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ABSTRACT
Prediction on the basis of censored data has an important role in many
fields. This articledevelops anon-Bayesian two-samplepredictionbased
on a progressive Type-II right censoring scheme. We obtain the max-
imum likelihood (ML) prediction in a general form for lifetime mod-
els including the Weibull distribution. The Weibull distribution is con-
sidered to obtain the ML predictor (MLP), the ML prediction estimate
(MLPE), the asymptotic ML prediction interval (AMLPI), and the asymp-
totic predictive ML intervals of the sth-order statistic in a future random
sample (Ys) drawn independently from the parent population, for an
arbitrary progressive censoring scheme. To reach this aim, we present
three ML prediction methods namely the numerical solution, the EM
algorithm, and the approximate ML prediction. We compare the perfor-
mancesof thedifferentmethodsofMLpredictionunder asymptotic nor-
mality and bootstrap methods by Monte Carlo simulation with respect
to biases and mean square prediction errors (MSPEs) of the MLPs of Ys
as well as coverage probabilities (CP) and average lengths (AL) of the
AMLPIs. Finally, we give a numerical example and a real data sample
to assess the computational comparison of these methods of the ML
prediction.

1. Introduction

Prediction of a future random variable is valuable in the analysis of lifetime data. Based on a
complete random sample, prediction problems have been discussed in the literature; see, for
example, Aitchison and Dunsmore (1975), Geisser (1993), and references therein. Fernandez
(2000) considered the Bayesian prediction problem for an independent future sample from
the Rayleigh distribution based on Type-II double censoring. Ali Mousa and Jaheen (2002)
considered the two-parameter Burr Type-XII model for obtaining Bayesian prediction in a
two-sample problem on the basis of progressively censored data. Kundu andHowlader (2010)
presented the Bayesian prediction for the inverse Weibull distribution under Type-II censor-
ing schemes.

According to Aitchison and Dunsmore (1975), “an essential feature of statistical predic-
tion analysis is that it involves two experiments e and f (two-sample prediction). From the
information which we gain from a performance of e, the informative experiment, we wish
to make some reasoned statement concerning the performance of f , the future experiment.
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In order that e should provide information on f there must be some link between these two
experiments.”

Due to an applicable example from the book of Aitchison and Dunsmore (1975), “let we
have the survival times (weeks) of 20 patients with a certain type of carcinoma and receiv-
ing treatment of preoperative radiotherapy followed by radical surgery. On the basis of this
information what can appropriately be said about the future of a new patient with this type of
carcinoma and assigned to this form of treatment?”

In this example, “the informative experiment e consists of recording the survival times
of the 20 patients already treated. The future experiment f consists of treating the new
patient similarly and recording his survival time. If no change in the treatment has been
made since the conducting of e, then e and f consist respectively of 20 replicates and a sin-
gle replicate of the same basic trial (record the survival time of a treated patient) and are
independent.”

Censoring is usual in lifetime data due to time and cost restrictions. In statistics, engi-
neering andmedical research, censoring arises when exact lifetimes are only partially known.
There are various types of censoring such as Type-II censoring, doubly Type-II censoring,
random censoring, and progressive censoring. In this article, we consider a progressive Type-
II right censoring scheme. Based on the progressively Type-II censored data, many authors
developed statistical inference and prediction for future observations (failure times). For
example, Cohen (1963) and Cohen and Norgaard (1977) studied statistical inference for sev-
eral failure time distributions based on progressively Type-II censored data. Also, see Thomas
and Wilson (1972), Cacciari and Motanari (1987), and Viveros and Balakrishnan (1994).

A comprehensive review of theory, methods, and applications of the progressive censoring
can be seen in Balakrishnan and Aggarwala (2000). Also, recently a book from Balakrish-
nan and Cramer (2014) offers a thorough and updated guide to the theory and methods of
progressive censoring along with its practical applications to reliability and survival analysis.

Bayesian prediction and inference for the Pareto distribution based on progressive cen-
soring is discussed by Ali Mousa (2001). Balakrishnan et al. (2001) computed bounds for
means and variances of progressively Type-II censored order statistics. In addition, AliMousa
and Al-Sagheer (2005) obtained the Bayesian two-sample prediction bounds with progressive
Type-II censoring for the Rayleigh model.

Also, Soliman et al. (2011) considered point and interval Bayesian predictions
based on general progressively Type-II censored data from Weibull model under sym-
metric and asymmetric loss functions. In addition, they obtained prediction bounds
for the future observations (two-sample prediction) based on this type of censored
samples.

Huang andWu (2012) derived ML estimators and the Bayes estimators for the parameters
of Weibull distribution under squared error loss as well as the Bayes prediction intervals for
future observations in the one- and two-sample cases with the data that are progressively type
II censored.

Based on progressively Type II censored sampling, Jung and Chung (2013) suggested a
very general form of Bayesian prediction bounds from two parameters exponentiatedWeibull
distribution using the proper general prior density.

Recently, Ghafoori et al. (2011) obtained the Bayesian two-sample prediction bounds as
well as the Bayes predictive estimations for a future progressively Type-II censored sample in
a general form of lifetime models under the SEL function.

Some prediction studies have also been considered based on the ML approach. For
instance, based on a general multiple Type-II censored sample from a shifted exponential
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distribution, Raqab (2004) introduced a simple approximation to one of prediction likeli-
hood equations, derived approximate predictors of missing failure times. Basak et al. (2006)
considered the problem of predicting time to failure of units censored in a progressively cen-
sored sample from an absolutely continuous population. The best linear unbiased predictors
(BLUPs), the ML predictors (MLPs), and the approximate MLPs of units censored in a pro-
gressively censored sample for the Pareto distribution were presented by Raqab et al. (2010).

In this article, we focus on obtaining the MLP and the AMLPI of the sth order statistic in
a future random sample drawn from the parent population independently. Therefore, we use
the numerical ML solution, the EM algorithm, and the approximate ML for prediction of the
future progressively Type II censored order statistics in theWeibull model as a special case of
the general class introduced by AL-Hussaini (1999). For the Weibull distribution discussed
here, both parameters are assumed to be unknown. The rest of the article is organized as
follows.

The predictive likelihood equations in the general class are presented in Section 2. We
derive the MLP of ys and the MLPEs of unknown parameters in the Weibull distribution
using the numerical ML prediction, the EM algorithm, and the approximate ML prediction
in Section 3. Section 4 then considers how to obtain the AMLPI of ys and the asymptotic pre-
dictive ML intervals of unknown parameters in more details, while in Section 5 a simulation
study as well as two illustrative examples are given to assess the proposed performance of the
procedures. Finally, Section 6 is devoted to our conclusion and some expressions.

