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Abstract The present study is concerned with the elastic/

plastic buckling analysis of a skew plate under in-plane

shear loading. The governing equations for moderately

thick skew plates are analytically derived based on first-

order shear deformation theory, whereas the incremental

and deformation theories of plasticity are employed. Two

types of shear loads, i.e. rectangular shear (R-shear) and

skew shear (S-shear) have been investigated. The buckling

coefficient values are significantly affected by the direction

of stresses. Since the problem is geometrically and physi-

cally nonlinear, the generalized differential quadrature

method as an accurate, simple and computationally effi-

cient numerical tool is adopted to discretize the governing

equations and the related boundary conditions. Then, a

direct iterative method is employed to obtain the buckling

coefficients of skew plates. To demonstrate the accuracy of

the present analytical solution, a comparison is made with

the published experimental and numerical results in liter-

ature. The influences of the aspect and thickness ratios,

skew angle, incremental and deformation theories and

various boundary conditions are examined for R-shear and

S-shear buckling coefficients. Finally, some mode shapes

of the skew thick plates are illustrated. The present results

may serve as benchmark solutions for such plates.

Keywords Incremental theory (IT) � Skew plate �
GDQM � Deformation theory (DT) � Elastic/plastic

buckling � FSDT

List of symbols

a Length of plate

An
ij;A

g
ij

Weighting coefficients of the first-order derivative

in n- and g-directions, respectively

b Oblique width of plate

Bn
ij;B

g
ij

Weighting coefficients of the second-order

derivative in n- and g-directions, respectively

c; k Ramberg–Osgood parameters

D Flexural rigidity of plate

E Young’s modulus of elasticity

G Effective shear modulus

h Thickness of plate

h=b Thickness ratio

Nn;Ng Number of grid points in n- and g-directions,

respectively

Sij Stress deviator tensor

SðEsÞ Secant modulus

TðEtÞ Tangent modulus

U Strain energy

V Potential energy

Wij Deflection at grid point ij

Xi Grid spacing

x; y; z The Cartesian coordinate variables

Greek symbols

a; b; c; v; l; d Parameters used in stress–strain relations

ee Total effective strain

e Total plastic strain

ex; ey; exy Normal strain

ux;uy;un;ug Rotations about x-, y, n and g
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j2 Shear correction factor

kxy Elastic/plastic shear buckling coefficient

kR Elastic/plastic buckling coefficient for

R-shear loading

kS Elastic/plastic buckling coefficient for

S-shear loading

t Poisson’s ratio

h Skew angle

re Effective stress

rx; ry; rxy Normal stress

n; g Oblique coordinate variables

1 Introduction

Skew plates under shear loading have found considerable

applications in structural engineering problems. Aircraft

wings and skew bridges are well-known direct applications of

these kinds of plates. The elastic buckling of skew plates has

been studied by some researchers [1–3]. However, to the best

of author’s knowledge, the plastic buckling of skew plates is

not available in open literature. There are many such kind

methods available, such as Rayleigh–Ritz, finite element,

finite difference and Fourier series methods. Rayleigh–Ritz

and Fourier series methods require less computational effort

as compared with finite element and finite difference methods.

Some researchers studied elastic/plastic buckling of rectan-

gular plates [4–9]. By contrast, no results exist for elastic/

plastic shear buckling of skew plates. Moreover, the discrep-

ancies between the incremental and deformation theories

results in skew plates have not been studied.

Two types of shear loading conditions on skew plates are

considered, i.e. (a) R-shear loading and (b) S-shear loading,

Fig. 1. The first type is the shear loading acting along the two

horizontal edges and the traction is a pure shear stress, whereas

along the other two oblique edges, the traction consists of both

shear and direct stresses of such magnitude that every infini-

tesimal rectangular element is in a state of pure shear, Fig. 1a.

The second type is the shear loads are uniformly applied along

the plate edges, Fig. 1b. For the R-shear loading, we have

rx ¼ 0 and sxy ¼ R, while for S-shear loading rx ¼
�2S tanðhÞ and sxy ¼ S. The positive and negative angle

values are defined in clockwise and anticlockwise directions,

respectively. The main difference between the shear buckling

of skew and rectangular plates is that a reversal of the direction

of the shear loading will not cause a change in the critical shear

load value for rectangular plates whereas it will affect the

critical shear load in skew plates [10].

The first studies on elastic shear buckling of skew plate

performed by Wittrick [11]. He solved the elastic buckling

problem of simply supported and clamped skew plates

under pure shear. Argyris [12], Ashton [13], Durvasula [14,

15], Xiang et al. [16] and York [17] performed elastic

R-shear buckling of skew plates and Hamada [18], Fried

and Schmitt [19], Yoshimura and Iwata [20] and Xiang

et al. [16] studied elastic S-shear buckling of skew plates.

The plastic buckling analyses of rectangular plates by

incremental and deformation theories of plasticity and sub-

jected to in-plane loadings have been studied in the past several

decades. Durban [21] studied on the plastic buckling of rect-

angular plates. He found that the incremental theory predicts

more buckling load than deformation theory, and the experi-

mental data have more congruence with the deformation the-

ory. Durban and Zuckerman [22] carried out the plastic

buckling analyses of rectangular plates under uniaxial loading

for several various modes with the separation of variables

solution. However, their boundary conditions were limited to

clamped and simply supported types. Wang et al. [23, 24]

investigated the elastic–plastic buckling of thin and thick plates

based on deformation and incremental theories by use of sep-

aration of variables solution and Ritz method. They came to the

conclusion that the deformation theory predicts a lower buck-

ling stress factor, and as the thickness increases and hardening

decreases (Ramberg–Osgood constant increases), the differ-

ences between the two theories increase. Lotfi et al. [25] ana-

lyzed a skew isotropic plate subjected to in-plane loadings

using a stability analysis based on the isoparametric spline

finite strip method that includes inelasticity. The stiffness and

stability matrices were formulated by energy expressions using

small deflection theory. Jaberzadeh et al. [26] analyzed the

plastic buckling of thin skew plates using element-free Galer-

kin (EFG) method. They used Stowell theory for the plastic

buckling of skew plates with variable thickness and concluded

that the plastic critical stresses increased with increasing the

thickness of the plate. Zhang and Wang [8] confirmed the

reported results given by Ref. [23]. Kadkhodayan and Maa-

refdoust [9] studied the elastic/plastic buckling of thin

Fig. 1 Two types of shear loading conditions on skew plates, a R-

shear loading and b S-shear loading
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rectangular plates under various loads and boundary condi-

tions. To the best knowledge of the authors, there is no solution

available in the open literature for plastic buckling analysis of

skew plates under R-shear and S-shear loading.

