KINDS OF DERIVATIONS ON HILBERT C\(^*\)-MODULES AND THEIR OPERATOR ALGEBRAS

HOSSEIN SAIDI, ALI REZA JANFADA, AND MADJID MIRZAVAZIRI

Received 24 January, 2014

Abstract. Let \(\mathcal{M} \) be a Hilbert \(C^* \)-module. A linear mapping \(d : \mathcal{M} \to \mathcal{M} \) is called a derivation if
\[
d(\langle x, y \rangle_z) = \langle dx, y \rangle_z + \langle x, dy \rangle_z + \langle x, y \rangle dz
\]
for all \(x, y, z \in \mathcal{M} \). We give some results for derivations and automatic continuity of them on \(\mathcal{M} \). Also, we will characterize generalized derivations and strong higher derivations on the algebra of compact operators and adjointable operators of Hilbert \(C^* \)-modules, respectively.

2010 Mathematics Subject Classification: 46L08; 16W25

Keywords: derivation, higher derivations, Hilbert \(C^* \)-module

1. INTRODUCTION AND PRELIMINARIES

Let \(\mathcal{A} \) be a \(C^* \)-algebra. A pre-Hilbert \(\mathcal{A} \)-module \(\mathcal{M} \) is a left \(\mathcal{A} \)-module equipped with a sesquilinear form \(\langle \cdot, \cdot \rangle : \mathcal{M} \times \mathcal{M} \to \mathcal{A} \) which satisfies the following axioms for all \(x, y \in \mathcal{M} \) and \(a \in \mathcal{A} \):

1. \(\langle x, x \rangle \geq 0 \);
2. \(\langle x, x \rangle = 0 \iff x = 0 \);
3. \(\langle x, y \rangle^* = \langle y, x \rangle \);
4. \(\langle ax, y \rangle = \langle x, \bar{a}y \rangle \).

For every \(x \in \mathcal{M} \), set \(\| x \| = \|\langle x, x \rangle \|^{1/2} \). A pre-Hilbert \(\mathcal{A} \)-module \(\mathcal{M} \) which is complete with respect to this norm is called a Hilbert \(\mathcal{A} \)-module. For example, a complex Hilbert space \(\mathcal{H} \) is a Hilbert \(C^* \)-module over the \(C^* \)-algebra of complex numbers or a \(C^* \)-algebra \(\mathcal{A} \) is a Hilbert \(C^* \)-module over \(\mathcal{A} \) by \(\langle a, b \rangle = ab^* \), for all \(a, b \in \mathcal{A} \). A linear mapping \(T : \mathcal{M} \to \mathcal{M} \) is called an operator if \(T \) is continuous and \(\mathcal{A} \)-linear (i.e. \(T(ax) = aT(x) \) for all \(a \in \mathcal{A} \) and \(x \in \mathcal{M} \)). By \(\text{End}(\mathcal{M}) \), we denote the set of all operators on \(\mathcal{M} \). A mapping \(T : \mathcal{M} \to \mathcal{M} \) is called adjointable if there exists a mapping \(T^* : \mathcal{M} \to \mathcal{M} \) such that \(\langle Tx, y \rangle = \langle x, T^*y \rangle \) for all \(x, y \in \mathcal{M} \). As a well-known result, every adjointable mapping \(T : \mathcal{M} \to \mathcal{M} \) is an operator. The set of all adjointable mappings on \(\mathcal{M} \) is denoted by \(\text{End}^*(\mathcal{M}) \) which is a \(C^* \)-algebra under the usual operator norm. For \(x, y \in \mathcal{M} \), define \(\theta_{x, y} : \mathcal{M} \to \mathcal{M} \) by \(\theta_{x, y}(z) = \langle z, y \rangle x \), for all \(z \in \mathcal{M} \). Clearly, \(\theta_{x, y} \in \text{End}^*(\mathcal{M}) \) with \(\theta_{x, y}^* = \theta_{y, x} \).