2. Predictive likelihood equations in a general lifetimemodel

Let X (R1,R2,...,Rm )
1:m:n ,X (R1,R2,...,Rm )

2:m:n , . . . ,X (R1,R2,...,Rm)
m:m:n be the progressively Type-II censored

ordered statistics from a sample of size nwith progressive censoring scheme (R1,R2, . . . ,Rm)

from a continuous distribution. Also, suppose that x = (x1, x2, . . . , xm) be an observed pro-
gressively Type-II censored sample with scheme (R1,R2, . . . ,Rm). The joint pdf of the sample
is (Balakrishnan and Aggarwala, 2000, p. 8)

f (x; θ ) = A
m∏
i=1

f (xi)
(
1 − F(xi)

)Ri
, (1)

where A = n(n − R1 − 1)(n − R1 − R2 − 2) . . . (n − R1 − R2 − . . .− Rm−1 − m + 1), is a
normalizing constant, f (xi) and F(xi) are the pdf and the cdf of the parent population, respec-
tively, and θ ∈ � is a parameter vector and � is the parameter space. Suppose that Kθ (x) is
the cumulative hazard rate of the cdf Fθ (.) which is increasing in x and non-negative. Then

Fθ (x) = 1 − e−Kθ (x), x > 0. (2)

For more details, see, AL-Hussaini (1999). Substituting (2) into (1), the likelihood function
reduces to

L(θ; x) = A exp
{ m∑

j=1

(
ln(K ′

θ (x j))− (Rj + 1)Kθ (x j)
)}
, (3)

where A is given by (1). According to Ali Mousa and AL-Sagheer (2005), assume that
Y (S1,S2,...,SM )
1:M:N ,Y (S1,S2,...,SM )

2:M:N , . . . ,Y (S1,S2,...,SM )
M:M:N is another (unobserved) independent set of pro-

gressively Type-II right censored ordered statistics of size M from a sample of size N with
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progressive censoring scheme (S1, S2, . . . , SM). The first sample is considered as an “infor-
mative” (past) sample, whereas the second sample is considered as the “future” sample. Now,
assume thatYs represents the sth order statistic in the future sample of sizeM, 1 ≤ s ≤ M. The
problem of prediction is very important in practice such as for determining optimal experi-
ments. Formore details, see Aitchison andDunsmore (1975). The rest of this article is devoted
to non-Bayesian prediction ofYs for a future sample.

For the general lifetime model (2) with a vector of parameters θ , the pdf ofYs, 1 ≤ s ≤ M
is obtained as (see Balakrishnan and Aggarwala, 2000, p. 26)

h(ys; θ ) = Cs−1

s∑
i=1

ai exp
{
ln(K ′

θ (ys))− γiKθ (ys)
}
, (4)

where

γi =
M∑
j=i

(S j + 1) = N −
i−1∑
j=1

(S j + 1), Cs−1 =
s∏

i=1

γi, ai =
s∏

j=1

1
γ j − γi

, ∀i �= j, s > 1, (5)

and a1 = 1 for s = 1. Therefore, from (3) and (4), the predictive likelihood function (PLF) is
of the form

L(θ, ys; x) = h(ys; θ )L(θ; x) = ACs−1

s∑
i=1

ai

× exp
{ m∑

j=1

(
lnK ′

θ (x j)− (Rj + 1)Kθ (x j)
)

+ lnK ′
θ (ys)− γiKθ (ys)

}
. (6)

Apart from a constant term, by differentiating with respect to ys and θ from the predictive
log-likelihood function and setting to zero, we can obtain the MLP and the AMLPI of ys of a
future random sample. Also, the MLPEs and asymptotic predictive ML intervals of unknown
parameters θ can be found.Unfortunately, these equations do not admit explicit forms. There-
fore, we use the numerical ML solution, the EM algorithm prediction, and the approximate
MLprediction to estimate them. Thesemethods are considered inmore details for theWeibull
model in Sections 3 and 4.

3. MLP ofYs
The Weibull distribution is one of the most popular distributions in reliability and survival
analysis. This distribution has been widely used for analyzing lifetime data. Here θ = (α, β)

and Kθ (x) = αxβ, α, β > 0. The corresponding pdf is

f (x;α, β) = αβxβ−1e−αx
β

, x > 0, α, β > 0. (7)

It is worth noting that instead of workingwith theWeibullmodel forX , because of complexity,
it is often more convenient to work with the equivalent model for the log-lifetime T = lnX
which is an extreme value variable with pdf

f (t;μ, σ ) = 1
σ
e(

t−μ
σ )−e(

t−μ
σ )

, −∞ < t < ∞, −∞ < μ < ∞, σ > 0. (8)

Namely, T is the extreme value variable with parameters σ = β−1 andμ = β−1 ln(α−1). Sup-
pose T (R1,R2,...,Rm)

1:m:n ,T (R1,R2,...,Rm)
2:m:n , . . . ,T (R1,R2,...,Rm )

m:m:n are progressively Type-II censored ordered
statistics from a sample of size nwith progressive censoring scheme (R1,R2, . . . ,Rm) from the
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extreme value distribution. Also, let U (S1,S2,...,SM )
1:M:N ,U (S1,S2,...,SM )

2:M:N , . . . ,U (S1,S2,...,SM )
M:M:N be another

(unobserved) independent progressively Type-II right censored series of ordered statistics
of size M from the extreme value sample of size N with progressive censoring scheme
(S1, S2, . . . , SM). Now,Us represents the sth order statistic in the future sample of sizeM; 1 ≤
s ≤ M.

Assume we observed a progressively Type-II censored extreme value sample with scheme
(R1,R2, . . . ,Rm), denoted by t = (t1, t2, . . . , tm). The log PLF is obtained as

ln L(μ, σ, us; t ) ∝ −(m + 1) ln σ +
m∑
j=1

(
t j − μ

σ

)
−

m∑
j=1

(Rj + 1) exp
(
t j − μ

σ

)

+
(
us − μ

σ

)
+ ln

(
s∑

i=1

ai exp
{

− γi exp(
us − μ

σ
)
})
. (9)

We differentiate with respect to μ, σ and us and set to zero, then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 :
∂ ln L(μ, σ, us; t )

∂μ
= −m

σ
+

m∑
j=1

(Rj + 1)
σ

exp
(
t j − μ

σ

)
− 1
σ

+
∑s

i=1 aiγi exp
{( us−μ

σ

) − γi exp( us−μσ )
}

σ
∑s

i=1 ai exp
{−γi exp( us−μσ )

} = 0,

2 :
∂ ln L(μ, σ, us; t )

∂σ
= − (m + 1)

σ
−

m∑
j=1

(
t j − μ

σ 2

)
+

m∑
j=1

(Rj + 1)
(
t j − μ

σ 2

)

×exp
(
t j−μ
σ

)
−
(
us − μ

σ 2

)

+
∑s

i=1 aiγi(
us−μ
σ 2
) exp{( us−μ

σ
)− γi exp( us−μσ )}∑s

i=1 ai exp{−γi exp( us−μσ )} = 0,

3 :
∂ ln L(μ, σ, us; t )

∂us
= 1
σ

−
∑s

i=1 aiγi exp{( us−μσ )− γi exp( us−μσ )}
σ
∑s

i=1 ai exp{−γi exp( us−μσ )} = 0.

