ON THE CATEGORY OF LOCAL HOMEOMORPHISMS WITH UNIQUE PATH LIFTING PROPERTY

MAJID KOWKABI

ABSTRACT. In this talk, we discuss on the category of local homeomorphisms of topological spaces with unique path lifting property. We intend to find a classification of these local homeomorphisms similar to that of covering maps.

This is a joint work with Hamid Torabi and Behrooz Mashayekhy.

1. INTRODUCTION

Biss [2, Theorem 5.5] showed that for a connected, locally path connected space X, there is a 1-1 correspondence between its equivalent classes of connected covering spaces and the conjugacy classes of open subgroups of its fundamental group \(\pi_1(X, x) \). There is a misstep in the proof of the above theorem. In fact, Biss assumed that every fibration with discrete fiber is a covering map which is not true in general.

Torabi et al.[7] pointed out the above misstep and gave the true classification of connected covering spaces of X according to open subgroups of the fundamental group \(\pi_1(X, x) \). In fact, for a connected, locally path connected space X, there is a 1-1 correspondence between its equivalent classes of connected covering spaces and the conjugacy classes of subgroups of its fundamental group \(\pi_1(X, x) \), with an open normal subgroup in \(\pi_1^{qlop}(X, x) \). We know every covering map is a local homeomorphism. In this talk, we intend to study the category of local homeomorphisms \(p : \tilde{X} \to X \) for a fixed topological space X with unique path lifting property. Our main contribution is to find a classification for these local homeomorphisms.

2. NOTATIONS AND PRELIMINARIES

For a topological space X, by a path in X we mean a continuous map \(\alpha : [0, 1] \to X \). The points \(\alpha(0) \) and \(\alpha(1) \) are called the initial point and the terminal point of \(\alpha \), respectively. A loop \(\alpha \) is a path with \(\alpha(0) = \alpha(1) \). For a path \(\alpha : [0, 1] \to X \), \(\alpha^{-1} \) denotes a path such that \(\alpha^{-1}(t) = \alpha(1-t) \), for all \(t \in [0, 1] \). Denote \([0,1] \) by \(I \), two paths \(\alpha, \beta : I \to X \) with the same initial and terminal points are called

2010 Mathematics Subject Classification. Primary: 57M05; Secondary: 57M10,57M12.

Key words and phrases. local homeomorphism, fundamental group, covering space.

Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran.

Email: majid.kowkabi@gmail.com.
Email: hamid_torabi86@yahoo.com.
Email: bmashf@um.ac.ir.

96
homotopic relative to end points if there exists a continuous map \(F : I \times I \to X \) such that
\[
F(t, s) = \begin{cases}
\alpha(t) & s = 0 \\
\beta(t) & s = 1 \\
\alpha(0) = \beta(0) & t = 0 \\
\alpha(1) = \beta(1) & t = 1.
\end{cases}
\]
Homotopy relative to end points is an equivalent relation and the homotopy class containing a path \(\alpha \) is denoted by \([\alpha]\). For paths \(\alpha, \beta : I \to X \) with \(\alpha(1) = \beta(0) \), \(\alpha \star \beta \) denotes the concatenation of \(\alpha \) and \(\beta \) which is a path from \(I \) to \(X \) such that
\[
(\alpha \star \beta)(t) = \begin{cases}
\alpha(2t) & 0 \leq t \leq 1/2 \\
\beta(2t - 1) & 1/2 \leq t \leq 1.
\end{cases}
\]
The set of all homotopy classes of loops relative to the end point \(x \) in \(X \) under the binary operation \([\alpha][\beta] = [\alpha \star \beta]\) forms a group which is called the fundamental group of \(X \) and is denoted by \(\pi_1(X, x) \) (see [6]). The set of all loops with initial point \(x \) in \(X \) is called the loop space of \(X \) denoted by \(\Omega(X, x) \) (see [5]).

The quasitopological fundamental group \(\pi_1^{\text{qtop}}(X, x) \) is the quotient space of the loop space \(\Omega(X, x) \) equipped with the compact-open topology with respect to the function \(\Omega(X, x) \to \pi_1(X, x) \) identifying path components (see [2]). It should be mentioned that \(\pi_1^{\text{qtop}}(X, x) \) is a quasitopological group in the sense of [1] and it is not always a topological group (see [3],[4]).

Definition 2.1. [5] Assume that \(X \) and \(\tilde{X} \) are topological spaces. The continuous map \(p : \tilde{X} \to X \) is called a local homeomorphism if for every point \(\tilde{x} \in \tilde{X} \) there exists an open set \(\tilde{W} \) such that \(\tilde{x} \in \tilde{W} \) and \(p(\tilde{W}) \subset X \) is open and the restriction map \(p|_{\tilde{W}} : \tilde{W} \to p(\tilde{W}) \) is a homeomorphism.

Definition 2.2. Let \(p : \tilde{X} \to X \) be a local homeomorphism and let \(f : (Y, y_0) \to (X, x_0) \) be a continuous map with \(f(y_0) = x_0 \). Let \(\tilde{x}_0 \) be in the fiber over \(x_0 \). If there exist a continuous function \(\tilde{f} : (Y, y_0) \to (\tilde{X}, \tilde{x}_0) \) such that \(p \circ \tilde{f} = f \), then \(\tilde{f} \) is called a lifting for \(f \).

Definition 2.3. Assume that \(X \) and \(\tilde{X} \) are topological spaces and \(p : \tilde{X} \to X \) is a continuous map. Let \(\tilde{x}_0 \) be in the fiber over \(x_0 \). The map \(p \) has "unique path lifting property" if for every path \(f \) in \(X \), there exists a unique continuous function \(\tilde{f} : (I, 0) \to (\tilde{X}, \tilde{x}_0) \) with \(p \circ \tilde{f} = f \).