In the current study, the differential equations of elastic/

plastic buckling of skew plates are derived and the GDQ

method is used for solving those equations. The formulation is

based on first-order shear deformation theory (FSDT) and the

incremental and deformation theories of plasticity are used.

Two shear loading conditions containing R- and S-shear

loadings are studied. Results are compared with existing data

available from other analytical and numerical methods. The

effects of skew plate parameters such as aspect and thickness

ratios, skew angles, incremental and deformation theories and

boundary conditions on the R- and S-shear buckling coeffi-

cients are presented. Finally, some plots of the mode shapes

are illustrated for the R- and S-shear buckling.

2 Mathematical formulations

2.1 Governing differential equations

Let us consider a skew moderately thick plate with length

a, oblique width b, thickness h and skew angle h as shown

in Fig. 2. The stress rate corresponding to strain rate in

Cartesian coordinate are given by

_rx ¼ E a _ex þ b _ey þ v _cxy

� �
;

_ry ¼ E b _ex þ c _ey þ l _cxy

� �
;

_sxy ¼ E v _ex þ l _ey þ d _cxy

� �
;

_sxz ¼ j2G _cxz; _syz ¼ j2G _cyz;

ð1Þ

where E is the Young modulus, G is the shear modulus, j2

is the shear correction factor and a, b, c, v, l, d and

G depend on theories of plasticity used. There are two

theories of plasticity used in this paper, the incremental

theory based on Prandtl-Reuss equation and the deforma-

tion theory based on Hencky equation. In the current study,

the first shear deformation theory which is suitable for

moderately thick plates is employed. The main difference

between these two is that the IT depends on incremental

plastic strain and DT depends on total strain. The strain-

displacement relations can be expressed as

ex ¼ z
oux

ox
; ey ¼ z

ouy

oy
;

cxy ¼ z
oux

oy
þ

ouy

ox

� �
; cxz ¼ ux þ

ow

ox
; cyz ¼ uy þ

ow

oy
;

ð2Þ

where w is transverse displacement and ux;uy denote the

rotations of the transverse normal about x- and y-axis, respec-

tively. The strain energy functional for the plate is given by

U ¼ 1

2

Z

V

_rx _ex þ _ry _ey þ _sxy _cxy þ _sxz _cxz þ _syz _cyz

� �
dV : ð3Þ

The potential energy V for the plate subjected to uniform

in-plane stress is given by

V ¼ � 1

2

Z

A

rxh
ow

ox

� �2

þryh
ow

oy

� �2

þ2sxyh
ow

ox

� �
ow

oy

� �" #

dA:

ð4Þ

The principle of minimum total potential energy is

dðU þ VÞ ¼ 0; ð5Þ

where d represent the variational symbol. The material

points of skew plates in the physical domain can be

transformed into computational domain of the GDQM,

which is a rectangular one, without any approximation

using the following linear transformation rules

x ¼ nþ gðsin hÞ;
y ¼ gðcos hÞ;

ð6Þ

where n and g are natural coordinate variables of the com-

putational domain and h is the skew angle. The rotations

ux;uy can be expressed in the skew coordinate system as

ux x; yð Þ ¼ un n; gð Þ cos h;

uy x; yð Þ ¼ �un n; gð Þ sin hþ ug n; gð Þ:
ð7Þ

The fundamental equation of incremental theory with

Prandtl-Reuss constitutive equation is [23]

E _eij ¼ 1þ tð Þ _Sijþ
1� 2t

3
_rkk dijþ

3 _re

2re

E

T
� 1

� �
Sij; ð8Þ

where T is the tangent modulus which is calculated through

stress–strain curved and re is the effective stress. The tan-

gent modulus and effective stress are calculated as follow:

T ¼ dre=dee;

r2
e ¼ r2

x � rxry þ r2
y þ 3s2

xy;
ð9Þ

Fig. 2 The geometry of the skew plate
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where ee is the total effective strain. The parameters a, b, c,

v, l, d and G in this method are defined as

a ¼ 1

q
c22c33 � c2

23

� 	
; b ¼ 1

q
c13c23 � c12c33½ �;

c ¼ 1

q
c11c33 � c2

13

� 	
;

l ¼ 1

q
c12c13 � c11c23½ �; v ¼ 1

q
c12c23 � c13c22½ �;

d ¼ 1

q
c11c22 � c2

12

� 	
;

q ¼ E

T

c11 c12 c13

c21 c22 c23

c31 c32 c33


















; G ¼ E

2 1þ tð Þ ; ð10Þ

in which

c11 ¼ 1� 3 1� T

E

� �
r2

y

4r2
e

þ
s2

xy

r2
e

 !

;

c12 ¼ �
1

2
1� ð1� 2tÞ T

E
� 3 1� T

E

� �
rxry

2r2
e

þ
s2

xy

r2
e

 !" #

;

c13 ¼
3

2
1� T

E

� �
2rx � ry

re

� �
sxy

re

� �
;

c22 ¼ 1� 3 1� T

E

� �
r2

x

4r2
e

þ
s2

xy

r2
e

 !

;

c23 ¼
3

2
1� T

E

� �
2ry � rx

re

� �
sxy

re

� �
;

c33 ¼ 2ð1þ tÞ T

E

� �
þ 9 1� T

E

� �
s2

xy

r2
e

 !

