On the Whisker Topology on Fundamental Group

M. Abdullahi Rashid; S.Z. Pashaei, B. Mashayekhy, H. Torabi
Department of Pure Mathematics, Ferdowsi University of Mashhad,
P.O. Box 1159-91775, Mashhad, Iran

Abstract

In this talk, after reviewing concepts of compact-open topology, Whisker topology and Lasso topology on fundamental groups, we present some topological properties for the Whisker topology on a fundamental group.

Keywords: Whisker Topology, Fundamental Group, Topological Group
Mathematics Subject Classification [2010]: 57M05, 54D10, 54D15, 54H11

1 Introduction

The concept of a natural topology on the fundamental group appears to have originated with Hurewicz [8] in 1935. The topology inherited from the loop space by quotient map, where equipped with compact-open topology, on fundamental group is denoted by \(\pi_1^{top}(X, x_0) \). Spanier [10, Theorem 13 on page 82] introduced a different topology that Dydak et al. [4] called it the Whisker topology and denoted by \(\pi_1^{wh}(X, x_0) \). They also introduced a new topology on \(\pi_1(X, x_0) \) and called it the Lasso topology to characterize the unique path lifting property which is denoted by \(\pi_1^{lh}(X, x_0) \) and showed that this topology makes the fundamental group a topological group [3]. However Biss [2] claimed that \(\pi_1^{top}(X, x_0) \) is a topological group, but it is shown that the multiplication map is not continuous, in general, hence \(\pi_1^{top}(X, x_0) \) is a quasitopological group (see [6]). In this talk, we show that \(\pi_1^{wh}(X, x_0) \) is not a topological group, in general. In addition, it is not even a semitopological group, but it has some properties similar to topological groups. For instance, every open subgroup of \(\pi_1^{wh}(X, x_0) \) is also a closed subgroup of \(\pi_1^{wh}(X, x_0) \) and \(\pi_1^{wh}(X, x_0) \) is \(T_0 \) if and only if it is \(T_2 \). Moreover, \(\pi_1^{wh}(X, x_0) \) is a homogenous and regular space, and it is totally seperated if and only if is \(T_0 \).

2 Notation and Preliminaries

Definition 2.1. Let \(H \) be a subgroup of \(\pi_1(X, x_0) \) and \(P(X, x_0) = \{ \alpha : (I, 0) \to (X, x_0) \mid \alpha \) is a path \} be a path space. Then \(\alpha_1 \sim \alpha_2 \mod H \) if \(\alpha_1(1) = \alpha_2(1) \) and \([\alpha_1 * \alpha_2^{-1}] \in H\). It is easy to check that this is an equivalence relation on \(P(X, x_0) \). The equivalence class of \(\alpha \) is denoted by \(\langle \alpha \rangle_H \). Now one can define the quotient space \(\tilde{X}_H = \frac{P(X, x_0)}{\sim} \) and the

*Speaker
map \(p_H : (\tilde{X}_H, e_H) \to (X, x_0) \) by \(p_H(\langle \alpha \rangle_H) = \alpha(1) \) where \(e_H \) is the class of constant path at \(x_0 \).

For \(\alpha \in P(X, x_0) \) and an open neighborhood \(U \) of \(\alpha(1) \), a continuation of \(\alpha \) in \(U \) is a path \(\beta \in P(X, x_0) \) of the form \(\beta = \alpha \ast \gamma \), where \(\gamma(0) = \alpha(1) \) and \(\gamma(I) \subseteq U \). Thus we can define a set \(\langle U, \langle \alpha \rangle_H \rangle = \{ \langle \beta \rangle_H \in X_H | \beta \text{ is a continuation of } \alpha \text{ in } U \} \) where \(U \) is an open neighborhood of \(\alpha(1) \) in \(X \). It is shown that the subsets \(\langle U, \langle \alpha \rangle_H \rangle \) as defined above form a basis for a topology on \(\tilde{X}_H \) for which the function \(p_H : \tilde{X}_H \to X \) is continuous [9, Theorem 10.31]. Moreover, if \(X \) is path connected, then \(p_H \) is surjective. This topology on \(\tilde{X}_H \) is called the Whisker topology [4].

Definition 2.2. Let \(p_e : \tilde{X}_e \to X \) be the defined end point projection map for \(\{e\} \leq \pi_1(X, x_0) \) and put \(p_e^{-1}(x_0) \) as a subspace of \((\tilde{X}_e, \tilde{x}_0) \) with its default Whisker topology. One can transfer this topology by the bijection \(f : \pi_1(X, x_0) \to p_e^{-1}(x_0) \) into \(\pi_1(X, x_0) \) with \([\alpha] \mapsto \langle \alpha \rangle_H \). The fundamental group with Whisker topology is denoted by \(\pi_1^{wh}(X, x_0) \).

