1 Introduction

Power electronic converters are employed in distributed generation (DG) systems to regulate the generated energy from small-scale sources such as photovoltaics, wind turbines, fuel cells and diesel generators. The DG unit in the stand-alone operation mode is the source of power, which is intended to supply high quality and reliable electricity to local or critical loads through a controlled supply (UPS) inverter [1]. The UPS inverter should be able to support the local network or critical load with the appropriate voltage and frequency from the DC input. Many control methods for UPS inverters are available in the literature, including [2–4]: (i) model-based instantaneous feedback controllers, such as multi-loop controllers [5–7], (ii) repetitive controllers [8–12] and (iii) non-linear controllers [13–15].

The repetitive control is based on the internal model principle and in particular is used in dealing with periodic signals. This method has some drawbacks such as slow dynamics, large memory requirement and poor performance in the presence of non-periodic disturbances. Although the non-linear controllers have some good features such as excellent dynamic performance, but these techniques also suffer from some limitations, such as steady-state errors, complexity and sensitivity to parameter variations. It is worth mentioning that some papers propose a combination of available methods to achieve a better performance [16].

A UPS inverter is usually connected to the AC load via an LC smoothing filter, as evident from Fig. 1. This filter is required for attenuating the switching noises. However, harmonic components generated by the inverter can cause resonance oscillations with an ideally lossless LC filter. In general, two techniques are available to tackle this problem, including passive and active damping techniques. Passive damping method employs a physical resistor in the filter circuit. In another method, the active damping uses an additional loop that plays the role of the virtual resistance for damping the resonance oscillations. More control flexibility and higher efficiency because of avoiding the losses are characterised as the main advantages of the multi-loop controllers. The major drawbacks associated with the multi-loop control schemes are complexity of design of parameters of outer and inner control loops and several sensors necessary for measuring feedback variables in the nested control loops. Therefore it is favourable to use simple proportional controllers instead of proportional–integral/resonant (PI) or proportional–resonant (PR) regulators in both control loops and reduce the number of sensors, if possible.

Consequently, several estimation methods have been proposed to replace some measurement sensors with software algorithms. These algorithms use the system parameters and other measured quantities as the inputs to estimate the instantaneous values of desired quantities [7, 17–20]. Adaptive control is used to estimate the output voltage for sensorless operation in [7], which enhances the system robustness and performance. In [17], a novel adaptive estimation unit, with low computational burden, is designed to estimate the interfacing parameters and grid voltages simultaneously. In [18], the controller uses the model of the system to predict, on each sampling interval, the behaviour of the output voltage for each possible switching state, and an observer is used for load current estimation. A digital adaptive controller, based on the generalised minimum variance control approach, for high-performance single-phase inverters is proposed in [19]. Moreover in [20], the grid voltage sensors are replaced by a voltage estimation scheme based on the Newton–Raphson algorithm.

In this paper, a simple voltage sensorless multi-loop control method is proposed and designed for single-phase UPS inverters. The suggested multi-loop control scheme uses two variables as feedback signals, which regulates them with simple proportional controllers. The outer loop tracks the voltage reference signal and the inner loop actively damps the possible resonances because of the LC filter by regulating the capacitor current. For this purpose, the capacitor current is obtained indirectly from the measured converter and load currents. The load voltage is estimated by the Kalman filter algorithm, which is described in details in Section 4. Moreover, a feedforward compensation of the reference voltage is used, which improves the performance of the controller. The parameters of the controller are designed step-by-step based on the
decided bandwidths for the inner and outer control loops. Finally, the performance of the proposed control method is confirmed through extensive simulations and experiments.

2 System description

The schematic diagram of the power stage of the single-phase UPS inverter is shown in Fig. 1. The circuit parameters are summarised in Table 1. The voltage at the DC bus is assumed to be constant by using enough capacitance and also the equivalent series resistance of the filter capacitor is ignored.

On the basis of Fig. 1, mathematical model of the single-phase UPS inverter can be derived as

\[v = r_L i_L + L \frac{di_L}{dt} + v_O \]
\[i_L = i_O + C \frac{dv_O}{dt} \]

where \(v \), \(v_O \), \(i_L \) and \(i_O \) are the output voltage of the inverter, the load voltage, the filter (converter) current and load current, respectively. On the basis of (1) and (2) the model of the UPS inverter in the s-domain can be obtained as shown in Fig. 2.