(10)

By substituting 3: into 1: the MLPE of μ can be simplified

μ̂ = σ̂ ln
(
1
m

m∑
j=1

(Rj + 1) exp{ t j
σ̂

}
)
, (11)

where σ̂ is the MLPE of σ which is obtained by replacing 3: in 2:

σ̂ = 1
m + 1

⎛
⎝∑m

j=1(Rj + 1)t j exp(
t j
σ̂
)

1
m

∑m
j=1(Rj + 1) exp( t j

σ̂
)

−
m∑
j=1

t j

⎞
⎠ . (12)

Also, substituting μ̂ and σ̂ into 3: we find that the MLP ofUs as

Ûs = σ̂ ln

( ∑s
i=1 ai exp

{ − γi exp( Ûs−μ̂
σ̂
)
}

∑s
i=1 aiγi exp

{ − γi exp( Ûs−μ̂
σ̂
)
}
)

+ μ̂. (13)
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It is worth mentioning that it is easy to show that the likelihood equations have a unique
solution (see Example 6.1, Lehmann and Casella, 1998). To show this, suppose

h(σ ) = 1
m + 1

( ∑m
j=1(Rj + 1)t j exp(

t j
σ
)

1
m

∑m
j=1(Rj + 1) exp( t j

σ
)

)
− σ = 1

m + 1

m∑
j=1

t j.

And let p j = (R j+1) exp(
t j
σ )∑m

j=1(R j+1) exp(
t j
σ )
, so we have, h(σ ) = m

m+1

∑m
j=1 t j p j − σ = 1

m+1

∑m
j=1 t j. Now,

h′(σ ) = − m
(m+1)σ 2 (

∑m
j=1 t

2
j p j − (

∑m
j=1 t j p j)

2)− 1 < 0 by the Cauchy–Schwarz inequality.
Thus, h(σ ) is decreasing. Since h is continuous and

−∞ = lim
σ→∞

h(σ ) ≤ 1
m + 1

m∑
j=1

t j ≤ lim
σ→0

h(σ ) = m
m + 1

tm,

we conclude that the likelihood equations have a unique solution. Therefore, we could obtain
the MLP ofUs and the predictive ML estimators of μ, σ by usual numerical solution.

Also, by transformations Ŷs = exp(Ûs), β̂ = 1/σ̂ and α̂ = exp(−μ̂/σ̂ ), the corresponding
MLP ofYs and the MLPEs of α and β can be found.

3.1. Point prediction based on the EM algorithm

The EM algorithm, originally suggested by Dempster et al. (1977), is a very powerful iterative
technique for handling any incomplete or missing data and thus can be used for progressively
censored samples. Readers are referred to the book byMcLachlan and Krishnan (1997) which
provides detailed discussion on the EM literature and its applications. The EM algorithm is
an iterative method which is applicable to obtain the ML estimators of parameters.

Here, we will apply the EM algorithm in the progressively censored extreme value sample
to find the MLP ofYs and the MLPEs of α and β in a future random sample.

The EM algorithm has two steps which are known as E-step and M-step. In the E-step,
the algorithm replaces any missing data by its expected value, while in the M-step, the log-
likelihood function ismaximizedwith the observed data and expected value of the incomplete
data (censored data) updating the values of the estimates. By repeating the E- and M-steps,
the ML estimators are derived when convergence occurs.

First, let us denote the observed and censored vector as T = (T1:m:n,T2:m:n, . . . ,Tm:m:n),
Z = (Z1,Z2, . . . ,Zm), respectively, where Z j = (Zj1,Zj2, . . . ,ZjR j ), for j = 1, 2, . . . ,m. By
combining T and Z, we haveW = (W1,W2, . . . ,Wn) which is the complete dataset.

On the basis ofW and apart from a constant term, the log PLF of the extreme value distri-
bution may be taken in the form of

ln L(μ, σ, us;W ) ∝ −(n + 1) ln σ +
n∑
i=1

(
wi − μ

σ

)
−

n∑
i=1

exp
(

wi − μ

σ

)
+
(
us − μ

σ

)

+ ln

(
s∑

i=1

ai exp
{

− γi exp (
us − μ

σ
)
})
. (14)
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In the E-step, one needs to compute the conditional expectation
E(ln L(μ, σ, us; (T ,Z)|T = t )) which can be given by

E
(
ln L(μ, σ, us; (T ,Z)|T = t )

)
∝ −(n + 1) ln σ +

m∑
j=1

(t j − μ

σ

)

+
m∑
j=1

RjE
(Zjk − μ

σ
|Zjk > t j

)
−

m∑
j=1

exp
{t j − μ

σ

} −
m∑
j=1

RjE
(
exp

{Zjk − μ

σ

}|Zjk > t j
)

+us − μ

σ
+ ln

( s∑
i=1

ai exp
{

− γi exp (
us − μ

σ
)
})
, k = 1, 2, . . . ,Rj. (15)

Remark 3.1. It is obvious that the function E
(
ln L(μ, σ, us; (T ,Z)|T = t )

)
with respect to

μ, σ and us is continuous.

In order to obtain the above conditional expectations, we use the theorem 3.2 in Ng et al.
(2002). Now, suppose ζ = t j−μ

σ
; j = 1, 2, . . . ,m. Therefore, under progressive censoring in

the extreme value distribution, the conditional distribution of Z given T takes the form

fW (z jk)
1 − FW (t j:m:n)

= exp{exp(ζ )}
σ

exp
{(z jk − μ

σ

)
− exp

(z jk − μ

σ

)}
, z jk > t j:m:n. (16)

Let μ(h) and σ (h) be the MLPEs of parameters μ and σ at the hth stage, then by making
the transformation U = exp

Z jk−μ(h)
σ (h) ; j = 1, 2, . . . ,m, conditional expectations can be seen

as (Lehmann and Casella, 1998, pp. 457–461)

E1 = E
(
Zjk|Zjk > t j;μ(h), σ (h)

)
= σ (h)

∫ ∞

exp(ζ )
exp(−u) ln u du + μ(h), (17)

E2 = E
(
exp

{
Zjk

σ (h + 1)

}
|Zjk > t j;μ(h), σ (h)

)
= exp

{
μ(h)

σ (h + 1)

}
exp{exp(ζ )}

×

(

σ (h)
σ (h + 1)

+ 1
)[

1 −
∫ exp(ζ )

0

u
σ (h)
σ (h+1)



(

σ (h)
σ (h+1) + 1

) exp(−u) du

]
. (18)

And finally,

E3 = E
(
Zjk exp

{
Zjk

σ (h + 1)

}
|Zjk > t j;μ(h), σ (h)

)
= μ(h)E2 + σ (h) exp{exp(ζ )}

× exp

{
μ(h)

σ (h + 1
)
} [∫ ∞

exp(ζ )
(ln u)u

σ (h)
σ (h+1) exp(−u) du

]
. (19)

In the M-step we maximize Eq. (15) with respect toμ, σ, and us. Based on complete data, the
MLPEs of parameters μ and σ and the MLP of Us can be easily obtained. By differentiating
with respect to μ, σ, and us from (14) and equating to zero, the likelihood equations can be
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rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a :
∂ ln L