Fishcer and Zastrow [7, Lemma 2.1.] have shown that the Whisker topology is finer than the inherited topology from loop space with compact-open topology on \(\pi_1(X, x_0) \) which is denoted by \(\pi_1^{top}(X, x_0) \).

3 Main results

In this section we are going to present some interesting properties of \(\pi_1^{wh}(X, x_0) \). At first, it seems necessary to characterize the open subsets and subgroups of \(\pi_1^{wh}(X, x_0) \). Let \([\alpha] \in \pi_1(X, x_0) \), for every open subset \(U \) of \(x_0 \) there is a bijection \(\varphi_\alpha : \pi_1(U, x_0) \to \langle U, [\alpha] \rangle \cap p_e^{-1}(x_0) \) defined by \(\varphi_\alpha([\gamma]) = [\alpha \ast \gamma] \). It is easy to check that \(\varphi_\alpha \) is a well defined bijection.

The collection \(\{[\alpha]\ast \pi_1(U, x_0) | [\alpha] \in \pi_1(X, x_0) \text{ and } U \text{ open subset of } x_0 \} \) form a basis for the Whisker topology on \(\pi_1(X, x_0) \). Moreover, these basis elements are closed and hence they are clopen subsets.

The left (right) topological group is a group equipped with a topology that makes all of the left (right) translations continuous. A semitopological group is a left topological group which is also a right topological group [1, Section 1.2.]. \(\pi_1^{wh}(X, x_0) \) is not a right topological group in general, hence it is not a semitopological group. For example see the Hawaiian earring is not a topological group since the inverse map in \(\pi_1^{wh}(HE, *) \) is not continuous [4]. Recall that a non-empty topological space \(X \) is called a \(G^- \) space, for a group \(G \), if it is equipped with an action of \(G \) on \(X \). A homogeneous space is a \(G^- \) space on \(X \) which \(G \) acts transitively.

Proposition 3.1. \(\pi_1^{wh}(X, x_0) \) is a homogenous space.

Proof. Clearly \(\pi_1^{wh}(X, x_0) \) acts on itself. To show that this action is transitive, it is enough to prove that left translation map in \(\pi_1^{wh}(X, x_0) \) is homeomorphism. It is known that every left topological group is a homogenous space. Hence \(\pi_1^{wh}(X, x_0) \) is a homogenous space.

Corollary 3.2. Every open subgroup of \(\pi_1^{wh}(X, x_0) \) is a closed subgroup.

Recall that a topological space is called totally separated if for every pair of disjoint points there exists a clopen subset which contains one of points and does not contain another. The following proposition state some separation axioms for \(\pi_1^{wh}(X, x_0) \).
Proposition 3.3. For a connected and locally path connected space X, the following statement are equivalent:

1. $\pi_1^{wh}(X,x_0)$ is T_0.
2. $\pi_1^{wh}(X,x_0)$ is T_1.
3. $\pi_1^{wh}(X,x_0)$ is T_2.
4. $\pi_1^{wh}(X,x_0)$ is T_3 ($T_3 = \text{regular} + T_1$).
5. $\pi_1^{wh}(X,x_0) = 1$, where $\pi_1^{wh}(X,x_0)$ is the collection of small loops at x_0.
6. $\pi_1^{wh}(X,x_0)$ is totally separated.

Moreover, $\pi_1^{wh}(X,x_0)$ is regular.

Corollary 3.4. If the right translation in $\pi_1^{wh}(X,x_0)$ are continuous, then $\pi_1^{wh}(X,x_0)$ is a topological group.

It seems interesting to know that when $\pi_1^{wh}(X,x_0)$ has the countable axiom properties.

Proposition 3.5. If X is a first countable space, then $\pi_1^{wh}(X,x_0)$ is also first countable.

Proof. Let β_{x_0} be a countable neighborhood basis at x_0 and let $[f] \in \pi_1^{wh}(X,x_0)$. Then the collection $\beta_f = \{ [f]_i(V,x_0) | V \in \beta_{x_0} \}$ form a countable neighborhood basis at $[f]$.

Proposition 3.6. The closure of trivial element in $\pi_1^{wh}(X,x_0)$ is equals to $\pi_1^1(X,x_0)$.

References

Email: mbinev@stu.um.ac.ir
Email: pashaei.seyyedzeynal@stu.um.ac.ir
Email: bmashf@um.ac.ir
Email: h.torabi@ferdowsi.um.ac.ir