The ammonoids from the Late Permian Paratirolites Limestone of Julfa (East Azerbaijan, Iran)

Dieter Korn*a, Abbas Ghaderib, Lucyna Ledaa, Martin Schobbenb and Ali Reza Ashourib

*aMuseum für Naturkunde, Leibniz-Institut for Research on Evolution and Biodiversity, Invalidenstraße 43, 10115 Berlin, Germany; bDepartment of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Azadi Square, 9177948974, Mashhad, Iran

(Received 10 January 2015; accepted 22 September 2015)

The Changhsingian (Late Permian), 4 to 5 m thick Paratirolites Limestone has yielded diverse ammonoid assemblages composed of the genera Neoaganides, Pseudogastrioceras, Dzhulfites, Paratirolites, Julfoirotiles, Alibashites, Abichites, Stoyanowites and Arasella. The succession of ammonoid species allows for a subdivision of the rock unit into eight biozones, in ascending order: Dzhulfites zalesis Zone, Paratirolites trapezoideal Zone, Paratirolites kiti Zone, Stoyanowites dieneri Zone, Alibashites mojisovici Zone, Abichites abichi Zone, Abichites stoyanowi Zone and Arasella minuta Zone. The following 20 new species are described by two of us (DK and AG): Neoaganides ultimus sp. nov., Pseudogastrioceras relicum sp. nov., Dzhulfites zalesis sp. nov., Dzhulfites hebes sp. nov., Paratirolites coronatus sp. nov., Paratirolites birunii sp. nov., Paratirolites quadratus sp. nov., Paratirolites multiconus sp. nov., Paratirolites serus sp. nov., Julfoirotiles kozuri sp. nov., Alibashites ferdowisi sp. nov., Alibashites uncinatus sp. nov., Alibashites stepanovii sp. nov., Abichites subtrapezoidealis sp. nov., Abichites alibashiensis sp. nov., Abichites arueii sp. nov., Abichites paucinodus sp. nov., Abichites shabriari sp. nov., Abichites terminialis sp. nov. and Stoyanowites apiminosus sp. nov. After the time-equivalent Chinese occurrences, the material described here is the most diverse assemblage known from the critical interval before the end-Permian mass extinction.

Keywords: Late Permian; Changhsingian; Paratirolites Limestone; Ammonoidea; Iran; biostratigraphy

Introduction

Ammonoids are among the most celebrated victims of the end-Permian mass extinction event. They very nearly became extinct, with the survival of only a few lineages of which only one gave rise to the majority of the Mesozoic ammonoids (e.g. Glenister & Furnish 1981; House 1988; Leonova 2002, 2011; Villier & Korn 2004; Brayard et al. 2009).

Studies on the evolutionary history of Permian ammonoids have shown that the group experienced a severe end-Guadalupian extinction event, at which mainly the goniatitic and prolecanitic ammonoids were significantly reduced, while the ceratitic ammonoids remained unaffected (e.g. Spinosa et al. 1975). In the aftermath of this crisis, only the ceratites experienced a rapid diversification during the early Wuchiapingian and were then the cardinal ammonoid clade for the duration of the Late Permian, outnumbering the reduced goniatitic and prolecanitic ammonoids in terms of species richness (e.g. Ruzhencev 1959, 1962, 1963, 1965; Zhao et al. 1978; Bando 1979; Taraz et al. 1981; Leonova 2002, 2011; Brayard et al. 2009).

The ceratitic ammonoid clades show differential evolutionary tempos and dominances during the Late Permian. In the Wuchiapingian, ammonoid assemblages are dominated by the diverse araxoceratids (superfamily Otoceratoidea); this group is unimportant in the Changhsingian but survived the end-Permian extinction event and has, along with Otoceras, an earliest Triassic representative (e.g. Ruzhencev 1962; Tozer 1979). By contrast, the second Late Permian group of ceratitic ammonoids, the xenodiscids (superfamily Xenodiscoidea), are much less important in the Wuchiapingian but very diverse with a number of independent lineages in the Changhsingian. However, this ammonoid group experienced a mass extinction at the end-Permian crisis, with few survivors.