© 2015 Miskolc University Press
Note that $\theta_{x,y}$ is quite different from rank one projections in Hilbert spaces. For example we cannot infer $x = 0$ or $y = 0$ from $\theta_{x,y} = 0$. We denote by $\mathcal{K}(\mathcal{M})$ the closed linear span of $\{\theta_{x,y} : x, y \in \mathcal{M}\}$. The elements of $\mathcal{K}(\mathcal{M})$ are called \textit{compact operators}. This concept of compact operators is different from compact operators in the usual sense. However, this concept coincides with the concept of usual compact operators when we choose a Hilbert C^*-module. Set $I = \text{span}\{<x, y> : x, y \in \mathcal{M}\}$. It is easy to see that I is a $*$-bi-ideal of \mathcal{A}. An important class of Hilbert C^*-modules are \textit{full} modules. A Hilbert C^*-module \mathcal{M} is called full if $\mathcal{T} = \mathcal{A}$, where \mathcal{T} is the norm closure of I in \mathcal{A}. For example, \mathcal{A} is a full \mathcal{A}-module. It is well-known that the derivations on Banach algebras are the generators of certain dynamical systems. A linear mapping $\phi : \mathcal{M} \to \mathcal{M}$ is called a \textit{homomorphism} if $\phi(><x, y>z) = <\phi x, \phi y> \phi z$ for all $x, y, z \in \mathcal{M}$. A dynamical system on \mathcal{M} is strongly continuous one-parameter family $(u_t)_{t \in \mathbb{R}}$ of homomorphisms. A linear mapping $d : \mathcal{M} \to \mathcal{M}$ is called a \textit{derivation} if $d(><x, y>z) = <dx, y>z + <x, dy>z + <x, y>dz$ for all $x, y, z \in \mathcal{M}$, see [1] and [2]. In [1], Abbaspour and Skeide proved that a C_0-group $u = (u_t)_{t \in \mathbb{R}}$ is a dynamical system if and only if its generator is a derivation and every derivation on full Hilbert C^*-module \mathcal{M} is a generalized derivation i.e. there exists a derivation $\delta : \mathcal{A} \to \mathcal{A}$ such that $d(ax) = \delta(a)x + ad(x)$ for all $a \in \mathcal{A}$ and $x \in \mathcal{M}$. Also, they proved that every derivation on full Hilbert C^*-modules extends as a $*$-derivation to the linking algebra. In this paper, we consider derivations on Hilbert C^*-modules and give some results about adjointable derivations and automatic continuity of them.

Let $\sigma : \mathcal{A} \to \mathcal{A}$ be a linear mapping. A σ-\textit{derivation} is a linear mapping $d : \mathcal{A} \to \mathcal{A}$ such that $d(ab) = d(a)\sigma(b) + \sigma(a)d(b)$ for all $a, b \in \mathcal{A}$. If $\sigma = I$, where I is the identity operator on \mathcal{A}, then d is a derivation. A generalized derivation on \mathcal{A} is a linear mapping $d : \mathcal{A} \to \mathcal{A}$ such that there exists a derivation $\delta : \mathcal{A} \to \mathcal{A}$ such that $d(ab) = d(a)b + a\delta(b)$ for all $a, b \in \mathcal{A}$. In [7], P. Li, D. Han and W. S. Tang proved that every derivation on $\text{End}^*(\mathcal{M})$ is inner if \mathcal{A} is commutative and unital. In section 3, we will characterize generalized derivations on $\mathcal{K}(\mathcal{M})$ without commutativity condition. Suppose that $\{d_n\}_{n=0}^{\infty}$ is a sequence of linear mappings from \mathcal{A} into \mathcal{A}. It’s called a \textit{higher derivation} if $d_n(ab) = \sum_{i=0}^{n} d_i(a)d_{n-i}(b)$ for all $a, b \in \mathcal{A}$ and all $n \geq 0$. If $d_0 = I$, $\{d_n\}_{n=0}^{\infty}$ is called a \textit{strong higher derivation}. Let δ be a derivation on \mathcal{A} and define the sequence $\{d_n\}_{n=0}^{\infty}$ on \mathcal{A} by $d_0 = I$ and $d_n = \frac{d^n}{n!}$ for every $n \geq 1$. By Leibnitz rule, $\{d_n\}_{n=0}^{\infty}$ is a higher derivation on \mathcal{A}. Higher derivations were introduced by Hasse and Schmidt [4] and algebraists sometimes call them Hasse-Schmidt derivations. For a higher derivation obviously, d_0 is a homomorphism and d_1 is a d_0-derivation in the sense of [11]. Therefore, higher derivations are the generalizations of homomorphisms and derivations. In [12], higher derivations
are applied to study generic solving of higher differential equations. For more information about higher derivations and its applications see [5], [6], [9] and [10]. The last author in [10], characterized the strong higher derivations in terms of derivations. In section 4 we give a characterization of higher derivation on \(End^*(\mathcal{M}) \) with use of elements whose product is in \(\mathcal{K}(\mathcal{M}) \).

