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Abstract In this article, a new model for stochastic congestion management consid-
ering system uncertainties has been developed. The model utilizes chance-constrained

programming to propose the stochastic formulation for the congestion management
problem. In this approach, transmission constraints are considered with stochastic

models instead of deterministic models. Indeed, this approach considers network
uncertainties with a specific level of probability in the optimization process. Moreover,

an efficient numerical approach based on the real-coded genetic algorithm and Monte
Carlo technique has been proposed to solve the chance-constrained programming

based congestion management scheme. Effectiveness of the proposed algorithm has
been evaluated by applying the method to the IEEE 30-bus test system.

Keywords chance constrained programming, congestion management, Monte Carlo
simulation, real-coded genetic algorithm, system uncertainties

1. Introduction

Open access to transmission networks in the restructured power system has resulted in

developing bilateral contracts during the past decade. This trend together with the growth
of electricity consumption has increased the possibility for the occurrence of transmis-

sion congestion in one or more transmission lines when transferring electrical energy

between two buses or two zones in the power system. Congestion essentially means

the violation in one or some of the physical, operational, and policy constraints of the

network. Both vertically integrated and unbundled power systems have experienced such

problems [1, 2]. Congestion arises from two main resources: the occurrence of system
contingencies and ignoring generation locations in the market clearing mechanism [3].

Congestion may occur in day-ahead, hour-ahead, and real-time market dispatch. When

congestion does happen, the system operator is responsible for necessary preventive

actions to relieve it. The set of the remedial activities performed to relieve violated

limits is referred to as congestion management (CM). Managing network congestion
may impose some additional cost on the operation of the system. This is due to the fact
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Probabilistic Congestion Management Using CCP 973

Nomenclature

Sets

NG set of generators

NL set of dispatchable loads

Np set of chromosomes

Functions

C re-dispatch function for market participants

� normal distribution function

Variables

Plinei
flow of line l

�PGi re-dispatch power of the generator i

�PC

Gi , �P
�

Gi increment and decrement re-dispatch power of generator i

�PLj re-dispatch power of the load j

�Plinel
change in flow of line l

Constants

al;i transmission congestion distribution factor for line l with

respect to injection at bus i

MTTF mean time to failure
MTTR mean time to repair

P max
linel

maximum allowed flow in line l

rij correlation coefficient between i th and j th random variables

s number of random variables in random vector

˛l confidence level for flow of line l

�P min
Gi , �P max

Gi maximum allowed re-dispatch power for generator i
�P min

Lj , �P max
Lj maximum allowed re-dispatch power for load j

�i mean value for random variable i
�i standard deviation for random variable i

that to alleviate network congestion, cheaper generators may become replaced by more

expensive ones in the primary market dispatch. Transmission congestion may result in
market power for some participants or threaten the stability of the system [4]. There-

fore, preventive or corrective actions are necessary to relieve congestion and decrease

system risk.

Recently, many researchers have been investigating CM techniques. The basic differ-

ences among CM approaches arise from modeling of the power market, available controls
to relieve congestion, and solving algorithms for the proposed CM problems. Kumar

et al. [1] categorized CM approaches into four distinct methods, including sensitivity-

factor-based, re-dispatch-based, auction-based, and pricing-based methods. In [1], a wide

range of literature on the mentioned approaches was reviewed. A unified framework for

different CM schemes was presented in [2]. In this framework, two distinct stages for the

operation of an electricity market, namely market dispatch and congestion re-dispatch,
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974 M. Hojjat and M. H. Javidi

were considered. The second stage will only be performed if the first stage cannot

achieve a feasible operating state with no constraint violation. The general concept of

the congestion re-dispatch problem, in most CM methods, implies minimizing the cost

of market rearrangement to alleviate congested lines [5–7]. Sensitivity of line flows to a

change of power injection at different buses is the original basis for market re-dispatch

to manage network congestion [8]. Utilizing flexible AC transmission systems (FACTS)
devices to maximize the use of transmission facilities, as well as employing distributed

resources to remove the network congestion, has been also considered recently [9, 10].