3 Control strategy

3.1 Proposed control structure

The multi-loop control method of the UPS inverter includes the inner and outer feedback loops for current and voltage control, respectively. The outer loop is responsible for tracking the output voltage, whereas the inner loop provides active damping, stability over a wide range and fast dynamic for disturbances. Previous reported multi-loop control schemes for UPS inverters adopted PI or PR controllers in outer feedback loop and used filter inductor current, filter capacitor current and other different combinations of currents, as the inner loop control variable [21–29].

The proposed multi-loop control scheme, illustrated in Fig. 1, uses the simple proportional gains \(K_i \) and \(K_v \) as the current and voltage controllers and uses the filter capacitor current as the inner loop control variable. It is proved that the capacitor current feedback has better disturbance rejection capability than the inductor current feedback [1, 22]. Moreover, a reference voltage feedforward is added to reduce the control effort and improve the system robustness. With this scheme, the system analysis and controller design are significantly simplified because of the simple proportional controllers, and at the same time, avoiding the problem of phase delay at the fundamental frequency, associated to the PI and PR controllers.

For further hardware simplification, it will be shown in the next sections that the output voltage sensor can be eliminated by using an appropriate voltage estimator.

3.2 Design of the proposed controller parameters

3.2.1 Inner current control loop: In this paper, the proportional gains are chosen according to the required bandwidth of the control loops.

The UPS inverter with the inner control loop and the voltage feedforward is shown in Fig. 3. The closed-loop transfer function of the considered model is

\[G(s) = \frac{i_C}{i_{C,ref}} = \frac{ZCK_{PWM}s}{ZCLs^2 + (ZC(r_L + K_{PWM}) + L)s + Z - ZK_{PWM} + r_L} \]

It is demonstrated in [1] that the lowest control bandwidth for the inner loop is expected at the nominal load. Although conservative, the parameter of the inner control loop should be tuned under nominal loading conditions. The pulse width modulation (PWM) modulator is considered as a unity gain \(K_{PWM} = 1 \).

With considering the above assumptions, (3) can be simplified as follows

Table 1 System parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_s)</td>
<td>sampling/switching frequency</td>
<td>20 kHz</td>
</tr>
<tr>
<td>(f)</td>
<td>fundamental frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>(V_{dc})</td>
<td>DC-link voltage</td>
<td>150 V</td>
</tr>
<tr>
<td>(V_o)</td>
<td>output voltage (root mean square)</td>
<td>70 V</td>
</tr>
<tr>
<td>(C)</td>
<td>filter capacitance</td>
<td>25 (\mu)F</td>
</tr>
<tr>
<td>(L)</td>
<td>filter inductance</td>
<td>3.7 mH</td>
</tr>
<tr>
<td>(r_L)</td>
<td>filter resistance</td>
<td>0.2 (\Omega)</td>
</tr>
<tr>
<td>(S)</td>
<td>nominal power</td>
<td>500 VA</td>
</tr>
</tbody>
</table>
The outer loop bandwidth is chosen to be 1.5 kHz, which is one-tenth the switching frequency is a good compromise. In this bandwidth in the range of 20 times the fundamental frequency and response without sacrificing the switching noise rejection, a disturbance rejection requirement. To obtain a fast transient trade-off between the expected transient response and the voltage control bandwidth must be decided according to a proportional controller of the outer control loop must be adjusted.

In practice, the bandwidth of the inner control loop is considered enough lower than the switching frequency, because with high bandwidth, more noise could be coupled into the feedback loop. As a result, by solving $|G(i\omega_{bi})|^2 = 1/2$, K_i is calculated to be about 0.18.

To examine the stability margin of the system, the bode plot of the open-loop transfer function is plotted in Fig. 5, which indicates that the PM is 69.4°. This value for the PM is enough for power electronic applications.

