توابع تولید در تیمارهای اعمال تنش آبی در مرحله رشد

<table>
<thead>
<tr>
<th>تابع تولید</th>
<th>ضرایب توابع تولید</th>
</tr>
</thead>
<tbody>
<tr>
<td>لگاریتمی</td>
<td>درجه دوم</td>
</tr>
<tr>
<td>۴/۲/۲۰۱۱</td>
<td>*۴/۲/۲۰۱۱</td>
</tr>
<tr>
<td>*۴/۱۲/۲۰۱۱</td>
<td>*۴/۱۱/۲۰۱۱</td>
</tr>
<tr>
<td>*۴/۱۱/۲۰۱۱</td>
<td>*۴/۳۰/۲۰۱۱</td>
</tr>
<tr>
<td>*۴/۳۰/۲۰۱۱</td>
<td>*۴/۱۲/۲۰۱۱</td>
</tr>
</tbody>
</table>

میانگین رنگ‌ها

این نتایج نشان می‌دهد که توانایی هر مرحله از این یادگیری به عنوان یک دستگاه صورت گرفته است. با اعمال تنش آبی در مرحله اول، شاخص‌های آماری به‌صورت همخوانی با داده‌های محاسبه شده از توانایی هر مرحله از این یادگیری به عنوان یک دستگاه صورت گرفته است. با اعمال تنش آبی در مرحله اول، شاخص‌های آماری به‌صورت همخوانی با داده‌های محاسبه شده از توانایی هر مرحله از این یادگیری به عنوان یک دستگاه صورت گرفته است.
جدول 4- ضرایب تابع تولید آب - شوری و علوفه و شاخه‌های آماری ارزیابی توابع تولید در تیمارهای اعمال تشییع آب در مرحله دانه

| ضرایب توابع تولید | تابع تولید | ضرایب تولید | تابع کاری‌شده | تابع خطی | تابع لگاریثموی | تابع دو گامه | تابع هم‌الا
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a0</td>
<td></td>
<td>0/957**</td>
<td>0/927**</td>
<td>0/957**</td>
<td>0/927**</td>
<td>0/957**</td>
</tr>
<tr>
<td></td>
<td>a1</td>
<td></td>
<td>0/897**</td>
<td>0/877**</td>
<td>0/897**</td>
<td>0/877**</td>
<td>0/897**</td>
</tr>
<tr>
<td></td>
<td>a2</td>
<td></td>
<td>0/827**</td>
<td>0/797**</td>
<td>0/827**</td>
<td>0/797**</td>
<td>0/827**</td>
</tr>
<tr>
<td></td>
<td>a3</td>
<td></td>
<td>0/757**</td>
<td>0/727**</td>
<td>0/757**</td>
<td>0/727**</td>
<td>0/757**</td>
</tr>
<tr>
<td></td>
<td>a4</td>
<td></td>
<td>0/687**</td>
<td>0/657**</td>
<td>0/687**</td>
<td>0/657**</td>
<td>0/687**</td>
</tr>
<tr>
<td></td>
<td>a5</td>
<td></td>
<td>0/617**</td>
<td>0/587**</td>
<td>0/617**</td>
<td>0/587**</td>
<td>0/617**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>آماره</th>
<th>F</th>
<th>RMSE</th>
<th>EF</th>
<th>ME</th>
<th>CRM</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15/206</td>
<td></td>
<td>3/209</td>
<td>2/173</td>
<td>67/130</td>
<td>64/183</td>
</tr>
</tbody>
</table>

** و *** به ترتیب نمونه‌دار و متغیر در سطح احتمال 5 و 1 درصد را نشان می‌دهند.

![شکل 1- تغییرات علوفه‌زن در بر عهده‌ای را نسبت به مقدار آب آبیاری و شوری با استفاده از داده‌های مزرعه‌ای (الف) و داده‌های مدل (ب)](image-url)
نمی‌تان مقدار آب‌آوری را افزایش داد. افزایش مقدار آب آوری در منحنی هم محصول نقشه ای است که خط مسیر بر آن موازی محور آب آوری کرده. از این نکته با دوم‌اینفیورت افزایش عمکرد محصول نمود. منحنی هم
دیوید/دیکارتم/دیکارتم (دیوید/دیکارتم)
می‌توان از منحنی هم محصول استفاده کرد. منحنی های عمکرد یکسان محصول نشان دهنده مکان هندسی ترکیبات مختلف شوری آب و مقدار آب آوری است که عمکرد یکسان را در ذرت خونهای
توییل می‌کنند(شکل ۳). در مقادیر یکسان آب قابل دسترس، با افزایش شوری آب عمکرد محصول کاهش یابد و مهچینی در مقدار یکسان شوری آب آوری، با افزایش آب قابل دسترس عمکرد محصول نیز افزایش می‌یابد.
با استفاده از مقدار مقاوتی از مقدار آب قابل دسترس و شوری آب آوری می‌توان به عمکرد مطلوب دست یافته. به عبارت دیگر،
برای چگونگی آم که عمکرد در شوری های بالای آب آوری