2. Derivations on Hilbert \(C^* \)-modules

Let \(\mathcal{M} \) be a Hilbert \(C^* \)-module. Recall that a linear mapping \(d : \mathcal{M} \to \mathcal{M} \) is called a derivation if
\[
d(<x,y,z>) = <dx,y>z + <x,dy>z + <x,y>dz
\]
for all \(x,y,z \in \mathcal{M} \). Note that if \(d : \mathcal{M} \to \mathcal{M} \) is an adjointable map with \(d^* = -d \), then \(d \) is a derivation. But the converse is not true. For example suppose that \(H \) is a Hilbert space. Set \(u_0 \in B(H) \) such that \(u^* = -u \) and \(u \) is not in the center of \(B(H) \). Define \(d : B(H) \to B(H) \) by \(d(v) = u_0v - vvu_0 \) for every \(v \in B(H) \). It is easy to see that \(d \) is a derivation on \(B(H) \) as a \(B(H) \)-module but \(d \) is not adjointable. Otherwise, \(d \) is \(\mathcal{A} \)-linear and therefore,
\[
u_0vv - vvu_0 = d vv = d(vv) = vdu_0v - vvu_0
\]
for every \(v \in B(H) \). This implies that \(u_0 \) is in the center of \(B(H) \), which is a contradiction. Let \(M \) be a full Hilbert \(C^* \)-module. Note that if there exists \(a \in \mathcal{A} \) such that \(ax = o \) for every \(x \in \mathcal{M} \), then \(a = o \). Therefore, we have the following theorem:

Theorem 1. Let \(\mathcal{M} \) be a full Hilbert \(C^* \)-module. Then \(d \in End^*(\mathcal{M}) \) is a derivation if and only if \(d^* = -d \).

Proof. Suppose that \(d \in End^*(\mathcal{M}) \) is a derivation. Then \((<dx,y> + <x,dy>)z = 0 \) for all \(x,y,z \in \mathcal{M} \). Hence \(d^* = -d \). The converse is trivial. \(\square \)

A set of non-zero elements \(\{x_i\}_{i \in I} \subseteq \mathcal{M} \) is called a standard basis for \(\mathcal{M} \) if the reconstruction formula \(x = \sum_{i \in I} <x,x_i>x_i \) holds for every \(x \in \mathcal{M} \). Let
\[
L_n(\mathcal{A}) = \{(a_1,a_2,\ldots,a_n) : a_i \in \mathcal{A}, 1 \leq i \leq n\}.
\]
Then \(L_n(\mathcal{A}) \) a Hilbert \(C^* \)-module over \(C^* \)-algebra \(\mathcal{A} \) with module product
\[
a(a_1,a_2,\ldots,a_n) = (aa_1,aa_2,\ldots,aa_n)
\]
and inner product
\[
< (a_1,a_2,\ldots,a_n), (b_1,b_2,\ldots,b_n) > = a_1b_1^* + a_2b_2^* + \cdots + a_nb_n^*
\]
for every \(a \in \mathcal{A} \) and \((a_1,a_2,\ldots,a_n),(b_1,b_2,\ldots,b_n) \in L_n(\mathcal{A}) \), see [8]. If \(\mathcal{A} \) is unital then \(L_n(\mathcal{A}) \) has standard basis \(\{e_i\}_{i=1}^n \) such that \(e_i = (0,0,\ldots,1_{i-th},\ldots,0) \) and \(1 \leq i \leq n \). In [3], Bakic and proved that every Hilbert \(C^* \)-module over the \(C^* \)-algebra of the compact operators possesses a standard basis.

Theorem 2. Let \(\mathcal{M} \) have a standard basis and \(d \in End^*(\mathcal{M}) \). Then \(d \) is a derivation if and only if \(d^* = -d \).
Proof. Let \(\{x_i\}_{i \in I} \) be a standard basis for \(\mathcal{M} \) and \(d \in \text{End}^* (\mathcal{M}) \) be a derivation. Then \(d(x) = \sum_{i \in I} \langle x, x_i \rangle > 0 dx_i \). On the other hand,

\[
\begin{align*}
d x &= \sum_{i \in I} < dx, x_i > x_i + \sum_{i \in I} < x, dx_i > x_i + \sum_{i \in I} < x, x_i > dx_i \\
&= dx + \sum_{i \in I} < d^* x, x_i > x_i + \sum_{i \in I} < x, x_i > dx_i \\
&= dx + d^* x + dx.
\end{align*}
\]

So, \(d^* = -d \).