Uncertainties in physical aspects of the network may be one of the most challenging

features of a power system, especially in the restructured environment. These uncertainties

may be related to different power system sections, including generation, transmission,
and distribution [11]. Therefore, incorporation of system uncertainties in the modeling

of such power system algorithms as CM is becoming a vital issue in power system

analysis. Considering these uncertainties in CM can seriously improve the feasibility

of the operating state and the power system security level. As an example, system

uncertainties were incorporated into a CM algorithm in [12]. At first, possible scenarios

of power system operating states were generated, and then these scenarios were reduced
to include only those that were the most probable and non-repetitive. CM is performed

for all of the final scenarios and related solutions for each one calculated. The final

solution is obtained from the average of CM solutions for the selected scenarios.

In this article, a new model for stochastic CM using chance-constrained program-

ming (CCP) has been developed. In this approach, stochastic, rather than deterministic,
models have been used for transmission constraints. This approach considers network

uncertainties with a specific level of probability in the optimization process. Moreover,

an efficient numerical approach based on the real-coded genetic algorithm (GA) and

Monte Carlo technique has been proposed to solve the CCP-based CM scheme. The

effectiveness of the proposed algorithm has been evaluated by applying the method to
the IEEE 30-bus test system.

2. Deterministic CM Model

The system operator intends to maximize the use of network assets regarding network

security. Voltage instability and the thermal limit are the most common barriers in utilizing

the full capacity of transmission networks [13]. In fact, such limitations may lead to

network congestion, which affects the power market arrangement. In this article, a day-

ahead electricity market has been used as the framework for the implementation of the
CM algorithm. In this market, suppliers and consumers submit their bids to the market

operator, who is responsible for the clearing procedure [14]. The time framework for a

market clearing procedure is 24 hours; however, CM will be performed hour by hour if

necessary.

Deterministic CM in this environment is formulated as follows:

minimize

NG
X

iD1

Ci .�PGi /C

NL
X

j D1

Cj .�PLj /; (1)

subject to Plinel
C

NG
X

iD1

al;i�PGi �

NL
X

j D1

al;j�PLj � P max
linel

8l 2 NLine; (2)
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Probabilistic Congestion Management Using CCP 975

�P min
Gi � �PGi � �P max

Gi 8i 2 NG ; (3)

�P min
Lj � �PLj � �P max

Lj 8j 2 NL; (4)

NG
X

iD1

.�PGi / D

NL
X

iD1

.�PLj /: (5)

Here, the objective function of the CM problem is to minimize the total cost of re-dispatch

steps in a day-ahead market. The objective function in Eq. (1) consists of two distinct

items that correspond to the cost imposed by generators and loads for congestion re-
dispatch, respectively. In this equation, Ci .�PGi / is the re-dispatch cost function related

to generators, which can be written in the form of Eq. (6), where C
up

i and C down
i are the

bids for the power increment and decrement by generator i , respectively; the re-dispatch

cost function related to the loads is similar to that of generators:

Ci .�PGi / D C
up
i ��PC

Gi C C down
i ��P�

Gi : (6)

Equation (2) explains the changes in line flows. In this equation, al;i stands for the trans-

mission congestion distribution factor (TCDF), which was described in [15]. The TCDF

is defined as the change in the flow of transmission line l due to the unit increment in

the power injection at bus i ,

al;i D
�Plinel

�PGi

: (7)

Equations (3)–(5) illustrate the allowed range of changes for the injection power of
generators and loads; moreover, the constraint in Eq. (5) models the power balance

equation.

3. Stochastic CM Model

There are many intrinsic uncertainties that must be considered in modeling power system

problems in order to have a comprehensive analysis [16]. Some of the major power

system uncertainties are load forecasting error, availability of equipment, and price
uncertainties in the power market. The modeling of these uncertainties can be considered

as the first step in stochastic CM.

3.1. Modeling of Power System Uncertainties

Due to the fact that system loads follow a random pattern, an error in load forecasting

is inevitable, and therefore, the amount of system loads is modeled as a random variable

(�). The probability density function (PDF) of this variable may be assumed to have a

normal distribution form [16] and can be written as follows:

�.�/ D
1

p

.2�/sj†j
exp

�

�
1

2
.� � �/T†�1.� � �/

�

; (8)
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976 M. Hojjat and M. H. Javidi

where � and † are the mean vector and covariance matrix in the forms

� D Œ�1; �2; : : : ; �s�
T ; (9)

† D

2

6

6

6

6

6

4

�2
1 �1�2r12 � � � �1�sr1s

�2�2r21 �2
2 � � � �2�sr2s

� � � � � � � � � � � �

�s�1rs1 �s�2rs2 � � � �2
s

3

7

7

7

7

7

5

: (10)

In this article, short-term load forecasting is used, and therefore, the scale of �i

�i
should

be smaller than 0.15 [16].