: ð11Þ

The fundamental equation of deformation theory with

Hencky constitutive equation is [23]

E _eij ¼
3E

2S
� 1� 2t

2

� �
_Sijþ

1� 2t
3

_rkk dijþ
3 _re

2re

E

T
�E

S

� �
Sij;

ð12Þ

where S is the secant modulus which is calculated through

stress–strain uniaxial curve. The parameters a; b; c; v;
l; and d are calculated using Eq. (10), and G in this theory

is given by

G ¼ E

2þ 2tþ 3 E
S
� 1

� � ; ð13Þ

in which

c11 ¼ 1� 3 1� T

S

� �
r2

y

4r2
e

þ
s2

xy

r2
e

 !

;

c12 ¼ �
1

2
1� ð1� 2tÞ T

E
� 3 1� T

S

� �
rxry

2r2
e

þ
s2

xy

r2
e

 !" #

;

c13 ¼
3

2
1� T

S

� �
2rx � ry

re

� �
sxy

re

� �
;

c22 ¼ 1� 3 1� T

S

� �
r2

x

4r2
e

þ
s2

xy

r2
e

 !

;

c23 ¼
3

2
1� T

S

� �
2ry � rx

re

� �
sxy

re

� �
;

c33 ¼ 3
T

S
� ð1� 2tÞ T

E

� �
þ 9 1� T

S

� �
s2

xy

r2
e

 !

: ð14Þ

It can be notified that by setting T = S = E, the

parameters a; b; c; v; l; and d reduce to the parameters

for elastic buckling. Using Eqs. (1)–(7) and calculus of

variations, the Euler–Lagrange differential equations

associated with the minimization of the total potential

energy functional, the equilibrium equation of elastic/

plastic buckling of skew thick plate can be derived.

2.2 Discretization of governing equations

Employing the chain rule for the spatial derivatives and

coordinate transformation in Eq. (6), the derivatives in this

domain are expressed in terms of derivatives of space

variables of the computational domains. Simultaneously,

the GDQ discretization rules can be used to discretize the

spatial derivatives in the computational domain [27–29].

After that, the GDQ-discretized form of the equations of

elastic/plastic buckling of skew plates at each grid point

(i, j), with i = 2,3,…., Nn � 1 and j = 2,3,…., Ng � 1

become

�ðsec hÞ
XNn

m¼1

An
imun

mj þ ðtan hÞ
XNn

m¼1

An
imug

mj

"

� ðsec2 hÞ
XNn

m¼1

Bn
imwmj � ðsec2 hÞ

XNg

n¼1

B
g
jnwin

:

þð2 tan h sec hÞ
XNn

m¼1

XNg

n¼1

An
imA

g
jnwmn

�ðsec hÞ
XNg

n¼1

A
g
jnu

g
in þ ðtan hÞ

XNg

n¼1

A
g
jnu

n
in�k2Gh cos h

�rxh ðcos hÞ
XNn

m¼1

Bn
imwmj

" #

�ryh ðtan h sin hÞ
XNn

m¼1

Bn
imwmj�

"

ð2 tan hÞ
XNn

m¼1

XNg

n¼1

An
imA

g
jnwmn

þðsec hÞ
XNg

n¼1

B
g
jnwin

#

� 2sxyh
XNn

m¼1

XNg

n¼1

An
imA

g
jnwmn � ðsin hÞ

XNn

m¼1

Bn
imwmj

" #

¼ 0;

ð15Þ
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where An
ij;A

g
ij;B

n
ij;B

g
ij;wij;uij are the weighting coefficients

of the first-order derivatives with respect to the variable of

n and g, the weighting coefficients of the second-order

derivatives with respect to the variable of n and g and

deflection and rotation at grid point ij, respectively. The

boundary conditions in this study are shown in Appendix

(A).

Now, the shear buckling coefficient kxy can be defined as

kxy ¼
sxyhb2

p2D
; ð18Þ

Table 1 Accuracy of grid

points distribution for CCCC

skew plate (h/b = 0.001,

h =? 45�, Nn= N g = 13)

Source Shear buckling

coefficient

Theories of

plasticity

Eq. (B.5) Eq. (B.4) Eq. (B.3) Eq. (B.2) Eq. (B.1)

Xiang et al. [16] kR = 24.04

Present study kR IT, DT 24.040 24.027 23.981 23.997 24.027

Xiang et al. [16] kS = 89.16

Present study kS IT, DT 89.163 89.171 89.132 89.135 89.183

aEh3

12
cos3 hþ Eh3

12
ð2bþ 4dÞ sin2 h cos h

�
þ Eh3

12
ðc tan h� 4lÞ sin3 h

�4
vEh3

12
cos2 h sin h

� XNn

m¼1

Bn
imun

mj

" #

þ l� cEh3

12
tan h

� � XNg

n¼1

B
g
jnu

g
in

" #

� Eh3

12
ðbþ 2dÞ sin h cos hþ Eh3

12
ðc tan h� 3lÞ sin2 h� vEh3

12
cos2 h

� � XNn

m¼1

Bn
imug

mj

" #

� 2
Eh3

12
ðbþ 2dÞ cos h sin hþ 2

Eh3

12
ðc tan h� 3lÞ sin2 h� 2

vEh3

12
cos2 h

� �

�
XNn

m¼1

XNg

n¼1

An
imA

g
jnu

n
mn

" #

þ Eh3

12
ðc tan h� 2lÞ sin hþ dEh3

12
cos h

� � XNg

n¼1

B
g
jnu

n
in

" #

þ Eh3

12
ðbþ dÞ cos hþ 2

Eh3

12
ðc tan h� 2lÞ sin h

� � XNn

m¼1

XNg

n¼1

An
imA

g
jnu

g
mn

" #

� k2Gh cos h un
ij � ðsin hÞug

ij þ sec hð Þ
XNn

m¼1

An
imwmj � tan hð Þ

XNg

n¼1

A
g
jnwin

" #

¼ 0;