Lemma 1. Let \(\mathcal{M} \) be a full Hilbert \(C^* \)-module over unital \(C^* \)-algebra \(A \). Then there exist \(x_1, \ldots, x_n \in \mathcal{M} \) such that \(\sum_{i=1}^n < x_i, x_i > = 1 \).

Proof. See [8]. □

A Hilbert \(C^* \)-module \(\mathcal{M} \) over \(C^* \)-algebra \(A \) is called simple if the only closed submodules of \(\mathcal{M} \) over \(A \) are \(\{0\} \) and \(\mathcal{M} \). For example, let \(H \) be a Hilbert space and \(\mathcal{K}(H) \) denotes the the algebra of compact operator on \(H \). Then \(\mathcal{K}(H) \) is a simple Hilbert \(C^* \)-module over itself.

Theorem 3. Let \(\mathcal{M} \) be a full and simple Hilbert \(C^* \)-module over the unital \(C^* \)-algebra \(A \) and \(d \) be a derivation on \(\mathcal{M} \) with closed range. Then \(d \) is continuous or surjective.

Proof. Define the separating space \(S(d) = \{ y \in \mathcal{M} : \exists \{x_n\} \to 0 \text{ in } \mathcal{M} \text{ such that } dx_n \to y \} \). As a well-known result \(S(d) \) is a closed subspace of \(\mathcal{M} \). By lemma 1, there exist \(x_1, \ldots, x_m \) such that \(\sum_{i=1}^m < a x_i, x_i > = 1 \). Therefore, \(a = \sum_{i=1}^m < a x_i, x_i > \) for all \(a \in A \). For \(z \in S(d) \) there exists a sequence \(z_n \to 0 \) such that that \(dz_n \to z \). Hence

\[
d(az_n) = \sum_{i=1}^m < adx_i, x_i > z_n + \sum_{i=1}^m < ax_i, dx_i > z_n + \sum_{i=1}^m a < x_i, x_i > dz_n \to az.
\]

(2.1)

This implies that \(S(d) \) is a submodule of \(\mathcal{M} \). Since \(\mathcal{M} \) is simple, \(S(d) = \{0\} \) or \(S(d) = \mathcal{M} \). If \(S(d) = \{0\} \), by closed graph theorem, \(d \) is continuous. If \(S(d) = \mathcal{M} \) by (2.1), \(A \mathcal{M} \subseteq \overline{Im(d)} \). Since \(A \) is unital \(A \mathcal{M} = \mathcal{M} \). Therefore, \(\overline{Im(d)} = Im(d) = \mathcal{M} \) and \(T \) is surjective. □

Lemma 2. Let \(\mathcal{M} \) be a Hilbert \(C^* \)-module over unital \(C^* \)-algebra \(A \). Then \(I \mathcal{M} = \mathcal{M} \).

Proof. Clearly, \(I \mathcal{M} \subseteq \mathcal{M} \). let \(z \in \mathcal{M} \) and set

\[
x = \lim_{n \to \infty} \frac{1}{n} + < z, z > 1/3 - 1 z.
\]

One can see that \(z = < x, x > x \) and therefore, \(I \mathcal{M} = \mathcal{M} \). For more detail see [8]. □
Theorem 4. Let \(\mathcal{M} \) be a Hilbert \(C^* \)-module over unital \(C^* \)-algebra \(A \). Suppose that \(\mathcal{M} \) is a simple \(I \)-module and \(d \) be a derivation on \(\mathcal{M} \) with closed range. Then \(d \) is continuous or surjective.