(
μ, σ, us;W

)
∂μ

= − (n + 1)
σ

+ 1
σ
exp

{(
wi − μ

σ

)}

+
∑s

i=1 aiγi exp{( us−μσ )− γi exp( us−μσ )}
σ
∑s

i=1 ai exp{−γi exp( us−μσ )} = 0,

b :
∂ ln L(μ, σ, us;W )

∂σ
= − (n + 1)

σ
−

n∑
i=1

(
wi − μ

σ 2

)
+

n∑
i=1

(
wi − μ

σ 2

)
exp

{(
wi − μ

σ

)}

+
(
us − μ

σ 2

) ∑s
i=1 aiγi exp{( us−μσ )− γi exp( us−μσ )}∑s

i=1 ai exp{−γi exp( us−μσ )} −
(
us − μ

σ 2

)
= 0,

c :
∂ ln L(μ, σ, us;W )

∂us
= 1
σ

−
∑s

i=1 aiγi exp{( us−μσ )− γi exp( us−μσ )}
σ
∑s

i=1 ai exp{−γi exp( us−μσ )} = 0.

(20)

We substitute c: into a: and the MLPE of μ under a complete sample can be expressed as

μ̃ = σ̃ ln

(
1
n

n∑
i=1

exp
{wi

σ̃

})
, (21)

where σ̃ is the MLPE of σ (under a complete sample) which is given by replacing a:, c: and μ̃
in b:

σ̃ = 1
(n + 1)

(∑n
i=1 wi exp(wi

σ̃
)∑n

i=1
1
n exp(

wi
σ̃
)

−
n∑

i=1

wi

)
. (22)

Finally, after substituting (21) and (22) into c: the MLP ofUs under a complete sample can
be simplified as

Ũs = σ̃ ln

⎛
⎝ ∑s

i=1 ai exp
{ − γi exp( Ũs−μ̃

σ̃
)
}

∑s
i=1 aiγi exp

{ − γi exp
(
Ũs−μ̃
σ̃

) }
⎞
⎠ + μ̃. (23)

Now, if σ (h) and μ(h) are the MLPEs of parameters σ and μ at the hth stage, respectively,
then from (21)–(23), the MLPEs of σ and μ at the (h + 1)th iteration are

σ (h + 1) = 1
(n + 1)

(∑m
j=1 t j exp{ t j

σ (h+1) } + ∑m
j=1 RjE

(
Zjk exp{ Zjk

σ (h+1) }|Zjk > t j; σ (h), μ(h)
)

1
n
∑m

j=1 exp{ t j
σ (h+1) } + 1

n
∑m

j=1 RjE
(
exp{ Zjk

σ (h+1) }|Zjk > t j; σ (h), μ(h)
)

−
m∑
j=1

t j −
m∑
j=1

RjE
(
Zjk|Zjk > t j; σ (h), μ(h)

))
, (24)

μ(h + 1) = σ (h + 1) ln

⎛
⎝1
n

m∑
j=1

exp
{

t j
σ (h + 1)

}
+ 1

n

m∑
j=1

Rj

× E
(
exp

{
z jk

σ (h + 1)

}
|z jk > t j; σ (h), μ(h)

))
. (25)

In the iterative EMprocedure, wewill start with σ (0) andμ(0) as the initial values. In the (h +
1)th iteration of the EM algorithm, the MLPEs of σ (h + 1) and μ(h + 1) can be computed
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by substitution of expected values (17), (18), and (19) into (24) and (25), respectively. After
convergence and obtaining final MLPEs ofμ and σ in the EM algorithm (μ̃ and σ̃ ), the MLP
ofUs is as follows:

Ũs = σ̃ ln

( ∑s
i=1 ai exp

{ − γi exp( Ũs−μ̃
σ̃
)
}

∑s
i=1 aiγi exp

{ − γi exp( Ũs−μ̃
σ̃
)
}
)

+ μ̃. (26)

Similar to the proof for uniqueness of the likelihood equations (10), we can show
that the likelihood equations (20), have a unique solution. Therefore, μ̃, σ̃ , and Ũs are
unique. Then, by the uniqueness of μ̃, σ̃ , and Ũs and with respect to the continuity of
E
(
ln L(μ, σ, us; (T ,Z)|T = t )

)
, the convergence of the EM algorithm (see Lehmann and

Casella, 1998, Theorem 4.12, p. 460) has been guaranteed.
As mentioned earlier, by substitutions Ỹs = exp(Ũs), β̃ = 1/σ̃ and α̃ = exp(−μ̃/σ̃ ), the

MLP ofYs and the MLPEs of α and β for the Weibull model can be obtained.

3.2. Point prediction on the basis of the approximateML

In this section, we derive the MLPEs of unknown parameters α and β and the MLP of Ys by
approximating the likelihood equations (10), where this approximate ML prediction method
does not require any starting values.

In addition, let ti:m:n = ln xi:m:n, z̈ j = z̈ j:m:n = t j:m:n−μ
σ

, g(z̈ j) = exp{z̈ j − exp(z̈ j)},
G(z̈ j) = 1 − exp{− exp(z̈ j)}, us = us:M:N = ln ys:M:N (1 ≤ s ≤ M), v = us−μ

σ
, and h(v ) =

Cs−1
∑s

i=1 ai exp{v − γi exp(v )}. Suppose we denoted a progressively Type-II censored
extreme value sample with scheme (R1,R2, . . . ,Rm) by z̈ = (z̈1, z̈2, . . . , z̈m). Under these
assumptions, the log PLF (14) is reduced to

ln L(μ, σ, us; z̈) ∝ −m ln σ +
m∑
j=1

ln g(z̈ j)+
m∑
j=1

Rj ln
[
1 − G(z̈ j)

] − ln σ + ln h(v ), (27)

and obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1 :
∂ ln L(μ, σ, us; z̈)

∂μ
= −

m∑
j=1

g′(z̈ j)
σ g(z̈ j)

+
m∑
j=1

Rj
g(z̈ j)

σ
[
1 − G(z̈ j)

] − h′(v )
σh(v )

= 0,

E2 :
∂ ln L(μ, σ, us; z̈)

∂σ
= − (m + 1)

σ
−

m∑
j=1

g′(z̈ j)z̈ j
σ g(z̈ j)

+
m∑
j=1

Rj
g(z̈ j)z̈ j

σ
[
1 − G(z̈ j)

] − h′(v )v
σh(v )

= 0,

E3 :
∂ ln L(μ, σ, us; z̈)

∂us
= h′(v )
σh(v )

= 0.