Let \(X \) be a fixed topological space. The set of all local homeomorphisms of \(X \) with unique path lifting property forms a category. In this category a morphism from \(p : \tilde{X} \to X \) to \(q : \tilde{Y} \to X \) is a continuous function \(h : \tilde{X} \to \tilde{Y} \) such that \(p = q \circ h \).

Definition 2.4. [6] Let \(\tilde{X} \) and \(X \) be topological spaces and let \(p : \tilde{X} \to X \) be continuous. An open set \(U \) in \(X \) is evenly covered by \(p \) if \(p^{-1}(U) \) is a disjoint union of open sets \(S_i \) in \(\tilde{X} \), called sheets, such that \(p|_{S_i} : S_i \to U \) is a homeomorphism for every \(i \).

Definition 2.5. [6] If \(X \) is a topological space, then an ordered pair \((\tilde{X}, p) \) is a covering space of \(X \) if:
(1) \(\tilde{X} \) is a path connected topological space;
(2) \(p : \tilde{X} \to X \) is continuous;
(3) each \(x \in X \) has an open neighborhood \(U = U_x \) that is evenly covered by \(p \).

3. Main Results

Theorem 3.1. (Local Homeomorphism Homotopy Theorem for Paths) Let \((\tilde{X}, p)\) be a local homeomorphism of \(X \) with unique path lifting property. Consider the following diagram of continuous maps

\[
\begin{array}{ccc}
I & \xrightarrow{f} & (\tilde{X}, \tilde{x}_0) \\
\downarrow{\tilde{F}} & & \\
I \times I & \xrightarrow{F} & (X, x_0)
\end{array}
\]

where \(j(t) = (t, 0) \) for all \(t \in I \). Then there exists a unique continuous map \(\tilde{F} : I \times I \to \tilde{X} \) which makes the diagram commutative.

Theorem 3.2. (Lifting Criterion) If \(Y \) is connected and locally path connected, \(f : (Y, y_0) \to (X, x_0) \) is continuous and \(p : \tilde{X} \to X \) is a local homeomorphism with unique path lifting property, where \(\tilde{X} \) is path connected, then there exists a unique \(\tilde{f} : (Y, y_0) \to (\tilde{X}, \tilde{x}_0) \) such that \(p \circ \tilde{f} = f \) if and only if \(f_* (\pi_1(Y, y_0)) \subset p_* (\pi_1(\tilde{X}, \tilde{x}_0)) \).

Corollary 3.3. If \(Y \) is simply connected, locally path connected and \(p : \tilde{X} \to X \) is a local homeomorphism with unique path lifting property, where \(\tilde{X} \) is path connected, then any continuous map \(f : (Y, y_0) \to (X, x_0) \) has a lifting to \(\tilde{X} \).

Corollary 3.4. Suppose \(X \) is connected, locally path connected and \(p : \tilde{X} \to X \), \(q : \tilde{Y} \to X \) are local homeomorphisms with unique path lifting property where \(\tilde{X} \), \(\tilde{Y} \) are path connected. If \(p_* (\pi_1(\tilde{X}, \tilde{x}_0)) = q_* (\pi_1(\tilde{Y}, \tilde{y}_0)) \), then there exists a homeomorphism \(h : (\tilde{Y}, \tilde{y}_0) \to (\tilde{X}, \tilde{x}_0) \) such that \(p \circ h = q \).

Theorem 3.5. Let \(p : \tilde{X} \to X \) be a local homeomorphism with unique path lifting property and let \(x_0, x_1 \in X \) and \(f, g : I \to X \) be paths with \(f(0) = g(0) = x_0 \), \(f(1) = g(1) = x_1 \) and \(\tilde{x}_0 \in p^{-1}(x_0) \). If \(F : f \simeq g \) rel \(I \) and \(\tilde{f}, \tilde{g} \) are the lifting of \(f \) and \(g \) respectively with \(\tilde{f}(0) = \tilde{x}_0 = \tilde{g}(0) \), then \(\tilde{F} : \tilde{f} \simeq \tilde{g} \) rel \(I \).

Theorem 3.6. Let \(p : \tilde{X} \to X \) be a local homeomorphism with unique path lifting property where \(\tilde{X} \) is path connected. If \(x_0, x_1 \in X \), \(Y_0 = p^{-1}(x_0) \) and \(Y_1 = p^{-1}(x_1) \), then \(|Y_0| = |Y_1| \).

Theorem 3.7. If \(X \) is connected, locally path connected and \(H \) is a subgroup of \(\pi_1(X, x) \), then there exists a local homeomorphism \(p : \tilde{X} \to X \) with unique path lifting property such that \(p_* (\pi_1(\tilde{X}, \tilde{x})) = H \) if and only if \(H \) is an open subgroup of \(\pi_1^{top}(X, x) \). Moreover there is a 1-1 correspondence between equivalent classes of local homeomorphisms of \(X \) (in category of local homeomorphism with unique path lifting property) and the conjugacy classes of open subgroups of the quasitopological fundamental group \(\pi_1^{top}(X, x) \).
Definition 3.8. \(p : \tilde{X} \rightarrow X \) is called a regular local homeomorphism if \(p_*(\pi_1(\tilde{X}, \tilde{x}_0)) \) is a normal subgroup of \(\pi_1(X, x_0) \).

Theorem 3.9. Every regular local homeomorphism is a cover map.

References