ð16Þ

�Eh3

12
ðbþ 2dÞ sin h cos h� Eh3

12
ðc tan h� 3lÞ sin2 hþ vEh3

12
cos2 h

� � XNn

m¼1

Bn
imun

mj

" #

þ Eh3

12
ðc tan h� 2lÞ sin hþ dEh3

12
cos h

� � XNn

m¼1

Bn
imug

mj

" #

þ cEh3

12
sec h

� � XNg

n¼1

B
g
jnu

g
in

" #

þ 2
Eh3

12
ðc tan h� 2lÞ sin hþ Eh3

12
ðdþ bÞ cos h

� � XNn

m¼1

XNg

n¼1

An
imA

g
jnu

n
mn

" #

� 2
Eh3

12
ðc tan h� lÞ

� � XNn

m¼1

XNg

n¼1

An
imA

g
jnu

g
mn

" #

� Eh3

12
ðc tan h� lÞ

� � XNg

n¼1

B
g
jnu

n
in

" #

� k2Gh cos h ug
ij � ðsin hÞun

ij � ðtan hÞ
XNn

m¼1

An
imwmj þ ðsec hÞ

XNg

n¼1

A
g
jnwin

" #

¼ 0;

ð17Þ
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where D ¼ Eh3

12ð1�m2Þ is the flexural rigidity. For R-shear

loading (pure shear stress sxy ¼ R), we have

kxy ¼ kR; kx ¼ ky ¼ 0; ð19Þ

and for S-shear loading (shear stress sxy ¼ S and uniaxial

stress rx ¼ �2S tan h), we have

kxy ¼ kS; kx ¼ �2kS tan h; ð20Þ

where kR and kS are the elastic/plastic shear buckling

coefficients for R- and S-shear loadings.

3 Convergence and accuracy studies

The final equations matrix is a set of nonlinear eigenvalue

equations with the size of 3(Nn)2 9 3(Ng)2. By solving the

generalized eigenvalue problem of Eqs. (15)–(17), the

buckling coefficients (the lowest eigenvalue) are obtained.

The grid points employed in the computations are showed

in Appendix (B). A computer program EBSPSL (Elastic/

plastic Buckling of Skew Plates under In-Plane Shear

Loading) is developed based on the above-mentioned for-

mulation, which is very quick and easy to generate elastic/

plastic buckling coefficient of plate. The material used in

this study is a typical aerospace aluminum alloy (AL

7075-T6). Here the Ramberg–Osgood elastic/plastic stress–

strain relationship is used

e ¼ r
E
þ kr0

E

r
r0

� �c

; ð21Þ

where e is the total effective strain and c and k are material

parameters. The tangent and secant moduli used in equa-

tions are calculated as follow:

E

T
¼ 1þ ck

r
r0

� �c�1

;
E

S
¼ 1þ k

r
r0

� �c�1

; ðc [ 1Þ

ð22Þ

The characteristics of this metal is obtained by means of

Eq. (21), E/r0 = 150, Ramberg–Osgood parameters

c = 9.2 and k = 3/7, shear correction factor j2 = 5/6 and

Poisson’s ratio m = 0.33 [23].

Table 1 represents the accuracy of grid point’s distri-

bution. The analytical skew plate solutions given by Xiang

et al. [16] are also listed in this table for comparison. The

present results for skew plate are in close agreement with

results of Eq. (B.5). Hence, Eq. (B.5) has a good accuracy

of grid spacing.

Convergence studies of R- and S-shear buckling coef-

ficients are carried out first for skew plate with SSSS and

CCCC boundary conditions as shown in Table 2 to estab-

lish the minimum grid points required for obtaining

Table 2 Convergence of

R-shear and S-shear buckling

coefficient of SSSS and CCCC

skew plates under various skew

angles and thickness ratios with

DT

B.C Theories of plasticity h h=b Nn ¼ Ng

7 9 11 13 15

SSSS IT 45� 0.001 kR 9.6729 9.6633 9.6562 9.6535 9.6535

kS 64.6871 62.8196 62.3847 62.3214 62.3214

0.1 kR 6.7740 6.7128 6.6996 6.6956 6.6956

kS 34.6736 34.2546 34.1616 34.1615 34.1615

CCCC DT -45� 0.001 kR 205.2209 44.6192 32.7628 31.3899 31.3898

kS 19.9406 10.5069 9.3207 9.2563 9.2563

0.1 kR 1.2562 1.1563 1.1343 1.1306 1.1306

kS 1.0481 0.9992 0.9920 0.9920 0.9920

Table 3 Influence of skew angle on the accuracy and convergence of

R-shear buckling coefficient of CCCC skew plates with DT (h/

b = 0.001)

h Nn ¼ Ng

7 9 11 13 15 17

15� 14.4650 14.3629 14.3540 14.3540 14.3540 14.3540

30� 16.7630 16.6034 16.5954 16.5953 16.5953 16.5953

45� 24.5933 24.0842 24.0409 24.0401 24.0401 24.0401

60� 55.9250 50.5452 46.0918 45.4138 45.4138 45.4138
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Fig. 3 Comparisons of buckling coefficients obtained by IT and DT

with test results (h = 0, a/b = 1)
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Table 4 Comparison of

R-shear and S-shear buckling

coefficients of CCCC skew

plate (a/b = 1, h/b = 0.001)