Availability of system equipment, including generators and transmission lines, can

be modeled with a forced outage rate (FOR) [17]:

FOR D
MTTR

MTTR C MTTF
: (11)

The necessary information to calculate MTTR and MTTF is extracted from the trans-
mission lines history, which is available in dispatching center of the network. The

uncertainties related to market prices have been neglected in this article.

This study employs Monte Carlo simulation to model the mentioned system un-

certainties in stochastic CM. Performing Monte Carlo considering the PDF of input

variables generates the PDF of output variables, such as line flows (Plinel
). These PDFs

are effectively used to formulate the stochastic CM.

3.2. Stochastic Optimization Using CCP

CCP is a special type of optimization problem that is useful for problems with uncertain

variables in their objective function or constraints. In this type of optimization, con-

straints are guaranteed to be satisfied with a specific level of probability instead of being
considered firmly. Typical CCP can be formulated as follows [18]:

minimize f .x/

Prfgi .x; �/ � 0g � ˛i 8i:
(12)

In this equation, x is the decision vector of the optimization problem; � stands for the

set of uncertain variables; and ˛i , referred to as the confidence level, identifies the level

of constraints satisfaction.

Considering CCP formulations in Eq. (12), probabilistic CM can be formulated as

follows:

minimize

NG
X

iD1

Ci .�PGi /C

NL
X

j D1

Cj .�PLj /; (13)

subject to Pr

2

4Plinel
C

NG
X

iD1

al;i�PGi �

NL
X

j D1

al;j�PLj � P max
linel

3

5 � ˛l 8l 2 NLine;

(14)
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Probabilistic Congestion Management Using CCP 977

�P min
Gi � �PGi � �P max

Gi 8i 2 NG; (15)

�P min
Lj � �PLj � �P max

Lj 8j 2 NL; (16)

NG
X

iD1

.�PGi / D

NL
X

iD1

.�PLj /: (17)

Equation (14) shows the line flow constraints that should be satisfied with the least prob-

ability of ˛l . In CCP-based CM, ˛l identifies the probability of constraints satisfaction

for the flow of line l . For instance, if ˛l D 0:7, the stochastic constraints of transmission

branches must be satisfied for at least 70% of system states, while in the case where

˛l D 1, a CCP solution must be guaranteed for all system states. These possible system
states should be determined before performing stochastic CM.

It should be noted that Plinel
in Eq. (14) is an uncertain variable, the PDF of which

is identified in the primary Monte Carlo simulation. Indeed, uncertain line flows (Plinel
)

are the reflection of the system uncertainties in the formulation of the stochastic CM. A

secondary Monte Carlo simulation is also utilized to check the satisfaction of stochastic
constraints in Eq. (14).

3.3. A Numerical Solving Algorithm

The optimization problem in Eqs. (13)–(17) includes a set of stochastic constraints in

Eq. (14). Therefore, solving this problem is very complicated. In [16], a sequential

approach was proposed to solve this type of optimization problem. The approach consists

of a simulation layer beside an optimization layer. Also, a numerical method using the

GA and Monte Carlo technique was presented in [19] to solve the stochastic transmission
expansion planning that is modeled by CCP.

In this article, the real-coded GA has been incorporated into Monte Carlo simulation

to solve the proposed stochastic CM. In fact, the real-coded GA generates the suggested

solution for stochastic CM, while Monte Carlo evaluates the satisfaction of the probabilis-

tic constraints in Eq. (14). The PDFs of line flows, which are required in the formulation
of Eq. (14), have been already computed using a primary Monte Carlo.