The Changhsingian Stage can be subdivided in terms of ammonoid evolution, but there are only two regions known with species-rich occurrences. These are the Transcaucasian–Iranian region (e.g. Shevyrrev 1965, 1968; Stepanov et al. 1969; Teichert et al. 1973; Bando
1979; Taraz et al. 1981; Zakharov 1983, 1992; Zakharov & Rybalka 1987; Ghaderi et al. 2014b) and South China (e.g. Zhao et al. 1978; Zheng 1981; Liang 1983; Yang 1987; Yang & Yang 1992). The two regions display different ammonoid successions and are, in terms of detailed ammonoid stratigraphy, very difficult to correlate. In the Transcaucasan–Iranian sections, the paratirolitid ammonoids (= family Dzhulfitidae) became dominant at the end of the Changhsingian Stage, while in South China the families Tapashanitidae, Pseudotirolitidae and Pleuronodoceratidae are the most common.

In the Transcaucasan–Iranian region, ammonoids occur rather frequently in the 4 to 5 m thick Paratirolites Limestone, which is the youngest Late Permian carbonate formation that occurs regularly in the entire region (Fig. 1). The formation was first described by Stoyanow (1910), a pioneer in the study of the latest Permian ammonoids from the Transcaucuses. He described the genus Paratirolites and also four species, which can be attributed to Paratirolites or related genera.

Here we present the first description of the ammonoids from the Paratirolites Limestone based on material collected bed by bed. Earlier publications (e.g. Shevyrrev 1965, 1968) treated the Paratirolites Limestone as a uniform rock unit. Hence, they were not able to provide evidence for a stratigraphical succession of the various species, their evolutionary patterns or their possible phylogenetic relationships. We demonstrate that the Paratirolites Limestone contains a remarkable ammonoid record in terms of morphological evolution and diversity.

Palaeogeographical distribution of Changhsingian ammonoids

Occurrences of Changhsingian ammonoids
Late Changhsingian ammonoids are known from only a few places worldwide, and there are only two regions from which rather diverse ammonoid assemblages have been described:

1. Transcaucasan–Central Iranian region. This region had a Late Permian position in the Central Tethys (Fig. 2) close to the equator (Muttoni et al. 2009a, b). Based on previous investigations (Stoyanow 1910; Shevyrrev 1965, 1968; Stepanov et al. 1969; Teichert et al. 1973; Zakharov 1983, 1992; Zakharov & Rybalka 1987) and our own investigations, the following ammonoid families and genera characterize the Paratirolites Limestone:

1. Transcaucasan–Central Iranian region. This region had a Late Permian position in the Central Tethys (Fig. 2) close to the equator (Muttoni et al. 2009a, b). Based on previous investigations (Stoyanow 1910; Shevyrrev 1965, 1968; Stepanov et al. 1969; Teichert et al. 1973; Zakharov 1983, 1992; Zakharov & Rybalka 1987) and our own investigations, the following ammonoid families and genera characterize the Paratirolites Limestone:

Figure 1. Geographical position of Permian–Triassic boundary sections in the Transcaucasan–NW Iran region (after Arakelyan et al. 1965); sections investigated in this study are highlighted.

Figure 2. Palaeogeographical position of the Julfa area (after Stampfli & Borel 2002). T = Transcaucasan–NW Iran region; C = South China.
Ammonoids from the Late Permian *Paratirolites* Limestone

Pseudohaloritidae (*Neoaganides*);
Paragastrioceratidae (*Pseudogastrioceras*);
Dzhulfitidae (*Dzhulfites*, *Paratirolites*, *Julfotirolites*, *Alibashites*, *Abichites*, *Stoyanowites*);
Xenodoiscidae (*Arasella*).

Other genera previously reported from the *Paratirolites* Limestone need to be discussed. Bando (1973) described the ototherric genus and species *Julfotirolites taraizi* (a species with close morphological similarities to the Wuchiapingian genus *Vedioceras*) from Ali Bashi, and stated that the single specimen was from the ‘lowermost Triassic’ (= *Paratirolites* Limestone). During our field investigations, we did not find any evidence for ototherrics in the *Paratirolites* Limestone; therefore, we suspect that the specimen may have come from the upper part of the Julfa Formation, which is also a red nodular limestone formation and contains specimens of *Vedioceras* and related genera.