(28)

These likelihood equations in (28) do not have explicit solutions. But we can approximate
the functions g′(z̈ j )

g(z̈ j )
and g(z̈ j )

[1−G(z̈ j )]
by expanding them in a Taylor series around the points μ j =

G−1(p j) = ln(− ln(1 − p j)), where p j = 1 − q j = 1 − ∏m
k=m− j+1 αk; αk = k+∑m

i=m−k+1 Ri
1+k+∑m

i=m−k+1 Ri
for j = 1, 2, . . .m, and the function h(v ) around μs = G−1(ps) = ln(− ln(1 − ps)), where

ps = 1 − qs = 1 − ∏M
k=M−s+1 α

′
k; α′

k = k+∑M
i=M−k+1 Si

1+k+∑M
i=M−k+1 Si

for 1 ≤ s ≤ M. From Balakrishnan
and Aggarwala (2000), we have

p j = 1 −
m∏

k=m− j+1

k + ∑m
i=m−k+1 Ri

1 + k + ∑m
i=m−k+1 Ri

; j = 1, 2, . . . , s, . . .m,
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ps = 1 −
M∏

k=M− j+1

k + ∑M
i=M−k+1 Si

1 + k + ∑M
i=M−k+1 Si

; 1 ≤ s ≤ M.

Also, in the extreme value distribution, G−1(u) = ln(− ln(1 − u)), 0 < u < 1.
Now, by expanding the functions g′(z̈ j )

g(z̈ j )
and g(z̈ j )

[1−G(z̈ j )]
around μ j and the function h(v )

around μs and keeping only the first two terms, we may approximate these functions by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eq1 :
g′(z̈ j)
g(z̈ j)

≈ g′(μ j)

g(μ j)
+ (z̈ j − μ j)

(g′(μ j)

g(μ j)

)′ = α j − β j z̈ j,

Eq2 :
g(z̈ j)

(1 − G(z̈ j))
≈ g(μ j)

(1 − G(μ j))
+ (z̈ j − μ j)

( g(μ j)

(1 − G(μ j))

)′
= α∗

j − β∗
j z̈ j = 1 − α j + β j z̈ j,

Eq3 :
h′(v )
h(v )

≈ h′(μs)

h(μs)
+ (v − μs)

(
h′(μs)

h(μs)

)′
= αs − βsv,

(29)

where

α j = g′(μ j)

g(μ j)
− μ j

(
g′′(μ j)

g(μ j)
−
(
g′(μ j)

g(μ j)

)2
)

= 1 + ln q j[1 − ln(− ln q j)], (30)

β j =
(
g′(μ j)

g(μ j)

)2

− g′′(μ j)

g(μ j)
= − ln q j, (31)

1 − α j = α∗
j , −β j = β∗

j (32)

αs = h′(μs)

h(μs)
− μs

(
h′′(μs)

h(μs)
− (

h′(μs)

h(μs)
)2
)

= 1 −
∑s

i=1 aiγi exp
{
μs − γi exp(μs)

}∑s
i=1 ai exp

{ − γi exp(μs)
} − μs

[∑s
i=1 aiγ

2
i exp

{
2μs − γi exp(μs)

}∑s
i=1 ai exp

{ − γi exp(μs)
}

−
∑s

i=1 aiγi exp
{
μs − γi exp(μs)

}∑s
i=1 ai exp

{ − γi exp(μs)
} −

(∑s
i=1 aiγi exp

{
μs − γi exp(μs)

}∑s
i=1 ai exp

{ − γi exp(μs)
} )2]

,

(33)

βs =
(
h′(μs)

h(μs)

)2

− h′′(μs)

h(μs)
=
(∑s

i=1 aiγi exp
{
μs − γi exp(μs)

}∑s
i=1 ai exp

{ − γi exp(μs)
} )2

+
∑s

i=1 aiγi exp
{
μs − γi exp(μs)

}∑s
i=1 ai exp

{ − γi exp(μs)
} −

∑s
i=1 aiγ

2
i exp

{
2μs − γi exp(μs)

}∑s
i=1 ai exp

{ − γi exp(μs)
} . (34)

Using these linear approximations, the approximate predictive log-likelihood equations E1−
E3 in (28) can be written, respectively

−
m∑
j=1

(α j − β j z̈ j)+
m∑
j=1

Rj(α
∗
j − β∗

j z̈ j)− (αs − βsv ) = 0, (35)

−(m + 1)−
m∑
j=1

(α j − β j z̈ j)z̈ j +
m∑
j=1

Rj(α
∗
j − β∗

j z̈ j)z̈ j − (αs − βsv )v = 0, (36)
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αs − βsv = 0. (37)

From (37) and v = us−μ
σ

, the approximate MLP ofUs can be obtained as

Ǔs = σ̌
αs

βs
+ μ̌, (38)

where σ̌ and μ̌ are the approximate MLPEs of σ and μ, respectively and they can be derived
as follows.

Substituting z̈ j = z̈ j:m:n = t j:m:n−μ
σ

into (35), using (37) and after algebraic simplification,
we get the approximate MLPE of μ as μ̌ = AL − σ̌BL, where

AL =
∑m

j=1 t jβ j(1 + Rj)∑m
j=1 β j(1 + Rj)

, BL =
∑m

j=1 α j −
∑m

j=1 Rj(1 − α j)∑m
j=1 β j(1 + Rj)

. (39)

Similarly, simplifying (36) can be transformed to the approximate predictive likelihood equa-
tion form of σ as (m + 1)σ 2 + DL − FL = 0, where

DL =
m∑
j=1

α j(t j − AL)−
m∑
j=1

Rj(t j − AL)−
m∑
j=1

Rjα j(AL − t j),

FL =
m∑
j=1

β jR j(t j − AL)
2 +

m∑
j=1

β j(t j − AL)
2 > 0. (40)

Therefore, (40) yields the approximate MLPE of σ to be

σ̌ = −DL + √
D2

L + 4(m + 1)FL
2(m + 1)

, (41)

which is the only positive root (see Bayat Mokhtari et al., 2011).

4. Asymptotic ML Prediction Interval ofYs
In this section, we derive the Fisher information based on the predictive likelihood equations
in the numerical ML prediction, prediction on the basis of the EM algorithm and the approxi-
mateMLprediction. To construct theAMLPI ofYs and the asymptotic predictiveML intervals
of unknownparameters, we use the asymptotic standard normal distribution for large samples
(sufficiently largem and n) in the central limit theorem (see Faulkenberry, 1973).