The real-coded GA, which has been widely used in CM problems, can be formulated

as follows [20]; in a real-coded system, chromosome m will be in the form

Cm D Œ�Pm1; �Pm2; : : : ; �Pmn�; m D 1; 2; : : : ; Np:

The fitness function with respect to the re-dispatch cost function in Eq. (13) can be

written as

Fitm D
X

i2NG

.�Pmi � Bidi /C
X

j 2NL

.�Pmj � Bidj /

C
X

k2NT

.�Pmk � Bidk/; m D 1; 2; : : : ; Np; (18)

where �Pmi is the re-dispatch power of generator i , and Bidi is the bid price offered

by generator i . If chromosomes Cv D Œ�Pvi ; �Pv2; : : : ; �Pvn� and Cw D Œ�Pw1;
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978 M. Hojjat and M. H. Javidi

�Pw2; : : : ; �Pwn� from generation e are crossed, two possible children will be created

in the form

C
gC1

1 D !C e
w C .1 � !/C e

v ;

C
gC1
2 D .1 � !/C e

w C !C e
v ;

(19)

where ! is a constant parameter chosen to be equal to 0.3 [20]. The mutation function

alters the bit �Pmi from chromosome Cm D Œ�Pm1; �Pm2; : : : ; �Pmn� in the form

�Pmut
mi D

8

<

:

�Pmi C  
�

P max
mi � Pmi

�

if r D 0

�Pmi C  
�

Pmi � P min
mi

�

if r D 1
; (20)

 .y/ D y � .1 � �.1�e=E/b

/; (21)

where r is a random bit to identify the course of changes, and  .y/ is a function that
generates a number in the range Œ0; y�. Also, E is the total number of generations, and b

is the dependence factor to the number of generations, which is chosen equal to 5 [20].

When e is small, the function generates an output near y, while increasing e will decrease

the generated value.

The main steps to solve the CCP-based stochastic CM problem using a combined
algorithm including the Monte Carlo simulation and real-coded GA can be expressed as

follows.

1. Produce the first generation of decision variables Cm for the real-coded GA and
their fitness function Fitm from Eq. (18).

2. Calculate line flow changes that resulted from one of the decision variables Cm

using TCDFs, i.e.,

�Plinel
D

NG
X

iD1

al;i�PGi �

NL
X

j D1

al;j�PLj 8l 2 NLine:

3. Select one of the line flow vectors Pline that resulted from primary Monte Carlo.

4. Check the satisfaction of probabilistic constraints. For this purpose, �Plinel
,

which resulted from the selected strategy in Step 2, will be added to the selected
line flow vector in Step 3. If the inequality constraint in Eq. (22) is satisfied, nl

will be increased by one:

Plinel
C�Plinel

� P max
linel

8l 2 NLine: (22)

5. Steps 3 and 4 will be repeated for all of the other line flow vectors in the primary
Monte Carlo using the same value for �Pline.

6. The probabilistic constraint is satisfied if the inequality in Eq. (23) is satisfied.

N is the total number of line flow vectors in the primary Monte Carlo, and nl

is the successful epochs in the above-mentioned process:

nl

N
� ˛l : (23)

7. If Eq. (23) is not established, add the penalty value to the fitness function Fitm.

8. Steps 2–7 will be repeated for all Cm.
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Probabilistic Congestion Management Using CCP 979

9. Produce the next generation of Cm using elitism, mutation, and cross-over in

Eqs. (19)–(21) and return to Step 2.

10. When the number of generations is completed, propose the final decision variable

(relief strategy).

The suggested algorithm for probabilistic CM using the Monte Carlo-based real-

coded GA is presented in Figure 1.

4. Simulation Results

To evaluate the proposed probabilistic CM method, both deterministic and probabilistic

CM models have been applied to the IEEE 30-bus test system. Figure 2 shows the single-

line diagram for the IEEE 30-bus test system. This system is composed of 6 generators

and 41 transmission lines [21].

To evaluate the efficiency of the stochastic CM, two different cases have been inves-
tigated:

� Case 1: only load uncertainties have been considered and
� Case 2: all three uncertainties mentioned in Section 3.1 have been modeled.

Deterministic and probabilistic CM methods have been applied to the above-mentioned

cases, and the results have been compared with each other. It is assumed that there are

nine participants, including generators at buses 5, 8, and 11 and dispatchable loads at
buses 7, 8, 10, 15, 20, and 21, which contribute in the congestion re-dispatch step in the

market. The main information about IEEE 30-bus test system and market participants is

included in the Appendix.