Proof. Let \(a \in I \) and \(z \in S(d) \). So there exist a sequence
\[
z_n \rightarrow 0, \ \ x_1, x_2, \cdots, x_m, \ \ y_1, y_2, \cdots, y_m \in \mathcal{M}
\]
for some \(m \in \mathbb{N} \) such that \(dz_n \rightarrow z \) and \(a = \sum_{i=1}^{m} < x_i, y_i > \). But
\[
d(az_n) = \sum_{i=1}^{m} < dx_i, y_i > z_n + \sum_{i=1}^{m} < x_i, dy_i > z_n + \sum_{i=1}^{m} adz_n \rightarrow az. \quad (2.2)
\]
This implies that \(S(d) \) is a submodule of \(\mathcal{M} \). Therefore, \(S(d) = \{0\} \) or \(S(d) = \mathcal{M} \). If \(S(d) = \{0\} \), by closed graph theorem, \(d \) is continuous. If \(S(d) = \mathcal{M} \), by (2.2), \(I \mathcal{M} \subseteq Tm(d) \). Therefore, by lemma 2, \(Im(d) = \mathcal{M} \) and \(T \) is surjective. \(\square \)

3. Characterization of Generalized Derivations on the Algebra of Compact Operators

Let \(A \) be an algebra. Recall that a derivation on \(A \) is a linear mapping \(\delta : A \rightarrow A \) such that \(\delta(ab) = a\delta(b) + \delta(a)b \) for all \(a, b \in A \). A generalized derivation on \(A \) is a linear mapping \(d : A \rightarrow A \) such that there exists a derivation \(\delta : A \rightarrow A \) such that \(d(ab) = d(a)b + \delta(b) \) for all \(a, b \in A \). Recall that a linear mapping \(\Pi : A \rightarrow A \) is called a left multiplier if \(\Pi(ab) = \Pi(a)b \) for all \(a, b \in A \). For a generalized derivation \(d \), set \(\Pi = d - \delta \). One can easily see that \(\Pi \) is a left multiplier. Let \(d : A \rightarrow A \) be a linear mapping. As a well-known result \(d \) is a generalized derivation if and only if there exist a derivation \(\delta : A \rightarrow A \) and left multiplier \(\Pi : A \rightarrow A \) such that \(d = \delta + \Pi \).

Theorem 5. Let \(\mathcal{M} \) be a full Hilbert \(C^* \)-module over unital \(C^* \)-algebra \(A \). Then linear mapping \(\Pi : \mathcal{K}(\mathcal{M}) \rightarrow \mathcal{K}(\mathcal{M}) \) is a left multiplier if and only if there exists \(T \in \text{End}(\mathcal{M}) \) such that \(\Pi(A) = TA \) for all \(A \in \mathcal{K}(\mathcal{M}) \).

Proof. Let \(T \in \text{End}(\mathcal{M}) \). Define \(\Pi : \mathcal{K}(\mathcal{M}) \rightarrow \mathcal{K}(\mathcal{M}) \) by \(\Pi(A) = TA \), for every \(A \in \mathcal{K}(\mathcal{M}) \). Clearly \(\Pi \) is a left multiplier. Conversely, since \(\mathcal{M} \) is full, by lemma 1, there exist \(x_1, \cdots, x_n \) such that \(\sum_{i=1}^{n} < x_i, x_i > = 1 \). Define \(T : \mathcal{M} \rightarrow \mathcal{M} \) by
\[
T(x) = \sum_{i=1}^{n} \Pi(\theta_{x, x_i}) x_i,
\]
for every \(x \in \mathcal{M} \). For every \(A \in \mathcal{K}(\mathcal{M}) \) we have
\[
TA(x) = \sum_{i=1}^{n} \Pi(\theta_{Ax, x_i}) x_i = \sum_{i=1}^{n} \Pi(A \theta_{x, x_i}) x_i = \sum_{i=1}^{n} \Pi(A)(\theta_{x, x_i}) x_i
\]
\[
\Pi(A)x = \Pi(A)x.
\]
So \(\Pi(A) = TA\). \(T\) is obviously a continuous linear mapping. To show that \(T \in \text{End}(\mathcal{M})\) it’s remain to show that \(T\) is \(\mathcal{A}\)-linear. Now suppose that \(a \in \mathcal{A}, x \in \mathcal{M}\) and \(A \in \mathcal{K}(\mathcal{M})\) We have,
\[
\Pi(A)(ax) = TA(ax) = T(aA(x))
\]
On the other hand
\[
\Pi(A)(ax) = a\Pi(A)(a) = aTA(x)
\]
and so \(T(aA(x)) = aTA(x)\) for every \(a \in \mathcal{A}, x \in \mathcal{M}\) and \(A \in \mathcal{K}(\mathcal{M})\). Now lemma 2 implies that \(T\) is \(\mathcal{A}\)-linear.