First of all, we investigate the Fisher information matrix of the numerical ML prediction.
We know that the pdf of t j, j = 1, 2, . . . ,m of the first sample under the extreme value
distribution is

p(t j|θ ) = C′
j−1

σ

j∑
k=1

a′
k exp

{(t j − μ

σ

)
− γ ′

k exp
(t j − μ

σ

)}
, (42)

where γ ′
k = ∑m

i=k(Ri + 1) = n − ∑k−1
i=1 (Ri + 1), C′

j−1 = ∏ j
k=1 γ

′
k, a′

k = ∏ j
i=1

1
γi−γk , ∀i �=

k, j = 2, . . . ,m, and a′
1 = 1 for j = 1. Also, we have the following relationship between

the digamma and the trigamma functions

ψ ′(t )+ ψ2(t ) = 1

(t )

∫ ∞

0
exp(−y)yt−1 ln2 y dy. (43)
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By making the transformations z̀ j = exp( t j−μ
σ
); j = 1, 2, . . . ,m and γ ′

kz̀ j = ù j, we get

E
(
Tj − μ

σ

)
= C′

j−1

j∑
k=1

a′
k

γ ′
k

[
ψ(1)− ln γ ′

k

]
, (44)

E
((

Tj − μ

σ

)
exp

{
Tj − μ

σ

})
= C′

j−1

j∑
k=1

a′
k

(γ ′
k )

2

[
ψ(2)− ψ(1) ln γ ′

k

]
, (45)

E
(
exp

{
Tj − μ

σ

})
= C′

j−1

j∑
k=1

a′
k

(γ ′
k )

2 , (46)

E

((
Tj − μ

σ

)2

exp
{
Tj − μ

σ

})
= C′

j−1

j∑
k=1

a′
k

(γ ′
k )

2

[
ψ2(2)+ ψ ′(2)+ ln2

γ ′
k − 2ψ(2) ln γ ′

k

]
.

(47)

By taking expectation from the second partial derivatives, the elements of the Fisher infor-
mation matrix can be derived by replacing (44)–(47) in the expectation as

I(θ ) = −E
[∂2L(μ, σ, us; t )

∂θ 2

]
,

where θ = (μ, σ, us). For large samples (sufficiently large m and n such that m/n → p
0 < p < 1) by Theorems 3.7 (p. 447) and 5.1 (p. 463) from Lehmann and Casella (1998),
the random vector (μ̂− μ, σ̂ − σ, Ûs −Us)

T tends to the multivariate normal distribution
with mean vector (0, 0, 0)T and the covariance matrix

∑ = I(θ )−1 where I(θ ) is the fisher
information of the available data. Here, we have [I(θ )

]−1 = [[Vi j]]i, j=1,2,3 and

I(θ ) =
⎡
⎣−E(V11) −E(V12) −E(V13)

−E(V12) −E(V22) −E(V23)

−E(V21) −E(V23) −E(V33)

⎤
⎦ ,

whereVi j, i, j = 1, 2, 3 are the second partial derivatives.
Through Monte Carlo simulations, we simulate the CPs

P(−1.64 < Bi < 1.64), i = 1, 2, 3,

where B1 = μ̂−μ√
V 11 , B2 = σ̂−σ√

V 22 , B3 = Ûs−Us√
V 33 . We will compute the AMLPI of Us and

the asymptotic predictive ML intervals of unknown parameters (μ and σ ). Thus, if
we denote the AMLPI of Ys and the asymptotic predictive ML intervals of μ and σ

by (l(μ̂), u(μ̂)), (l(σ̂ ), u(σ̂ )) and (l(Ûs), u(Ûs)), respectively, then ((u(μ̂))−1, (l(μ̂))−1),
and (exp{l(Ûs)}, exp{u(Ûs)}) will be the corresponding asymptotic predictive ML inter-
val of β and the AMLPI of Ys based on the Weibull distribution, respectively. Also,
if l(μ̂)

u(σ̂ ) <
u(μ̂)
l(σ̂ ) , then the corresponding asymptotic predictive ML interval of α will be

(exp{− u(μ̂)
l(σ̂ ) }, exp{− l(μ̂)

u(σ̂ ) }), otherwise the asymptotic predictive ML interval of α can be
obtained as (exp{− u(μ̂)

u(σ̂ ) }, exp{− l(μ̂)
l(σ̂ ) }).

4.1. Interval prediction based on the EM algorithm

One of the advantages of using the EM algorithm is that it gives a measure of information
in the censored (missing) data in a natural way through the missing information principle.
Louis (1982) developed a procedure for extracting the observed informationmatrix when the
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EM algorithm is used. It can be expressed as observed information = complete information-
missing information (see Ng. et al. 2002).

Here, we use this procedure in order to obtain the Fisher information matrix for the EM
prediction (the observed informationmatrix) under progressive Type-II censoring. The com-
plete information matrix in the extreme value distribution, denoted by IW (θ ), is

IW (θ ) = −E
[∂2L(μ, σ, us;W )

∂θ 2

]
, where θ = (μ, σ, us). (48)

On the basis of the conditional distribution in (16), the Fisher information matrix in one
observation which is censored at the time of the jth failure is

I( j)Z|T (θ ) = E
(
∂2 ln fZ|T (z jk|t j:m:n, θ )

∂θ 2

)2

= −E
[∂2 ln fZ|T (z jk|t j:m:n, θ )

∂θ 2

]
, k = 1, 2, . . . ,Rj.

(49)

Then, the missing information (the expected information for the conditional distribution of
Z given T) can be found as IZ|T (θ ) = ∑m

j=1 RjI
( j)
Z|T (θ ).

Therefore, the observed information is

IT (θ ) = IW (θ )− IZ|T (θ ). (50)

In order to compute the complete information matrix, we will need the expectations
E(exp(Wi−μ

σ
)), E(Wi−μ

σ
), E((Wi−μ

σ
) exp(Wi−μ

σ
)) and E((Wi−μ

σ
)2 exp(Wi−μ

σ
)).

TheWi; i = 1, 2 . . . , n are iid extreme value random variables with parameters μ and σ ,
and from (43), we easily get

E
(
exp

(
Wi − μ

σ

))
= 1, E

(
Wi − μ

σ

)
= ψ(1),

E
((

Wi − μ

σ

)
exp

(
Wi − μ

σ

))
= ψ(2), (51)

and E

((
Wi − μ

σ

)2

exp
(
Wi − μ

σ

))
= ψ ′(2)+ ψ2(2). (52)

If we take expectation from the second partial derivatives and replace (51) and (52) in the
taken expectation, we can obtain the elements of the complete informationmatrix as IW (θ ) =
−E[ ∂

2L(μ,σ,us;W )

∂θ2
], where θ = (μ, σ, us). From (16), we can write

ln fZ|T (z jk|z jk > t j:m:n, μ, σ ) = exp(ζ )− ln σ + (z jk − μ

σ
)

− exp
(z jk − μ

σ

)
, z jk > t j:m:n. (53)

Let ζ = t j−μ
σ

; j = 1, 2, . . . ,m, thus

Z11 = ∂2 ln fZ|T (z jk|z jk > t j:m:n, μ, σ )

∂μ2 = − 1
σ 2

[
exp(ζ )− exp

(
z jk − μ

σ

)]
,
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Z22 = ∂2 ln fZ|T (z jk|z jk > t j:m:n, μ, σ )

∂σ 2 = 1
σ 2

[
1 + 2

(
z jk − μ

σ

)
+ ζ 2 exp(ζ )+ 2ζ exp(ζ )

−
(
z jk − μ

σ

)2

exp
(
z jk − μ

σ

)
− 2

(
z jk − μ

σ

)
exp

(
z jk − μ

σ

)]
,

Z12 = ∂2 ln fZ|T (z jk|z jk > t j:m:n, μ, σ )

∂μ∂σ
= − 1

σ 2

[
1 + exp(ζ )+ ζ exp(ζ )− exp

(
z jk − μ

σ

)

−
(
z jk − μ

σ

)
exp

(
z jk − μ

σ

)]
, (54)

and finally, Z13 = Z23 = Z33 = 0.
Again, the missing information can be given by taking expectation (with respect to the

conditional distribution of Z given T in (16)) from the second partial derivatives

I( j)Z|T (θ ) = −E
[∂2 ln fZ|T (z jk|t j:m:n, θ )

∂θ 2

]
, where θ = (μ, σ, us).