4 Output voltage estimation with Kalman filter

In this paper, the output voltage is estimated by adopting the linear Kalman filter algorithm to our problem. For this purpose, a discrete-time state-space model of the system under study is needed. It should be noted that (1) characterises the inductance dynamics and (2) characterises the capacitor dynamics, while the load is assumed as a disturbance input to the converter system. These equations can be rewritten as a state-space equation as

$$\begin{bmatrix}
 \dot{i}_L \\
 \dot{i}_0
\end{bmatrix} =
\begin{bmatrix}
 -\frac{1}{L} & -1 \\
 1/C & 0
\end{bmatrix}
\begin{bmatrix}
 i_L \\
 v_0
\end{bmatrix} +
\begin{bmatrix}
 1/L \\
 0
\end{bmatrix}
\begin{bmatrix}
 v \\
 i_0
\end{bmatrix}
\tag{7}
$$

This equation can be rewritten in the discrete form, assuming a sampling time T_s, as

$$\begin{bmatrix}
 i_L(k+1) \\
 v_0(k+1)
\end{bmatrix} = A_d
\begin{bmatrix}
 i_L(k) \\
 v_0(k)
\end{bmatrix} + B_d
\begin{bmatrix}
 v(k) \\
 i_0(k)
\end{bmatrix}
\tag{8}
$$

where

$$A_d =
\begin{bmatrix}
 1 - \frac{r_i T_s}{L} & -\frac{T_s}{L} \\
 T_s/C & 1
\end{bmatrix}
$$

and

$$B_d =
\begin{bmatrix}
 T_s/L & 0 \\
 0 & -T_s/C
\end{bmatrix}
$$

Initial estimates for \hat{x}_0, P_0
This model is considered for the estimation algorithm. The measured filter inductor current is used to correct the estimates, therefore, $H = [1, 0]$ and

$$z(k) = i_L(k)$$ \hspace{1cm} (9)

The Kalman algorithm for this system, as shown in Fig. 6, is composed of two sets of simple equations: time update and measurement update equations [30, 31]. The time update equation predicts the states and error covariance matrix one sample in advance to obtain the ‘a priori’ estimate for the next time step. Then the measurement update equation gives an improved ‘posteriori’ estimate by correcting the predictions through a feedback from actual measurement, here the filter inductor current. In the first step to estimate, initial values for state variables (\hat{x}_0) and error covariance (P_0) are needed, which are usually set to zero. Q and R are the covariances of process noise, and measurement noise, respectively, and for simplicity, they are assumed as $Q = [1, 0; 0, 1]$ and $R = 1$.

It should be noted that the input vector u is composed of the inverter output voltage and the load current. Evidently, the inverter output voltage can be replaced by the controller output to the PWM block, and therefore no measurement is needed. However, the load current which is also necessary for the protection purposes is measured directly.

Fig. 7 Measured output voltage, current and errors

a Under the nominal linear load

b Transient from no load to full load

c Under a highly non-linear load
5 Performance evaluation

5.1 Stability margin in presence of digital control and estimation delays

The PM under the worst case was determined to be 69.4°. However, this value for PM cannot be achieved in practice, because of some practical effects, such as control and PWM delays, and dynamics of the estimator. Indeed, digital control systems impose an additional time delay in the control loop. This delay corresponds to the digital sampling, programme computation time and PWM register update and results in one PWM period delay in digital execution of the control algorithm [1]. Besides, the delay of estimator must be considered. The linear Kalman filter imposes one further sampling period delay. Therefore the overall effect of digital implementation and estimation dynamics can be simplified as a two sampling period delay. In this paper, each delay decreases the PM by about 14°. Therefore the new PM is about 41° and still adequate to ensure the system stability and avoid the oscillatory response.

5.2 Simulations

To verify the performance of the proposed control method, the single-phase UPS inverter is simulated in MATLAB/SIMULINK. Simulations are done under linear and non-linear loads in steady and transient states.

Fig. 7a shows the measured output voltage, measured output current and errors of estimation and control for the nominal linear load. The output voltage is highly sinusoidal with the total harmonic distortion (THD) of 0.03%. The estimation error is lower than 1%, which translates to an excellent estimation accuracy. The tracking error of the multi-loop control with simple proportional controllers and a feedforward of the reference voltage is limited to 4%.