Definition 1. By \(L_0(\mathcal{M})\) we denote the set of all linear mapping \(A\) on \(\mathcal{M}\) such that \(AB - CA \in \mathcal{K}(\mathcal{M})\) for all \(B, C \in \mathcal{K}(\mathcal{M})\). Clearly \(\text{End}^*(\mathcal{M}) \subset L_0(\mathcal{M})\).

Theorem 6. Let \(\mathcal{M}\) be a full Hilbert \(C^*\)-module over unital \(C^*\)-algebra \(\mathcal{A}\). Then linear mapping \(\delta : \mathcal{K}(\mathcal{M}) \rightarrow \mathcal{K}(\mathcal{M})\) is a derivation if and only if there exists \(T \in L_0(\mathcal{M})\) such that \(\delta(A) = TA - AT\) for all \(A \in \mathcal{K}(\mathcal{M})\).

Proof. Let \(T \in L_0(\mathcal{M})\). Define \(\delta : \mathcal{K}(\mathcal{M}) \rightarrow \mathcal{K}(\mathcal{M})\) by \(\delta(A) = TA - AT\), for every \(A \in \mathcal{K}(\mathcal{M})\). Clearly, \(\delta\) is a derivation. Conversely, since \(\mathcal{M}\) is full by lemma 2 there exist \(x_1, \ldots, x_n\) such that \(\sum_{i=1}^{n} <x_i, x_i> = 1\). Define \(T : \mathcal{M} \rightarrow \mathcal{M}\) by
\[
T(x) = \sum_{i=1}^{n} \delta(\theta_{x,x_i})x_i,
\]
for every \(x \in \mathcal{M}\). For every \(A \in \mathcal{K}(\mathcal{M})\) we have
\[
TA(x) = \sum_{i=1}^{n} \delta(A\theta_{x,x_i})x_i
= \sum_{i=1}^{n} \delta(A\theta_{x,x_i})x_i
= \sum_{i=1}^{n} \delta(A)(\theta_{x,x_i})x_i + \sum_{i=1}^{n} A\delta(\theta_{x,x_i})x_i
= \delta(A)x + AT(x).
\]
\[\square\]
Theorem 7. Let \(\mathcal{M} \) be a full Hilbert \(\mathcal{C}^* \)-module over unital \(\mathcal{C}^* \)-algebra \(\mathcal{A} \) and \(d : \mathcal{K}(\mathcal{M}) \rightarrow \mathcal{K}(\mathcal{M}) \) be a linear mapping. Then \(d \) is a generalized derivation if and only if there exist \(T_1 \in \mathcal{L}_0(\mathcal{M}) \) and \(T_2 \in \text{End}(\mathcal{M}) \) such that \(d(A) = T_1 A - AT_1 + T_2 A \) for every \(A \in \mathcal{K}(\mathcal{M}) \).

4. Characterization of higher derivation on the algebra of adjointable operators

Let \(\mathcal{A} \) be an algebra and suppose that \(\{d_n\}_{n=0}^{\infty} \) is a sequence of linear mappings from \(\mathcal{A} \) into \(\mathcal{A} \). It’s called a higher derivation if

\[
d_n(ab) = \sum_{i=0}^{n} d_i(a)d_{n-i}(b)
\]

for all \(a, b \in \mathcal{A} \) and all \(n \geq 0 \). If \(d_0 = I \), \(\{d_n\}_{n=0}^{\infty} \) is called a strong higher derivation.

If (4.1) holds for all \(x, y \in \mathcal{A} \) and \(n = 0, 1, 2, \ldots, m \), it is called a higher derivation of rank \(m \). Now we are going to give a characterization of strong higher derivations in terms of operators whose product is compact.

Theorem 8. Let \(\mathcal{M} \) be a full Hilbert \(\mathcal{C}^* \)-module over the unital \(\mathcal{C}^* \)-algebra \(\mathcal{A} \). Let \(\{d_n : \text{End}^*(\mathcal{M}) \rightarrow \text{End}^*(\mathcal{M})\}_{n=0}^{\infty} \) be a sequence of linear mappings such that \(d_0 = I \). Then \(\{d_n\}_{n=0}^{\infty} \) is a strong higher derivation if and only if \(d_n(AB) = \sum_{i=0}^{n} d_i(A)d_{n-i}(B) \) for all \(A, B \in \text{End}^*(\mathcal{M}) \) such that \(AB \in \mathcal{K}(\mathcal{M}) \) and all \(n \geq 1 \).