Sources Method h = 15� h = 30� h = 45�

kR kS kR kS kR kS

Wittrick [11] FEM – – 16.69 – 24.32 –

Argyris [12] Double-Fourier – – 16.69 – 24.41 –

Durvasula [14] Ritz 14.39 – 16.66 – 24.8 –

Xiang et al. [16] Ritz 14.35 22.29 16.60 39.89 24.04 89.16

York [17] Lagrangian multiplier 14.41 – 16.63 – 24.04 –

Hamada [18] FEM – 22.28 – 39.92 – –

Fried and Schmitt [19] FEM – 22.13 – 39.64 – 88.73

Present study GDQ 14.354 22.294 16.595 39.894 24.040 89.161

Table 5 Comparison of plastic

pure shear buckling coefficients

of SSSS square plate with DT

b/h Ref. [25] Ref. [26] Present method

20 2.504 2.50 2.4896

30 4.92 4.91 4.9012

40 7.39 7.37 7.3651

60 9.31 9.31 9.3083

100 9.32 9.32 9.3208

0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

a/b

λ R

S
SS

S

R
θ=+45

h/b=0.001, IT-DT h/b=0.025, IT

h/b=0.05, IT h/b=0.1, IT

h/b=0.1, DT

h/b=0.05, DT

h/b=0.025, DT

R

(a)

0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

45

50

a/b

λ R

S
SS

S

R θ=- 45h/b=0.001, IT-DT

h/b=0.025, IT

h/b=0.05, IT

h/b=0.1, IT

h/b=0.1, DT

h/b=0.05, DT

h/b=0.025, DT

R

(b)

0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

45

50

a/b

λ S

S
SS

θ=+45h/b=0.001, IT-DT

h/b=0.1, DT
h/b=0.05, DT

h/b=0.025, DT

h/b=0.1, IT

h/b=0.05, IT

h/b=0.025, IT

S

S

S

(c)

0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

a/b

λ S

S
SS

S

θ=- 45

h/b=0.025, DT

h/b=0.025, IT

h/b=0.001, IT-DT

h/b=0.1, DT

h/b=0.05, IT

h/b=0.05, DT

S

S

h/b=0.1, IT

(d)

Fig. 4 The effects of aspect ratios on the R-shear and S-shear buckling coefficients of a SSSS skew plate for incremental and deformation

theories and various thickness ratios
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accurate solutions. Two different values of thickness ratios

and skew angles are considered. Previous experience

showed that Nn ¼ Ng ¼ N gave the best convergence rate

[32]. From the data presented in Table 2, the fast rate of

convergence of the method is quite evident and it is

noticeable that thirteen grid point (Nn = Ng = 13) is suf-

ficient to obtain the accurate results. Moreover, in all cases

for Nn = Ng C 13 no change in the results are visible. It is

seen that the convergence rate of GDQ method is excellent.

The convergence rate is found to be slower when the skew

angle increases, Table 3. It is found that thirteen grid points

can yield results with acceptable accuracy. Again, the fast

rate of convergence of the method is evident. A compari-

son between the obtained results and experimental data

showed that the results attained by deformation theory are

close to the experimental ones, Fig. 3.

The elastic and plastic shear buckling coefficients are

used here to validate the presented formulation and the

efficiency of the solution method. The elastic shear buckling

coefficients, kR and kS (by setting S = T = E) subjected to

different skew angles for CCCC skew plates are compared

with the published experimental and numerical results in the

literature, Table 4. It is seen that in all cases the results are in

very good agreement with those of the other methods.

Moreover, the plastic R-shear buckling coefficients obtained

from the present approach with DT have been presented in

Table 5 and are compared with those given by Lotfi et al. [25]

obtained by spline finite strip method and Jaberzadeh et al.

[26] obtained by the element-free Galerkin method. It is

obviously found that the present results are in excellent

agreement with spline finite strip and element-free Galerkin

methods. It should be pointed out that the results of Jaber-

zadeh et al. [26] could be correct only for thin plates and pure

shear buckling coefficient. However, they used the thin plate

formulation for thicker plates, as well, which could cause

some errors in their results. But, in the current study the

elastic/plastic buckling of thick skew plate along with the

deformation and incremental theories of plasticity are used.

Moreover, two shear loading conditions contain R- and

S-shear loadings are studied.
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Fig. 5 The effects of aspect ratios on the R-shear and S-shear buckling coefficients of SCSC skew plate for incremental and deformation theories

and various thickness ratios
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4 Numerical results and discussion

In this section, the effects of skew plate parameters such as

aspect and thickness ratios, skew angle and boundary

condition on the shear buckling coefficients are compre-

hensively investigated in Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

and 14. Finally, some mode shapes of the skew plates are

shown in Figs. 15 and 16.
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Fig. 6 The effects of aspect ratios on the R-shear and S-shear buckling coefficients of CCCC skew plate for incremental and deformation

theories and various thickness ratios

Fig. 7 The relationships

between R-shear loading and

S-shear loading, a h � 0 and

b h � 0
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4.1 Effect of aspect ratio on R- and S-shear buckling

coefficients

The effects of aspect ratio for incremental and deformation

theories and various thickness ratios on the R- and S-shear

buckling coefficients, kR, kS of SSSS, SCSCS and CCCC

skew plates are shown in Figs. 4, 5, and 6. Skew angles are

h = -45� and h = ?45� and the effect of both theories of

plasticity on kR and kS are presented. In all figures, the R-

and S-shear buckling coefficients predicted by IT and DT

are shown by solid line and dash line, respectively. It can

be seen that when the aspect ratio increases in the interval

of 0.5 B a/b B 1.5, the shear buckling coefficients

decreases rapidly and for 1.5 \ a/b B 3, the buckling

coefficient decreases monotonically. The R-shear and

S-shear buckling coefficients have larger values when the

skew angles are negative (-h�) and positive (?h�),

respectively. This is due to the fact that in S-shear loading

conditions, when h\ 0 axial tension loading and when

h[ 0 axial compression loading are applied, Fig. 7. In

rectangular plate h = 0 and therefore kR = kS. It is obvi-

ous from Figs. 4, 5 and 6, that the R- and S-shear buckling

coefficients decreases as the thickness ratio increases. For

the smaller aspect ratios more reductions are observed.