Finally, the observed information IT (θ ) could easily be found. As mentioned before this sub-
section, by the central limit theorem for large samples, we can obtain Monte Carlo simulated
CPs, the AMLPI ofUs, the asymptotic predictiveML intervals of unknown parameters (μ and
σ ) in the EM algorithm and the corresponding AMLPI of Ys and asymptotic predictive ML
intervals of α and β for the Weibull distribution.

4.2. Interval prediction on the basis of the approximateML

With respect to (42) and similar to expectations in (45)–(48), we have

E
(
exp

{
2(

Tj − μ

σ
)

})
= 2C′

j−1

j∑
k=1

a′
k

(γ ′
k )

3 , (55)

and similarly,

E
((

Tj − μ

σ

)
exp

{
2
(
Tj − μ

σ

)})
= C′

j−1

j∑
k=1

a′
k

(γ ′
k )

3

[
2ψ(3)− 2 ln γ ′

k

]
, (56)

E

((
Tj − μ

σ

)2

exp
{
2
(
Tj − μ

σ

)})

= C′
j−1

j∑
k=1

a′
k

(γ ′
k )

3

[
2ψ2(3)+ 2ψ ′(3)+ 2 ln2

γ ′
k − 4ψ(3) ln γ ′

k

]
, (57)

E

((
Tj − μ

σ

)2
)

= C′
j−1

j∑
k=1

a′
k

γ ′
k

[
ψ2(1)+ ψ ′(1)+ ln2

γ ′
k − 2ψ(1) ln γ ′

k

]
. (58)

After taking expectation from the second partial derivatives, simplifying them and replac-
ing (44)–(47) and (55)–(58) in the expectation (similar to Subsection 4.1), we can derive
the Fisher information matrix of the approximate ML prediction method and therefore, the
AMLPI ofUs and the asymptotic predictive ML intervals of unknown parametersμ and σ , or
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Table . Various censoring schemeRi, i = 1, 2, . . . ,m and Si, i = 1, 2, . . . ,M forn = 50,N = 26,m = 35,
andM = 13.

Case Ri, i = 1, 2, . . . ,m Si, i = 1, 2, . . . ,M

 15, 0, . . . , 0 13, 0, . . . , 0



17︷ ︸︸ ︷
0, . . . , 0, 15,

17︷ ︸︸ ︷
0 . . . , 0

6︷ ︸︸ ︷
0, . . . , 0, 13,

6︷ ︸︸ ︷
0, . . . , 0

 0, . . . , 0, 15 0, . . . , 0, 13



7︷ ︸︸ ︷
2, . . . , 2, 1,

27︷ ︸︸ ︷
0 . . . , 0

6︷ ︸︸ ︷
0, . . . , 0, 13,

6︷ ︸︸ ︷
0, . . . , 0

corresponding AMLPI ofYs and asymptotic predictive ML intervals of α and β based on the
Weibull distribution under the approximate ML prediction. For more details, see Balakrish-
nan et al. (2004) and Balakrishnan and Hossain (2007).

5. Numerical results

In this section, the performance of the proposed procedures are investigated by a simulation
study and two illustrative examples.

5.1. Simulation Study

This subsection is devoted to test the performance of the obtainedMLP ofYs, MLPEs of α and
β , AMLPI of Ys and the asymptotic predictive ML intervals of α and β in a future random
sample. For the three introduced prediction methods, we can compare the MLPs of the Ys

(1 ≤ s ≤ M) on the basis of their biases as well as MSPEs and MLPEs of α and β in terms of
their biases and MSEs. Also, the AMLPIs ofYs and the asymptotic predictive ML intervals of
α and β can be compared on the basis of their CPs and ALs in different methods of prediction
described in Sections 3 and 4.

For given values of the parameters (μ = 0, σ = 1) and for different s (1 ≤ s ≤ M), accord-
ing to an algorithm proposed by Balakrishnan and Sandhu (1995), a progressively Type-
II censored extreme value sample is generated for given values of the censoring scheme
Ri, i = 1, 2, . . . ,m. For the threementionedmethods for prediction, the correspondingMLPs
of Ys, MLPEs of α and β , 95% AMLPIs of Ys and asymptotic 95% predictive ML intervals
of α and β are derived based on the results in Sections 3 and 4 in the large samples (suffi-
ciently large m and n). On the basis of real values for μ0 = 0, σ0 = 1 and Us0 = E(Us) =
μCs−1

∑s
i=1

ai
γi

+ σCs−1
∑s

i=1
ai
γi
[ψ(1)− ln γi] (or equivalently, α = exp(−μ/σ ), β = 1/σ

and Ys = exp(Us)), we replicate the above process 10,000 times and report biases, MSPEs of
the MLPs, and MSEs of the MLPEs, as well as CPs and ALs of the 95% AMLPIs and asymp-
totic 95%predictiveML intervals. The results were obtained by the statistical packageR (2013)
and are shown in Tables 2–4 for different methods of prediction. Also, Table 1 displays three
different cases of Ri and Si’s for n = 50, N = 26,m = 35, andM = 13.

From Tables 2–4, we observed that three methods of point prediction for Ys in terms of
bias and MSPE of the MLP of Ys do not have any significant difference. In addition, we can
see almost identical ALs and CPs of the AMLPI of Ys for Cases 1, 2, and 4, whereas we have
shorter ALs of the AMLPI of Ys under EM algorithm in the Case 3 (Type-II censored data).
Also, for point prediction of the parameters, using the EM algorithm method (α̃ , β̃) yields
smaller biases for the MLPEs of parameters. On the other hand, in Cases 1, 2, and 4, the ALs
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Table . Normality simulation results for the numerical method approach.

Bias (MSPE) AL (CP)

Case s ys α β ys α β

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) .(.) .(.) .(.) .(.)

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 −.(.) .(.) .(.) .(.) .(.) .(.)

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 −.(.) .(.) .(.) .(.) .(.) .(.)

and CPs of the asymptotic predictive ML intervals of unknown parameters are not different.
But for the Case 3, the EM method for interval prediction of the parameters has the smaller
ALs, too.

In addition, according the viewpoint of reviewer we have added the bootstrap (boot-p)
method to our simulation study. We have obtained the bias (MSPE) for MLP ofYs, the biases
(MSEs) of the MLPEs, the ALs (CPs) of the 95% approximate boot-p prediction interval

Table . Normality simulation results for the EM algorithm.

Bias (MSPE) Bias (MSE) AL (CP)

Case s ys α β ys α β

  .(.) .(.) − .(.) .(.) .(.) .(.)
 .(.) − .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) .(.) .(.) .(.) .(.)