دیوید/دیکارتم (الف)

دیوید/دیکارتم (ب)

شکل ۳- منحنی هم به صورت نابینی از شوری و مقدار آب آوری (الف) و منحنی هم به صورت نابینی از شوری و مقدار آب آوری (ب)

باتری گل‌گیری آم که عمکرد در شوری های بالای آب آوری

به طور کلی عمکرد با افزایش شوری و کاهش مقدار آب آوری
کاهش می‌یابد. برای بررسی اثرات در عامل شوری و مقدار آب آوری و تغییر جایگزینی هر یک از عوامل برای حصول به عمکرد یکسان
می‌توان از منحنی هم محصول استفاده کرد. منحنی های عمکرد یکسان محصول نشان دهنده مکان هندسی ترکیبات مختلف شوری آب و مقدار آب آوری است که عمکرد یکسان را در ذرت خونهای
توییل می‌کنند(شکل ۳). در مقادیر یکسان آب قابل دسترس، با افزایش شوری آب عمکرد محصول کاهش یابد و مهچینی در مقدار یکسان شوری آب آوری، با افزایش آب قابل دسترس عمکرد محصول نیز افزایش می‌یابد.
با استفاده از مقدار مقاوتی از مقدار آب قابل دسترس و شوری آب آوری می‌توان به عمکرد مطلوب دست یافته. به عبارت دیگر،
برای چگونگی آم که عمکرد در شوری های بالای آب آوری

دیوید/دیکارتم (الف)

دیوید/دیکارتم (ب)

شکل ۳- منحنی هم به صورت نابینی از شوری و مقدار آب آوری (الف) و منحنی هم به صورت نابینی از شوری و مقدار آب آوری (ب)
شوري کوشی در اراضی استان گلستان، نشریه‌های آب و خاک (علوم و صنایع کشاورزی)، جلد 9، شماره 39، 1341-1354.

نتیجه‌گیری

با توجه به نتایج حاصله می‌توان گفت که در بیشین زیربسته‌های دارای فرآیند تولید کشاورزی، تولید محصولات بدون بهره‌برداری از افزایش هر کاهش شرایط آبیاری، می‌تواند موجب افزایش قیمت عوامل فرآیند تولید کشاورزی در منطقه خشک و تغییرات در نرخ برداشت عمده و مصرف آب شود.

مراجع

اصغری، ح. شهابی، م. رجوی، ج.، عراقی، ج.، سیاهچای، د. و مجدی، ا. 1383. طبقه‌بندی کاشت‌های کشاورزی در جهت مدیریت منابع آب در توسیع پایدار، مجمع‌آوری مقالات باردهمین همایش کمیته ملی آب‌های زمین، نماینده شرکت ایران، ایران.

سالحی، م. کاشفی، م. و کیانی، ع. 1390. تغییرات در نرخ برداشت عمده دلالی، شرکت ایران، ایران.

Sepaskhah, A. R. and Boersma, L. 1979. Shoot and root growth exposed to several levels of matric potential and NaCL induced osmotic potential of
Assessment of Water-Salinity Production Functions of Forage Maize in Khorasan Razavi Province

Z. Shirmohammadi Aliakbarkhani1*- H. Ansari2- A. Alizadeh3- and M. Kafi4

Abstract

The great challenge of the agricultural sector in countries located in arid and semiarid regions in the face of inadequate quantity and quality of water, Produce more food with less water or agricultural production is optimized. Such methods can be used to optimize agricultural production, water-salinity production functions named that Planning and policy for agricultural production in this area is useful. To determine the crop water production function water-salinity, this experiment was carried out at 2011 in Khorasan Razavi province. Maize was grown with three levels of saline water (1.8, 3 and 4.6 dS/m), four levels of applied water (100, 75, 50 and 25 percent of water requirement) and four levels of stage of deficit irrigation applied (continuously during the growing season, vegetative, flowering and grain filling). Data were analyzed using linear, quadratic, Cobb-Douglas and transcendental functions. Results showed that quadratic function estimated yield better under salinity and water stress. Marginal rate of technical substitution showed that water salinity and water supply can be substituted with the other in a wide range in order to achieve equal amount of yield. Marginal production of water quantity and quality were 0.77 and -2.75 ton.ha⁻¹, respectively.

Keywords: Production function, Marginal product, Regulated deficit irrigation, Water quality, flowering

Received: 8-30-2013
Accepted: 2-19-2014

1,2,3,4 - Ph.D. Student, Associate Professor, Professor of Water Engineering Department and Professor of Agronomy department Ferdowsi University of Mashhad
(* - Corresponding Author Email: mshirmohamady@yahoo.com)