Proof. By lemma 1, there exist \(x_1, \ldots, x_n \) such that \(\sum_{i=1}^{n} < x_i, x_i > = 1 \). Let \(x_i \) for some \(1 \leq i \leq n, x \in \mathcal{M}, A, B \in \text{End}^*(\mathcal{M}) \), and \(m \geq 1 \) be arbitrary elements. Since \(\mathcal{K}(\mathcal{M}) \) is a two sided ideal in \(\text{End}^*(\mathcal{M}) \),

\[
d_m(A\theta_{x,x_i}) = \sum_{i=0}^{m} d_i(A)d_{m-i}(\theta_{x,x_i})
\]

and

\[
d_m(AB\theta_{x,x_i}) = d_m(AB)\theta_{x,x_i} + \sum_{i=0}^{m-1} d_i(AB)d_{m-i}(\theta_{x,x_i}).
\]

On the other hand,

\[
d_m(AB\theta_{x,x_i}) = d_m(A)B\theta_{x,x_i} + \sum_{i=0}^{m-1} d_i(A)d_{m-i}(B\theta_{x,x_i}).
\]

Take \(m = 1 \). By comparing these equalities, we obtain

\[
d_1(AB)\theta_{x,x_i} = d_1(A)B\theta_{x,x_i} + Ad_1(B)\theta_{x,x_i}.
\]
So
\[d_1(AB)x = \sum_{i=1}^{n} d_1(AB) < x_i, x_i > x = \sum_{i=1}^{n} d_1(A)B < x_i, x_i > x + \sum_{i=1}^{n} Ad_1(B) < x_i, x_i > x = d_1(A)Bx + Ad_1(B)x. \]

This implies that \(d_1 \) is a derivation. As an induction suppose that \(\{d_0, d_1, \cdots, d_m\} \) is a higher derivation of rank \(m \). By induction, we get
\[d_{m+1}(AB\theta_{x,x_i}) = d_{m+1}(AB)\theta_{x,x_i} + \sum_{i=0}^{m} d_i(AB)d_{m+1-i}(\theta_{x,x_i}) = d_{m+1}(AB)\theta_{x,x_i} + \sum_{i=0}^{m} \sum_{j=0}^{m-i} d_j(A)d_{j-1}(B)d_{m+1-i-j}(\theta_{x,x_i}) \]

and by (4.2),
\[d_{m+1}(AB\theta_{x,x_i}) = d_{m+1}(A)B\theta_{x,x_i} + \sum_{i=0}^{m-i} d_i(A)d_{m+1-i}(B\theta_{x,x_i}) = d_{m}(A)B\theta_{x,x_i} + \sum_{i=0}^{m-i} \sum_{j=0}^{m-i} d_j(A)d_{j-1}(B)d_{m+1-i-j}(\theta_{x,x_i}). \]

One can see that
\[\sum_{i=0}^{m} \sum_{j=0}^{m-i} d_j(A)d_{j-1}(B)d_{m+1-i-j}(\theta_{x,x_i}) = \sum_{i=0}^{m-i} \sum_{j=0}^{m-i} d_j(A)d_{j-1}(B)d_{m+1-i-j}(\theta_{x,x_i}). \]

Therefore,
\[d_{m+1}(AB)\theta_{x,x_i} = \sum_{i=0}^{m+1} d_i(A)d_{m+1-i}(B)\theta_{x,x_i}. \]

So
\[d_{m+1}(AB)x = \sum_{i=0}^{m+1} d_i(A)d_{m+1-i}(B)x. \]

will imply that \(\{d_0, d_1, \cdots, d_{m+1}\} \) is a higher derivation of rank \(m + 1 \). \(\square \)
References

Authors’ addresses

Hossein Saidi
University of Birjand, Department of Mathematics, P. O. Box 97175-615, Birjand, Iran
E-mail address: hosseinsaidi@birjand.ac.ir

Ali Reza Janfada
University of Birjand, Department of Mathematics, P. O. Box 97175-615, Birjand, Iran
E-mail address: ajanjfada@birjand.ac.ir

Madjid Mirzavaziri
Ferdowsi University of Mashhad, Department of Pure Mathematics, P. O. Box 91775-1159, Mashhad, Iran
Current address: Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Mashhad, Iran
E-mail address: mirzavaziri@um.ac.ir