هفدهمین کنفرانس علوم چندری
شمسی ۱۳۹۳ ۷ از ۱۰ بهار
هدف از این تحقیق بررسی دانستنیه‌ی عروقی روح موش پس از تحریک تخمکی روی مادری در حوزه‌ی عروقی رحم گذاری با استفاده از hCG و hMG داشته است. ترتیب تخمکی شانه قریب به 60/00 درصد برای اندازه‌گیری و غلظت 3%SDS تهیه شدند. دستگاه درون‌یابی در میان گروه‌های آزمایشی و کنترل مورد گذاری قرار گرفت. نتایج نشان داد که دانستنیه‌ی عروقی رحم گروه‌های آزمایشی (hCG و hMG) افزایش یافته است اما تفاوت آماری معنی‌داری بین دو گروه وجود نداشت. در مجموع به نظر می‌رسد که تحریک تخمکی گذاری بر دانستنیه‌ی عروقی اندومتر تأثیر نداشته است.

121. Effect of ovarian induction on the vascular density of mouse endometrium at implantation period

مومنی, S., Beigi, M., Momeni, H. and Rafiei, E.,
1Department of Biology, Faculty of Science, University, Arak, Iran; Email: sedigheh.momeni@gmail.com, H-momeni@arak.ac.ir. 2Department of Anatomical Sciences, Faculty of Medicine, University of Medical Sciences, Khorramabad, Iran; Email: manibe2000@yahoo.com. 3Department of Pathology Sciences, Faculty of Medicine, University of Medical Sciences, Khorramabad, Iran.

The aim of this study was to investigate the vascular density of endometrium after ovarian induction using hMG&hCG at implantation period. NMRI female mice (6-8 weeks) divided into control (n=5) and experimental (n=5) groups. The mice were rendered pseudopregnant. The experimental group was stimulated using hMG&hCG. After 4/5 days (implantation period) animal sacrificed and blood sample collected for evaluated of estrogen and progesterone range from heart. Then samples were obtained of ½ middle part of uterine horn for histological studies. Our results showed that the level of estrogen and progesterone was higher in stimulated group (estrone=29/75±10/09, progesterone=2/37±1/81) than in the control group (estrone=10/07±2/09, progesterone=2/27±0/2) (P<0.05). Comparative between vascular densities of endometrium showed that increased in stimulated group. The finding indicated increase in density of vascular of endometrium in stimulated group but significant difference were not found between control (1.75±0.25) and stimulated (2.8±0.75) group (P<0.05). The ovarian induction could not change on vascular density of endometrium.

122. Preparation of a natural three dimensional elastic scaffold, from amphibians (Pelophylax ridibundus)

محمدازاده، N., 1Moghaddam-Matin, M., 2Mahdavi-Shahri, N., 1 and Fereidoni, M.,
1Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Email: na.mohammadzadeh@stu-mail.um.ac.ir, mahdavin@um.ac.ir, fereidoni@um.ac.ir. 2Department of Biology and Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Email: matin@um.ac.ir.

Scaffolds constitute the major component of tissue engineering applications, providing a three dimensional substrate to support cell growth and differentiation. The effective factors on the mechanical properties of scaffolds are size and porosity, scaffold construction method and its composition. Lung tissue consists of an interconnected porous network along with many elastic fibers. Macromolecules including, collagen, elastin and proteoglycans are important for determination of the extracellular matrix (ECM) mechanical properties of the lung tissue. In this study, frog’s lung is considered as a suitable model for decellularization since it is a transparent tissue, with minimal thickness. The purpose of this study is providing an elastic natural scaffold of frog’s lung as a model in tissue engineering research. Decellularization of the frog’s lung was performed using physical (snap freeze-thaw) and chemical (0.25%and 0.5% SDS) methods. Samples were prepared for histological studies and stained with Hematoxylin-Eosin and Orsein-Pick indigo carmin. The results, confirmed removing of the cells from the ECM and maintaining the collagen and elastic fibers in the scaffolds prepared by treatment with 0.5%SDS for 24h. Thus, our results indicated that it is possible to prepare a natural 3D elastic scaffold from the frog’s lung using SDS. This scaffold can serve as a model to study its inductive effects on various cellular behaviors such as migration, proliferation and differentiation.