Moreover, the maximum discrepancy between incremental

and deformation theories results occurs in R-shear buckling

coefficient, kR, when h\ 0 and in S-shear buckling coef-

ficient, kS, when h[ 0. It is also observed that there is no

agreement between the incremental and deformation the-

ories results for the thickness ratio of h/b C 0.05. With

increasing the thickness ratio and decreasing the aspect

ratio, the distinctions between the shear buckling coeffi-

cients obtained by two theories of plasticity increases. The

maximum variations between the incremental and defor-

mation theories results occur in S-shear buckling coeffi-

cient, kS for different thickness ratios and boundary

conditions, when h[ 0, Figs. 4c, 5c and 6c.

4.2 Effect of skew angle on R- and S-shear buckling

coefficients

Skew angle is an important parameter that affects the

buckling behavior of skew plates significantly. The effects

of skew angle for incremental and deformation theories and
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Fig. 8 The effects of skew angles on the R-shear and S-shear

buckling coefficients of SSSS skew plate for incremental and

deformation theories and various thickness ratios
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various thickness ratios on the R- and S-shear buckling

coefficients, kR and kS of SSSS, SCSCS and CCCC skew

plates are illustrated in Figs. 8, 9 and 10. It is seen that the

R-shear buckling coefficient initially decreases with

increasing skew angle (from -45� to ?45�) and then

increases as the skew angle increases. In the opposite skew

angles (-h� and ? h�), the R-shear buckling coefficient is

greater in negative skew angle (h\ 0) for all cases which

is more obvious for the incremental theory results. How-

ever, the S-shear buckling coefficient increases monotoni-

cally with increasing skew angle h(from -45� to ?45�).

With increasing the skew angle, the effect of transverse

shear deformation on the S-shear buckling coefficient

increases.

The deformation theory generally gives consistently

lower shear buckling coefficients than incremental theory

and large discrepancy between S-shear buckling coeffi-

cient, kS, from two theories with increasing the skew angle

hand thickness ratio is observed. This effect is more for kR

and kSin negative and positive skew angles, respectively.

According to Figs. 8, 9 and 10, the R-shear buckling

coefficients are about 2–3 times greater than those of

S-shear buckling coefficient for h = -45� in all cases. On

the other hand, for h = ? 45� the S-shear buckling coef-

ficients are about 3–6 times greater than those of R-shear

buckling. This is because the R-shear loading is equivalent

to the S-shear loading plus a tensile uniaxial load when the

skew angle is negative (h\ 0) or plus a compressive

uniaxial load when the skew angle is positive (h[ 0),

Fig. 7. Generally, it may be seen that the minimum R-shear

buckling coefficient occurs in the interval of 0 \ h\ 30�
for various boundary conditions.

4.3 Effect of thickness ratio on R- and S-shear

buckling coefficients

Figure 11 shows the variations of the shear buckling

coefficients of SSSS skew plates versus thickness ratios

and skew angles (for h = ? 30�, ?45� and h = -30�,

-45�). It is seen that with the increase of thickness ratio,

shear buckling coefficients decrease, in all cases.

The shear buckling coefficients obtained from defor-

mation theory have less dependency on skew angle, in all

cases, Fig. 11. Moreover, the minimum variations between

the incremental and deformation theories occur in S-shear

buckling coefficient, kS, with negative skew angle,

Fig. 11d.

Figures 12, 13 and 14 show the variations of shear

buckling coefficients in various thickness ratios and posi-

tive and negative skew angles h = ? 30� and h = -30�
and different boundary conditions. It is seen that with the

increase of thickness ratio, the maximum discrepancy

between the incremental and deformation theories results

occurs in R-shear buckling coefficient in negative skew

angle (h = -30�) and S-shear buckling coefficient in

positive skew angle (h = ? 30�). For two opposite skew

angles, the differences of buckling coefficients results

obtained from deformation theory are much less than those

of the incremental theory. Moreover, for the elastic buck-

ling theses differences are more than the other cases.

4.4 Effect of boundary conditions on R- and S-shear

buckling coefficients

Generally, it can be seen from the figures that increasing

the constraint at the edges of the skew plates increases the

R- and S-shear buckling coefficients. Moreover, the

transverse shear deformation causes more variations of

buckling coefficient when more constraints applied on the

edges of plate, Figs. 12, 13 and 14. In addition, the

agreement between IT and DT results reduces with

increasing the constraint at the edges of the skew plates.
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Fig. 10 The effects of skew angles on the R-shear and S-shear

buckling coefficients of CCCC skew plate for incremental and

deformation theories and various thickness ratios
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4.5 Analysis of buckling mode shapes

Figures 15 and 16 show the buckling mode shapes for skew

plates under various boundary conditions and aspect ratios

for R- and S-shear loadings, respectively. It can be seen

that the buckling mode shapes are different for R- and

S-shear loadings when the same plate geometry is used.

Moreover, it is observed that the buckling occurs in higher

mode shapes as the aspect ratio increases which is more

observable in R-shear buckling rather than in S-shear

buckling, Figs. 4a, c, 15 and 16.

In R-shear loading under positive skew angle,

h = ?45�, the number of half-sine waves in the shear

buckling mode shape increases as the aspect ratio increa-

ses, Figs. 4a, 5a and 6a. Moreover, the locations of kinks

are not the same for different plate thicknesses. For DT

results, however, it is difficult to distinguish the location of

kinks. For S-shear loading under positive skew angle,

h = ?45�, the buckling coefficients decrease monotoni-

cally as the plate aspect ratio increases, Figs. 4c, 5c and 6c.

Furthermore, these kinks locations depend on the plasticity

theories used. For example, the R-shear buckling mode

contains three half-sine waves for IT rather than two half-

sine waves for DT in SSSS skew plate for h/b = 0.05, a/

b = 2 and h = ?45�, Figs. 4a and 15.