The deterministic and expected values of the TCDFs for line 14, related to the mar-

ket participants who contribute in the re-dispatch market, are shown in Figure 3. The
deterministic approach and the proposed method in [12] utilize the deterministic values

of TCDFs, while the proposed approaches in this article use the mean values of the

TCDFs.

Table 1 shows the data for power flow in line 14. It is assumed that the thermal limit

for line 14, calculated by the system operator, is 170 MW; therefore, line 14 has a great

overload probability. The probability of lines overload, i.e., Pr.Pline/, has been calculated
based on the PDF of line flows, which are computed from the primary Monte Carlo. As

it can be seen in this table, the probability of line overload in Case 2 is greater than that

in Case 1; this is because of considering all of system uncertainties in simulations of

Case 2. Furthermore, in Case 2, the value of the standard deviation for flow in line 14 is

greater than that in Case 1 for the same reason.
System uncertainties are modeled using a primary Monte Carlo simulation. For this

purpose, the probability distribution function of uncertain variables in a power system

is determined based on its behavior, which is described in Section 3.1. A sample of

each uncertain variable is generated with respect to its PDF, and the power market is

simulated using the generated values of uncertain variables in a deterministic manner.
This process is performed for a sufficient number of iterations to compute the PDF of

the output variables, such as line flows. The number of Monte Carlo iterations depends

on the system size, number of uncertain variables, and also the severity of uncertainties.

An independent Monte Carlo simulation is performed for each of the two mentioned

cases. To evaluate the sufficiency of the Monte Carlo samples, the convergence diagram

for one of the output variables was presented in [22]. Figure 4 shows the convergence of
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980 M. Hojjat and M. H. Javidi

Figure 1. Solving algorithm for proposed probabilistic CM. (color figure available online)
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Probabilistic Congestion Management Using CCP 981

Figure 2. Single-line diagram for IEEE 30-bus test system.

flow for line 14 along with simulation iterations. The percentage of variable changes in
Case 2 is more than that in Case 1, because Case 2 models all of the system uncertainties

while Case 1 considers only load uncertainties. Therefore, the number of Monte Carlo

iterations needed for convergence of the output variables in Case 2 is greater.

The results of CM for Case 1 are shown in Table 2. In this table, the cost of

relieving congestion, total amount of load interruption (�PL), changes in flow of line 14
(�Pline14

), and probability of line overload for deterministic and probabilistic models

have been compared with each other. It should be reminded that ˛ D 0:6 means that the

line flow constraints must be satisfied for at least 60% of total states that are simulated

in primary Monte Carlo simulation.

The deterministic approach reduces the overload probability to 48.97%, while this

figure declines to 40.65% in the scenario-based stochastic CM. To have the same situation,
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982 M. Hojjat and M. H. Javidi

Figure 3. TCDFs for line 14 in IEEE 30-bus test system.

Table 1

Basic results for the flow of line 14 in two simulation cases

Case �14 (MW) �14 Maximum (MW) Pr.Pline/

1 184.2 8.43 202.7 0.936

2 184.3 11.79 224 0.968

Table 2

Redispatch results for Case 1 within different approaches

Method Algorithm

Cost

($/hr)

�PL

(MW)

�Pline14

(MW)

Pr

.Pline/

Deterministic — 121.2 �16.38 �14.33 0.4897

Stochastic [12] Scenario generation 142.8 �19.28 �16.30 0.4065

and reduction
Proposed method RCGA 150.1 �20.28 �16.46 0.3929

(˛l D 0:6)
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Probabilistic Congestion Management Using CCP 983

Figure 4. Convergence of output variable during Monte Carlo simulation.

˛ is set to 0.6 in the proposed stochastic CM, and therefore, it is expected that the

overload probability decreases to about 40%. Consequently, in the proposed method to

solve probabilistic CM, the system operator can specify the level of network security

using parameter ˛ in CCP. In fact, the flexibility of the proposed method is higher than

other methods, since it utilizes the confidence level in the CM process. Furthermore, in
contrast to the method introduced in [12], which uses some approximations to reduce

the number of scenarios, the proposed method of this study has fewer approximations

because it employs the PDF of line flows in the stochastic CM. It is clear that the cost

of market re-dispatch is increased due to the reduction of overload probability, with the

main reason being that to reduce the flow of line 14, the amount of re-dispatched power
is increased. The amount of re-dispatched power in CCP-based CM is more than that in

the deterministic approach to meet the satisfaction level for the stochastic constraints.