  .(.) − .(.) − .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) .(.) .(.) .(.) .(.)

  .(.) − .(.) − .(.) .(.) .(.) .(.)
 .(.) − .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) − .(.) .(.) .(.) .(.)

  .(.) .(.) − .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) .(.) .(.) .(.) .(.)

Table . Normality simulation results for the approximate ML prediction.

Bias (MSPE) Bias (MSE) AL (CP)

Case s ys α β ys α β

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) .(.) .(.) .(.) .(.)

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) .(.) .(.) .(.) .(.)

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) .(.) .(.) .(.) .(.)
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Table . Boot-p simulation results for the numerical method approach.

Bias (MSPE) Bias (MSE) AL (CP)

Case s ys α β ys α β

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) .(.) .(.) .(.) .(.)

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) .(.) .(.) .(.) .(.)

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) .(.) .(.) .(.) .(.)

of Ys and the approximate boot-p 95% predictive ML intervals of α and β for all Cases of
three methods. The results with 1000 replications and 200 bootstrap samples are reported in
Tables 5–7.

In order to compare the simulation results especially in terms of ALs of prediction inter-
vals based on asymptotic results with boot-p method, it is observed that in more Cases, the
ALs of prediction intervals are more shorter in comparison to the same method based on

Table . Boot-p simulation results for the EM algorithm.

Bias (MSPE) Bias (MSE) AL (CP)

Case s ys α β ys α β

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 − .(.) − .(.) .(.) .(.) .(.) .(.)

  .(.) .(.) − .(.) .(.) .(.) .(.)
 .(.) − .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) − .(.) .(.) .(.) .(.)

  .(.) .(.) − .(.) .(.) .(.) .(.)
 .(.) − .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) − .(.) .(.) .(.) .(.)

  .(.) − .(.) .(.) .(.) .(.) .(.)
 .(.) − .(.) .(.) .(.) .(.) .(.)
 − .(.) − .(.) − .(.) .(.) .(.) .(.)

Table . Boot-p simulation results for the approximate ML prediction.

Bias (MSPE) Bias (MSE) AL (CP)

Case s ys α β ys α β

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) .(.) .(.) .(.) .(.)

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) .(.) .(.) .(.) .(.)

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)

  .(.) .(.) .(.) .(.) .(.) .(.)
 .(.) .(.) .(.) .(.) .(.) .(.)
 − .(.) .(.) .(.) .(.) .(.) .(.)
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the approximate normality. But in some Cases the CPs are lower than the nominal level 95%
based on boot-p method.

In according to comparing three methods based on boot-p (Tables 5–7), we found that the
results are similar to the comparing Tables 2–4 (asymptotic normality).

5.2. Illustrative examples

In this subsection, two datasets are used to illustrate the proposed prediction and estimation
in the preceding sections.

Example 1 (Air conditioning data): Consider the following dataset of failure times of the
air conditioning system of an airplane (due to Gupta and Kundu, 2001): 1, 3, 5, 7, 11, 11,
11, 12, 14, 14, 14, 16, 16, 20, 21, 23, 42, 47, 52, 62 71, 71, 87, 90, 95, 120, 120, 225, 246, 261.
Form = 20,M = 13, andN = 25, we let R = (0, . . . , 0, 10), and S = (0, . . . , 0, 12), Type-II
censored data.

According to the simulation study’s results, in the EM algorithm based on normality, the
MLP ofY10 was given by 24.186 and theMLPEs of α and β were computed as 0.026 and 0.919,
respectively.

Also, in the EM algorithm, the 95% AMLPI of Y10 and the asymptotic 95% predictive
ML intervals of α and β were (9.846, 59.414), (0.000, 0.106) and (0.648, 1.582), respectively.
Whereas, based on boot-p method in the EM algorithm, the MLP ofY10 was given by 25.107,
and the MLPEs of α and β were obtained as 0.019 and 1.010, respectively.

In addition, the 95% approximate boot-p prediction interval of Y10 and the approximate
boot-p 95% predictiveML intervals of α and β in the EM algorithmwere reported as (14.953,
39.034), (0.000, 0.082) and (0.726, 1.641), respectively.

Example 2 (Waiting time data): According to Al-Mutairi et al. (2013), “we present the
analysis of real data, partially considered in Ghitany et al. (2008), for illustrative purposes.
The data represent the waiting times (in minutes) before customer service in two different
banks (A and B),” it is clear that two datasets are independent.We found that based on the first
sample’s ML estimators of Weibull parameters (0.093, 1.235, respectively) the corresponding
Kolmogorov–Smirnov (K-S) p-value sample is 0.978. On the other hand, the corresponding
K-S p-value to test whether the Weibull model with 0.093 and 1.235 parameters fitted to the
second dataset divided by 1.69 (sample Y) is 0.439. Namely, the first and second samples are
independent with the same parameters of Weibull.

We know that n = 60 and N = 100. Now, we suppose that m = 30, M = 80. The aim is
point and interval prediction ofY10 of the second sample based on the first sample’s informa-
tion. Let us R = (30, 0, . . . , 0), and S = (20, 0, . . . , 0), on the other hand we know the real
Y10 = 2/1.69, (Al-Mutairi et al., 2013).

In the EM algorithm method, according to the simulation study based on normal-
ity, the MLP of Y10 was computed as 1.074 and the MLPEs of α and β were 0.117 and
1.388, respectively. And the 95% AMLPI of Y10 and the asymptotic 95% predictive ML
intervals of α and β were found to be (0.501, 2.303), (0.030, 0.252), and (1.083, 1.933),
respectively.

On the other hand, by boot-p method in the EM algorithm, the MLP of Y10 was 1.289
and the MLPEs of α and β were reported as 0.090 and 1.446, respectively. Also, the 95%
approximate boot-p prediction interval of Y10 and the approximate boot-p 95% predictive
ML intervals of α and β in the EM algorithm were given by (0.718, 2.106), (0.025, 0.205),
and (1.138, 1.902), respectively.
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6. Concluding remarks

In this article, we have obtained the MLP of Ys, the MLPEs of unknown parameters for the
Weibull distribution as well as the AMLPI of Ys (1 ≤ s ≤ M) and the asymptotic predictive
ML intervals of unknown parameters using the numerical ML prediction, the EM algorithm
and the approximate ML prediction. The Monte Carlo simulation results based on approxi-
mate normality and percentile boot-pmethods in three methods ofML prediction were com-
pared in terms of biases and MSEs (MSPEs) of point predictors as well as ALs and CPs of the
prediction intervals of α, β , andYs.

Generally, based on the simulated results and for both of the normality and boot-p, the EM
algorithm for point and interval prediction ofYs and the parameters yields better results with
respect to biases and ALs, especially under Type-II censoring scheme.

The proposed procedures for the prediction problem may be considered for other cen-
soring schemes such as Type-II progressively hybrid censoring and for some other lifetime
distributions such as the generalized exponential distribution (GE).
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