Fig. 7b presents the transient performance in response to a no load to full load transition. The transient vanishes rapidly and both estimation and control errors remain almost unchanged during the load change. In fact, this excellent transient performance owes to the proper selection of the feedback quantity in the inner loop, because the capacitor current changes instantaneously with the load current change.

Moreover, the performance of the proposed control method is evaluated under a highly non-linear load and the results are shown in Fig. 7c. The non-linear load, designed according to IEC 62040-3 standard (Annex E), consists of a 1 Ω resistor in series with a diode rectifier bridge feeding a 6800 µF capacitor in parallel with a 20 Ω resistor. One can see in Fig. 7c that while the load current is highly distorted, with a THD of about 81% and a crest factor of about 3:1, the voltage waveform remains sinusoidal (THD = 2.45%). Moreover even in this strict condition, the estimated waveform tracks the actual one perfectly.

It should be noted that in practice, the parameters of the LC filter may not be exactly known or may vary depending on the operating conditions and ageing. The performance of the control system, without the estimator, in terms of the PM and the control bandwidth, considering mismatches in the L and C values, is investigated, and the results are summarised in Fig. 8.
shows that \(L \) and \(C \) uncertainties lead to PM variations; however, for a wide range of mismatches the PM is still adequate. Moreover, Fig. 8b shows that the \(\omega_{bv} \) mainly remains unchanged with inductance mismatches; however, the capacitance uncertainties lead to large bandwidth variations, especially if the capacitor value is underestimated, then a remarkable increase in the voltage loop bandwidth is expected. This may cause the system response to be highly oscillatory or even unstable.

The performance of the estimator also is investigated, and the results are plotted in Fig. 9. Obviously, mismatches in the \(L \) and \(C \) values have no impact on the THD of the output voltage. Moreover, voltage estimator acts properly with inductance mismatches, but the capacitance uncertainties have high impact on the operation of the voltage estimator. This impact is caused by state-space equations in the Kalman filter algorithm, where the \(C \) value plays a significant role in these equations.

5.3 Experiments

A digitally controlled single-phase UPS is built to verify the conclusions drawn by the simulation studies. The experimental platform consists of a DC-link, which is fed from a three-phase diode-bridge rectifier, a full-bridge insulated gate bipolar transistor intelligent power module, an output LC filter, measurement circuits and gate drives.

The control and estimation algorithms are implemented with a TMS320F28335 32 bit floating-point digital signal controller from Texas Instruments.

The experimental system parameters are the same as the simulations.

In the first study, the steady-state behaviour of the proposed controller under the nominal resistive load is investigated and the results are shown in Fig. 10a, where the load voltage and the load current, as well as the estimation error are depicted. The output voltage is sinusoidal with a very low distortion and the performance of the estimator is excellent.

The transient behaviour of the system in response to a load step jump from no load to the nominal load is shown in Fig. 10b. It can be seen that the output voltage is not affected by the change in the load and the current regulator dynamic is very fast.

Finally and as a worst-case operation, a highly non-linear load similar to the simulated one connected to the UPS output and the results are shown in Fig. 10c. Despite the highly distorted load current, the load voltage is still sinusoidal (THD = 7.3%) and the estimation accuracy does not decrease compared with the linear loading condition. It should be noted that according to the IEC 62040-3 standard (Annex E), for this type of loading condition, the voltage THD is required to be <8%.

6 Conclusion

In this paper, a simple voltage sensorless multi-loop control method is proposed for the single-phase UPS inverter and the parameters are designed step-by-step based on the decided bandwidths for the control loops. The suggested control scheme uses two variables as feedback signals, which regulates them with simple proportional controllers instead of PI/PR controllers. For this purpose, the capacitor current is obtained indirectly from the measured converter and load currents, which are also necessary for the protection purposes and the load voltage is estimated by a simple
estimation algorithm based on the digital Kalman filter algorithm. The proposed controller does not need any reference frame transformation or integration/derivation of measured quantities. The excellent performance of the proposed control method is confirmed through extensive simulations and implementing it with a laboratory prototype.

7 References