Table 3 shows the simulation results for both cases utilizing the proposed CCP-based

CM with 90% of confidence level. In Case 2, all of the power system uncertainties have

been modeled. Consequently, in this case, the amount of reduction in flow of line 14 is

Table 3

Redispatch results of the proposed approach with ˛ D 0:90

Case Cost ($/hr) �Pline14
(MW) Pr.Pline/

1 263.3 �25.13 0.1072

2 340.8 �29.33 0.1057
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984 M. Hojjat and M. H. Javidi

Figure 5. Re-dispatch power for different participants with ˛ D 0:90.

bigger than that in Case 1 to have 10% overload probability. Therefore; the re-dispatch

costs are bigger than that of the previous case with the same confidence level (˛).
Figure 5 shows the rescheduled power of different market participants for both cases

with 90% of confidence level. The difference between re-dispatch strategies arises from

the difference between line flow PDFs in two cases.

Line flow changes that resulted from CM strategies in Figure 5 are compared with

those in the scenario-based approach in Figure 6. Case 2 imposes the most severe changes

in the flow of line 14 compared with Case 1, because this case has the greater overload
probability and 90% of confidence level.

The cost of congestion re-dispatch within different confidence levels is shown in

Figure 7. It is obvious that re-dispatch cost in Case 2 is more than that in Case 1.

Moreover, increasing the confidence level will result in an ascending trend for re-dispatch

costs. When ˛ is raised, the overload probability decreases, and consequently, network
security level increases. Therefore, it can be said that this cost is spent to preserve

network security.

Reviewing the results shows that the new formulation proposed here for stochastic

CM effectively models system uncertainty and provides an efficient measure for the

system operator to handle system security. The proposed method may be more proper
for the modern power system, the uncertainty sources of which are growing dramatically

because of introducing renewable energies and distributed resources.

5. Concluding Remarks

Considering power system uncertainties is inevitable to have a comprehensive analysis

of network operation. Most of the electricity markets include two distinct stages in
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Figure 6. Line flow changes resulting from the proposed method with ˛ D 0:90.

Figure 7. Re-dispatch cost of stochastic CM within different confidence levels.
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986 M. Hojjat and M. H. Javidi

operation: market dispatch and congestion re-dispatch. As discussed in the literature, the

second stage will be performed when a network constraint is violated. Modeling system

uncertainties in the congestion re-dispatch step may have a great impact on network

constraints satisfaction within different probable conditions.

In this article, a new formulation for probabilistic CM based on CCP has been pre-

sented. Applying CCP in probabilistic CM allows stochastic—instead of deterministic—
constraints to be defined. Therefore, transmission constraints can be formulated with a

specific confidence level, which will be decided by the system operator. Introducing the

confidence level in the congestion re-dispatch step promotes the flexibility of the CM

approach.

Due to complexity of the CCP-based probabilistic CM, a numerical method is utilized
in this study to solve the proposed problem. The numerical method consists of a real-

coded GA and a Monte Carlo simulation. The real-coded GA is used to find the optimum

solution for the CM problem, while Monte Carlo simulation is implemented to investigate

the satisfaction of stochastic constraints.

Simulation results show that the probability of constraints satisfaction identifies the

re-dispatch strategies in different market conditions. The costs of market re-dispatch
increases when the system operator intends to have a higher probability of constraints

satisfaction. In such a situation, changes in the primary market arrangement will be bigger,

and therefore, the flow of congested lines will be reduced more than that in the other

situations with less satisfaction probability. In fact, the new formulation of probabilistic

CM models the probable system conditions, and consequently, the proposed strategy
to relieve congestion will have an acceptable confidence level as decided by the system

operator. It should be noted that the purpose of this study is not to determine the optimum

amount of confidence level in the CM process; rather, it introduces a new model to carry

system uncertainties for which the system operator can identify its desirable confidence

level.
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Appendix: Information of the IEEE 30-bus Test System

Table A1

Generator data for IEEE 30-bus system

Cost coefficients Output limits

Bus no. C up ($/MWh) C down ($/MWh) Pmin Pmax FOR

5 6 5.4 0 300 0.005

8 5.475 1.2 0 300 0.008

11 4.275 3 0 300 0.008

Table A2

Load data for IEEE 30-bus system

Bus

no.