Teichert & Kummel (in Teichert et al. 1973) listed poorly preserved specimens from Ali Bashi under the names *Strigogoniatites*, *Pleuronodoceras*, *Pseudotirolites* and *Tapashanites*, but these ammonoids were not collected in situ; it is therefore possible that they derive from lower horizons. Because of their poor preservation, they are probably not attributable to distinct genera.

Rostovcev (in Zakharov 1983) described the new species *Pseudotirolites azariani* from Dorasahm but did not illustrate a suture line. According to the conch shape and sculpture, this species probably belongs to *Paratirolites kitti*.

The Changhsingian interval below the *Paratirolites* Limestone has yielded a number of ammonoid species, which belong to the following taxa (Shevyrev 1965, 1968; own collections):

Paragastrioceratidae (*Pseudogastrioceras*);
Xenodiscidae (*Xenodiscus*, *Xenaspis*, *Phisonites*, *Iranites*, *Shevyrevites*);
Dzhulfitidae (*Dzhulfites*).

2. **South China.** This region had a Late Permian latitude of about 20° N (Liu et al. 1999) (Fig. 2). A number of monographs (e.g. Zhao et al. 1978; Zheng 1981; Liang 1983; Yang 1987; Yang & Yang 1992) have contributed to the knowledge of the ammonoid assemblages, which are composed of the following families and genera (note that many of the listed genera were regarded as synonyms by Leonova 2002):

Pseudohaloritidae (*Neoaganides*, *Qinglongites*);
Paragastrioceratidae (*Pseudogastrioceras*, *Strigogoniatites*);
Neostacheoceratidae (*Stacheoceras*);
Cyclolobidae (*Changhsingoceras*, *Cyclolobus*);

Paraceltitidae (*Meitianoceras*);
Xenodiscidae (*Xenodiscus*, *Penglaites*);
Huananoceratidae (*Huananoceras*);
Tapashanitidae (*Tapashanites*, *Mingyuexiaceras*, *Pseudostephanites*, *Sinoceltites*);
Liuanchengoceratidae (*Liuanchengoceras*, *Rongjiangoceras*, *Wangrenoceras*);
Pseudotirolitidae (*Chaotianoceras*, *Dushanoceras*, *Pachydiscoceras*, *Pernodoceras*, *Pseudotirolites*, *Schizoloboceras*, *Shangsites*, *Trigonogastrites*);
Pleuronodoceratidae (*Longmenshanoceras*, *Pentagonoceras*, *Pleuronodoceras*, *Qianjiangoceras*, *Rotodiscoceras*).

The list above shows remarkable differences in the Changhsingian ammonoid assemblages between the two regions. Common taxa in the two sedimentary basins appear to be restricted to those that do not play a major role in terms of frequency within their occurrences. Of the genus *Pseudogastrioceras*, for instance, only two specimens have been recorded by us in the *Paratirolites* Limestone of NW Iran, and *Neoaganides* is represented by only four specimens. In contrast, the family Dzhulfitidae represents more than 97% of the ammonoid specimens from the *Paratirolites* Limestone of the NW Iranian sections. Representatives of the family are completely lacking in South China.

The latter observation requires special attention. In South China, many of the Late Changhsingian ceratitic ammonoids share a number of morphological characters, such as: (1) conch geometry extremely discoidal and sub-evolute to evolute; (2) whorl cross section pentagonal with tectiform or keeled venter; (3) suture line possesses a short external lobe with unserrated or weakly serrated prongs; and (4) sculpture has weak radial ribs.