5 Conclusions

In this study, the equilibrium and stability equations for

elastic/plastic buckling of skew plates under shear loading

are obtained. Derivations are based on FSDT and incre-

mental and deformation theories of plasticity. The gov-

erning equations are discretized via the generalized

differential quadrature method as a simple and accurate

numerical method and used for the first time to obtain the

plastic R- and S-shear buckling coefficients. Closed form

solutions for the R- and S-shear buckling coefficients are

presented. The obtained results are compared with those

obtained in the literature and good agreement is found. The

effect of aspect and thickness ratios, skew angle, incre-

mental and deformation theories and various boundary
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Fig. 11 The effects of thickness ratios on the R-shear and S-shear buckling coefficients of SSSS skew plate for incremental and deformation

theories and various skew angles
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conditions on the R- and S-shear buckling coefficients of

the skew plate are investigated. Finally, plots of the mode

shapes are given for R- and S-shear loadings with different

boundary conditions and aspect ratios. Based on the

numerical results, the following conclusions are reached:

• The discrepancy between IT and DT results for shear

buckling coefficients increases with decreasing the

aspect ratio and increasing the thickness ratio, con-

straint at the edges of skew plate and skew angle.

• In the opposite skew angles, the R- and S-shear

buckling coefficients are greater in negative (h� \ 0)

and positive (h� [ 0) skew angles, respectively.

• The S-shear buckling coefficient increase as the skew

angle increases (from -h� to ?h�). However, the

R-shear buckling coefficient initially increases and then

decreases.

• The DT is more sensitive to thickness ratio than IT.

Moreover, with increasing the thickness ratio it is more

likely that plastic buckling take places than elastic one.

On the other hand, more plasticity occurs in thicker

plates which cause more discrepancy between IT and

DT results. Furthermore, with increasing the thickness

ratio, the results of the IT stand out of stress–strain

curve gradually which shows this theory predicts

invalid data.

• The maximum discrepancy between the incremental

and deformation theories results occurs in R-shear

buckling coefficient when h\ 0 and S-shear buckling

coefficient when h[ 0.

• In the shear buckling of skew plates the deformation

theory generally gives consistently lower shear buck-

ling coefficients than those of the incremental theory.

• For the negative skew angles, the R-shear buckling

coefficients are greater than those of S-shear ones and

for the positive skew angles it is vice versa.

• The variations of buckling mode shapes depend on the

type of plasticity theory used.

The authors believe that the presented GDQ solutions

for plastic R- and S-shear buckling solutions of skew plates

are valuable as they may serve as benchmark results for

future researchers in this area.
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Appendix (A): The boundary conditions in this study

(a) Clamped edge (C)

– for n = 0 and n = a

w1j ¼ wNnj ¼ 0; un
1j ¼ un

Nnj ¼ 0;

ug
1j ¼ ug

Nnj ¼ 0; j ¼ 1; h; . . .;Ng: ðA:1Þ

– for g = 0 and g = b

wi1 ¼ wiNg ¼ 0; un
i1 ¼ un

iNg
¼ 0;

ug
i1 ¼ ug

iNg
¼ 0; i ¼ 1; . . .;Nn: ðA:2Þ

(b) Simply supported edge (S)

– for n = 0 and n = a

w1j ¼ wNnj ¼ 0; ug
1j ¼ ug

Nnj ¼ 0;

i ¼ 1; . . .;Nn; j ¼ 1; . . .;Ng:

ða cos2ðhÞ þ b sin2ðhÞÞ
XNn

m¼1

An
imun

mj � b sinðhÞ

XNn

m¼1

An
imug

mj þ
XNg

n¼1

A
g
jnu

n
in

 !

þ b
XNg

n¼1

A
g
jnu

g
in ¼ 0;

ðA:3Þ

– for g = 0 and g = b

wi1 ¼ wiNg ¼ 0; un
i1 ¼ un

iNg
¼ 0;

i ¼ 1; . . .;Nn; j ¼ 1; . . .;Ng:

ðb cos2ðhÞ þ c sin2ðhÞÞ
XNn

m¼1

An
imun

mj � c sinðhÞ

XNn

m¼1

An
imug

mj þ
XNg

n¼1

A
g
jnu

n
in

 !

þ c
XNg

n¼1

A
g
jnu

g
in ¼ 0:

ðA:4Þ

Appendix (B): The grid points employed

in the computations are designed as follow: [30]

ni ¼ � cos
i� 1

Nn � 1
p

� �
; i ¼ 1; 2; ::. . .;Nn: ðB:1Þ

ni ¼
1

2
1� cos

i� 1

Nn � 3
p

� �� �
; i ¼ 3; . . .::;Nn � 2:

ðB:2Þ

ni ¼
1

2
1� cos

i� 2

Nn � 3
p

� �� �
; i ¼ 1; 2; . . .::;Nn: ðB:3Þ

ni ¼
1

2
1� cos

2i� 1

2Nn
p

� �� �
; i ¼ 1; 2; ::. . .;Nn: ðB:4Þ

The distributions of grid spacing of Chebyshev–Gauss–

Lobatto (C-G-L) have the best convergence and highest

accuracy [31, 32]. In this study, the following relation is

used

ni ¼
1

2
1� cos

i� 1

Nn � 1
p

� �� �
; i ¼ 1; 2; ::. . .;Nn:

gj ¼
1

2
1� cos

j� 1

Ng � 1
p

� �� �
; j ¼ 1; 2; ::. . .;Ng:

ðB:5Þ
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thickness ratios and skew angles of h = ?30� and h = -30� for
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a/b = 2a/b = 1
B.C
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Fig. 15 Buckling mode shapes for skew plates under various boundary conditions on the R-shear buckling coefficient, kR (h/b = 0.05,

h = ?45�)
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Fig. 16 Buckling mode shapes for skew plates under various boundary conditions on the R-shear buckling coefficient, kS (h/b = 0.05,

h = ?45�)

J Braz. Soc. Mech. Sci. Eng. (2015) 37:761–776 775

123

Author's personal copy



References

1. Mizusawa T, Kajita T, Naruoka M (1980) Buckling of skew plate

structures using B–spline functions. Int J Numer Methods Eng

15:87–96

2. Kitipomchai S, Xiang L, Wang CM, Liew KM (1993) Buckling

of thick skew plates. Int J Numer Methods Eng 36(8):1299–1310

3. Wu WX, Shu C, Wang CM, Xiang Y (2010) Free vibration and

buckling analysis of highly skewed plates least squares-based

finite difference method. Int J Struct Stab Dyn 10:225–252

4. Zhang W, Wang X (2011) Elastoplastic buckling analysis of thick

rectangular plates by using the differential quadrature method.