Load

quantity

(MW)

C up

($/MWh)

C down

($/MWh)

�P max
Lj

(MW)

�P min
Lj

(MW)

2 9 — — — —

3 18 — — — —
4 22.5 — — — —

5 13.5 — — — —

7 27 1.25 4.4 15 �27

8 18 1.2 4 15 �18

10 27 1.1 4.4 15 �27

12 13.5 — — — —
14 27 — — — —

15 31.5 1.2 4.4 15 �31.5

16 31.5 — — — —

17 9 — — — —

18 27 — — — —
19 58.5 — — — —

20 63 1.2 4.4 15 �63

21 45 1.1 4.8 15 �45

23 4.5 — — — —

24 40.5 — — — —

26 27 — — — —
29 36 — — — —

30 36 — — — —

D
ow

nl
oa

de
d 

by
 [

Jy
va

sk
yl

an
 Y

lio
pi

st
o]

 a
t 0

6:
12

 1
9 

O
ct

ob
er

 2
01

4 



Probabilistic Congestion Management Using CCP 989

Table A3

Branch data for IEEE 30-bus system

Branch From To

r

(p.u.)

x

(p.u.)

b

(p.u.)

Rate

(MW) FOR

1 1 2 0.0192 0.0575 0.0528 170 0.0047

2 1 3 0.0452 0.1652 0.0408 170 0.0038

3 2 4 0.057 0.1737 0.0368 170 0.0037

4 3 4 0.0132 0.0379 0.0084 170 0.0059
5 2 5 0.0472 0.1983 0.0418 170 0.005

6 2 6 0.0581 0.1763 0.0374 170 0.0044

7 4 6 0.0119 0.0414 0.009 170 0.0058

8 5 7 0.046 0.116 0.0204 170 0.0052

9 6 7 0.0267 0.082 0.017 170 0.004

10 6 8 0.012 0.042 0.009 170 0.0063
11 6 9 0 0.208 0 170 0.0053

12 6 10 0 0.556 0 170 0.0065

13 9 11 0 0.208 0 170 0.0061

14 9 10 0 0.11 0 170 0.0043

15 4 12 0 0.256 0 170 0.0037
16 12 13 0 0.14 0 170 0.0049

17 12 14 0.1231 0.2559 0 170 0.0047

18 12 15 0.0662 0.1304 0 170 0.0042

19 12 16 0.0945 0.1987 0 170 0.0055

20 14 15 0.221 0.1997 0 170 0.0065

21 16 17 0.0524 0.1923 0 170 0.0045
22 15 18 0.1073 0.2185 0 170 0.0042

23 18 19 0.0639 0.1292 0 170 0.0048

24 19 20 0.034 0.068 0 170 0.0057

25 10 20 0.0936 0.209 0 170 0.0041

26 10 17 0.0324 0.0845 0 170 0.0038
27 10 21 0.0348 0.0749 0 170 0.0049

28 10 22 0.0727 0.1499 0 170 0.0049

29 21 22 0.0116 0.0236 0 170 0.0055

30 15 23 0.1 0.202 0 170 0.0044

31 22 24 0.115 0.179 0 170 0.0049
32 23 24 0.132 0.27 0 170 0.0046

33 24 25 0.1885 0.3292 0 170 0.0049

34 25 26 0.2544 0.38 0 170 0.0065

35 25 27 0.1093 0.2087 0 170 0.0044

36 28 27 0 0.396 0 170 0.0037

37 27 29 0.2198 0.4153 0 170 0.0055
38 27 30 0.3202 0.6027 0 170 0.0041

39 29 30 0.2399 0.4533 0 170 0.005

40 8 28 0.0636 0.2 0.0428 170 0.0044

41 6 28 0.0169 0.0599 0.013 170 0.0055

D
ow

nl
oa

de
d 

by
 [

Jy
va

sk
yl

an
 Y

lio
pi

st
o]

 a
t 0

6:
12

 1
9 

O
ct

ob
er

 2
01

4 