In contrast to the Chinese Changhsingian ceratites, the members of the Central Tethyan family Dzhulfitidae appear to be more variable in their morphology. While the coiling rate of most of the species is rather similar, variation in the shape of the whorl cross section is wide (ranging from strongly depressed trapezoidal to compressed oval). The suture lines are more variable and in many of the species show much stronger serration of the lobes, best seen in the prongs of the external lobe (Fig. 3). The sculpture or ornament ranges from the development of coarse conical nodes, to a nearly smooth shell ornamented with growth lines.

The significant difference in the composition of ammonoid assemblages between the main regions (Central Tethys and South China) is a major obstacle for a global scheme of ammonoid stratigraphy for the Changhsingian. In both regions, the ammonoid faunas consist of two components: (1) goniatitic ammonoids, which play only a subordinate role in species richness as well as specimen abundance; and (2) ceratitic ammonoids, which became

Fig. 2
dominant in the Late Permian and dominate the late Changhsingian assemblages. Only some of the goniatitic genera (Neoaganides, Pseudogastrioceras) occur in both regions, but they are long ranging (e.g. Leonova 2002) and thus not suitable for a distinctive age assignment. On the other hand, the species-rich ceratitic ammonoids display pronounced biogeographical separation without co-occurring genera (or even families).

Paratirolites in South China?

The genus Paratirolites has been reported from the area of Anshun in the province of Guizhou (Zhao et al. 1978; Zheng 1981; Liang 1983), but these records are highly questionable. Only fragments have been illustrated; indeed, the conch with conical nodes resembles Paratirolites, but the suture line of 'Paratirolites guizhouensis' figured by Liang (1983) clearly shows that at least this species to have a very low and wide external lobe (Fig. 3G) which cannot be assigned to Paratirolites. These South Chinese specimens assigned to Paratirolites were found in association with specimens assigned to Shevyrevites shevyrevi; however, these determinations are also somewhat ambiguous because of the poor preservation of the material. Zhao et al. (1978) placed a 'Paratirolites—Shevyrevites Genus Zone' in the early Changhsingian. It was probably this putative (but incorrectly postulated) occurrence of Paratirolites that was used by Zhao et al. (1978) for the statement that the Transcaucasian Paratirolites Limestone does not represent the latest Permian, but rather an interval in the early Changhsingian.

Based on the occurrence of the putative Paratirolites, Liang (1983, p. 614) stated: "This indicates that the Dorsheanian stage is definitely equivalent to the lower Changhsingian of South China". This statement can be refuted because ‘Paratirolites guizhouensis’ is not a Paratirolites and most probably does not even belong in the family Dzhulfitidae. If it belongs there at all, it may just be a very early representative of this family. Ammonoids with a suture line similar to that of ‘Paratirolites guizhouensis’, i.e. with a very short and wide external lobe, occur in the NW Iranian sections below the Paratirolites Limestone. It is therefore much more likely that the Paratirolites Limestone in fact represents the late Changhsingian of the South Chinese sections, as already concluded from the investigation of conodonts (Kozur 2005, 2007; Shen & Mei 2010; Ghaderi et al. 2014b). Tozer (1979) suggested that the South Chinese species Schizoloboceras fusuiense Zhao, Liang & Zheng, 1978 is congeneric with Paratirolites vediensis, but this conclusion does not take account of the major sutureal differences between Schizoloboceras and Paratirolites. Schizoloboceras

Figure 3. Suture lines of representatives of Changhsingian ammonoids from the Transcaucasia—NW Iran and South China; for comparison the suture lines are figured at the same size (A–B are from Shevyrev 1965; G is from Liang 1983; H–I are from Zhao et al. 1978). **A**, Iranites transcaucasicus (Shevyrev, 1965); **B**, Dzhulfites spinosus Shevyrev, 1965; **C**, Paratirolites birunii sp. nov.; **D**, Paratirolites kiti Stoyanov, 1910; **E**, Abichites subtrapezoidalis sp. nov.; **F**, Arasella minuta (Zakharov, 1983); **G**, ‘Paratirolites guizhouensis’ Liang, 1983; **H**, Pseudostephanites nodosus Zhao, Liang & Zheng, 1978; **I**, Pseudotirolites orientalis Chao, 1965; **J**, Rotodiscoceras asiaticum Chao & Liang, 1966.
has, like the other representatives of the family Pseudotiroli- tidae, a very short external lobe, in which the prongs are usually unserrated and in some cases bifid. There is therefore no evidence that the two genera are identical.