Comput Math Appl 61:44–61

5. Xia P, Long SY, Wei KX (2011) An analysis for the elasto-plastic

problem of the moderately thick plate using the meshless local

Petrov-Galerkin method. Eng Anal Bound Elem 35:908–914

6. Fallah N, Parayandeh-Shahrestany A (2014) A novel finite vol-

ume based formulation for the elasto-plastic analysis of plates.

Thin-Walled Struct 77:153–164

7. Belinha J, Dinis LMJS (2006) Elasto-plastic analysis of plates by

the element free Galerkin method. Eng Comput 23:525–551

8. Belinha J, Dinis LMJS (2007) Nonlinear analysis of plates and

laminates using the element free Galerkin method. Compos Struct

78:337–350

9. Kadkhodayan M, Maarefdoust M (2014) Elastic/plastic buckling

of isotropic thin plates subjected to uniform and linearly varying

in-plane loading using incremental and deformation theories.

Aerosp Sci Technol 32:66–83

10. Morley LSD (1963) Skew plates and structures. Pergamon,

Oxford

11. Wittrick WH (1954) Buckling of oblique plates with clamped

edges under uniform shear. Aeronaut Q 5:39–51

12. Argyris JH (1965) Continua and discontinua. In: Proceedings of

the conference on matrix methods in structural mechanics, Air

Force Flight Dynamics Lab., AFFDL-TR, pp. 66–80

13. Ashton J (1969) Stability of clamped skew plates under combined

loads. J Appl Mech 36:139–140

14. Durvasula S (1970) Buckling of clamped skew plates. AIAA J

8:178–181

15. Durvasula S (1971) Buckling of simply supported skew plates. In:

Proceedings of the ASCE, J. EM Division, 97, pp 967–979

16. Xiang Y, Wang CM, Kitipornchai S (1995) Buckling of skew

Mindlin plates subjected to in-plane shear loadings. Int J Mech

Sci 37:1089–1101

17. York CB (1996) Influence of continuity and aspect ratio on the

buckling of skew plates and assemblies. Int J Solids Struct

33:2133–2159

18. Hamada M (1959) Compressive or shearing buckling load and

fundamental frequency of a rhomboidal plate with all edges

clamped. Bulletin of JSME 2(8):520–526

19. Fried I, Schmitt KH (1972) Numerical results from the applica-

tion of gradient iterative techniques to the finite element vibration

and stability analysis of skew plates. Aeronaut J 76:166–169

20. Yoshimura Y, Iwata K (1963) Buckling of simply supported

oblique plates. J Appl Mech 30:363–366

21. Durban D (1998) Plastic buckling of plates and shells. AIAA

Paper 97-1245 NACA/CP 206280:293–310

22. Durban D, Zuckerman Z (1999) Elastoplastic buckling of rect-

angular plates in biaxial compression/tension. Int J Mech Sci

41:751–765

23. Wang CM, Xiang Y, Chakrabarty J (2001) Elastic/plastic buck-

ling of thick plates. Int J Solids Struct 38:8617–8640

24. Wang CM, Aung TM (2007) Plastic buckling analysis of thick

plates using p-Ritz method. Int J Solids Struct 44:6239–6255

25. Lotfi S, Azhari M, Heidarpour A (2011) Inelastic initial local

buckling of skew thin thickness-tapered plates with and without

intermediate supports using the isoparametric spline finite strip

method. Thin-Walled Struct 49:1475–1482

26. Jaberzadeh E, Azhari M, Boroomand B (2013) Inelastic buckling

of skew and rhombic thin thickness-tapered plates with and

without intermediate supports using the element-free Galerkin

method. Appl Math Model 37:6838–6854

27. Bellman RE, Casti J (1971) Differential quadrature and long-term

integration. J Math Anal Appl 34:235–238

28. Bert CW, Malik M (1996) Differential quadrature method in

computational mechanics: a review, ASME. Appl Mech Rev

49:1–28

29. Wu TY, Liu GR (1999) A differential quadrature as a numerical

method to solve differential equations. Comput Mech

24:197–205

30. Shu C (2000) Differential quadrature and its application in

engineering. Springer, New York

31. Shu C, Richards BE (1992) Application of generalized differen-

tial quadrature to solve two-dimensional incompressible Navier

Stokes equations. Int J Numer Methods Fluids 15:791–798

32. Shu C, Chen H, Du Xue H (2001) Numerical study of grid dis-

tribution effect on accuracy of DQ analysis of beams and plates

by error estimation of derivative approximation. Int J Numer

Methods Eng 51:159–179

33. Anderson RA, Anderson (1956) Correlation of crippling strength

of plate structures with material properties. NACA Technical

Note 3600, Washington DC

776 J Braz. Soc. Mech. Sci. Eng. (2015) 37:761–776

123

Author's personal copy


	Elastic/plastic buckling analysis of skew plates under in-plane shear loading with incremental and deformation theories of plasticity by GDQ method
	Abstract
	Introduction
	Mathematical formulations
	Governing differential equations
	Discretization of governing equations

	Convergence and accuracy studies
	Numerical results and discussion
	Effect of aspect ratio on R- and S-shear buckling coefficients
	Effect of skew angle on R- and S-shear buckling coefficients
	Effect of thickness ratio on R- and S-shear buckling coefficients
	Effect of boundary conditions on R- and S-shear buckling coefficients
	Analysis of buckling mode shapes

	Conclusions
	Appendix (A): The boundary conditions in this study
	Appendix (B): The grid points employed in the computations are designed as follow: [30]
	References