Biostratigraphy of Late Permian ammonoids

The Permian–Triassic rock succession near Julfa

The sedimentary succession of the Permian–Triassic boundary beds in the region of Julfa can be subdivided into three major units (Ruzhencev et al. 1965; Stepanov et al. 1969; Rostovtsev & Azaryan 1973; Teichert et al. 1973; Ghaderi et al. 2013, 2014b; Leda et al. 2014; Schobben et al. 2014, 2015), in ascending order:

1. The Middle Permian Gnishik and Khachik formations (both together about 475 m thick), composed of massive shallow-water limestone (Stepanov et al. 1969).
2. The Late Permian succession of approximately 57 m thickness with the Julfa Formation (Wuchiapingian in age), the Changhsingian Ali Bashi Formation (which includes the shale-dominated Zal Member and the Paratirolites Limestone Member) and the latest Permian ‘Boundary Clay’ (= Aras Member), which formally represents the lower part of the Eli- kah Formation (Ghaderi et al. 2014b). The sharp but continuous transition from the Paratirolites Limestone into the Aras Member marks the end-Permian mass extinction event (Leda et al. 2014).
3. The Early Triassic carbonatic portion of the Elikah Formation, with the Claraia Beds in the lower portion, reaching about 280 m in thickness (Stepanov et al. 1969).

Two questions regarding biostratigraphical aspects have to be addressed: (1) how can the ammonoid faunas from the Paratirolites Limestone be incorporated into a global stratigraphical scheme of the Late Permian? (2) how can the succession of ammonoids within the Paratirolites Limestone be subdivided in terms of biozones?

The Paratirolites Limestone

The Paratirolites Limestone, named after the Late Permian ammonoid genus Paratirolites, is the youngest Permian carbonate formation in the sections of Transcaucasia and north-western Iran. It is an approximately 4 to 5 m thick succession of intensely red-coloured and sometimes pink to grey nodular limestone; the individual beds reach thicknesses of 25 cm and are separated by shaly intervals ranging in thickness between a few millimetres and 20 cm (Figs 4, 5). The shale content is much higher in the lower part of the unit, while in the upper 3 m, shale interbeds usually do not reach a thickness of more than 2 cm. Most of the limestone beds possess a rich content of skeletal remains, but the fossils are often fragmentarily preserved. Ghaderi et al. (2014a) described some brachiopods from the rock unit. Leda et al. (2014) identified the carbonate microfacies of the rock unit as nodular burrowed bioclastic wackestone or argillaceous lime mudstone indicating a deeper shelf/outer ramp depositional setting. Study of the oxygen isotopes of conodont phosphate and brachiopod calcite by Schobben et al. (2014) indicated that a clear temperature trend cannot be observed within the Paratirolites Limestone, where the temperatures range between 27 and 33°C. However, a sudden increase of 8°C occurs at the extinction horizon and confirms the results by Joachimski et al. (2012) for South China.

The term ‘Paratirolites Limestone’ was coined by Stepanov et al. (1969), who published the first description of the Permian–Triassic boundary beds in the Ali Bashi Mountains 9 km west of Julfa (East Azerbaijan, Iran). Teichert et al. (1973) adopted the term and provided an extensive historical overview of the research history of the Permian–Triassic boundary in Transcaucasia. However, similar terms have been used earlier, for example by Ruzhencev et al. (1965) and Shevyrev (1965) for the
Permian–Triassic succession in the classical Dorasham section (Nakhichevan, Azerbaijan).

In all these articles, the Paratirolites Limestone has been treated as a uniform rock unit; a lithostratigraphical or biostratigraphical subdivision has not been achieved. One reason for the lack of a subdivision may be the superficial lithofacies similarity throughout the unit, but another reason may be the rather scarce occurrence of macrofaunas. For instance, Ruzhencev & Shevyrev (1965) listed only 116 ammonoid specimens from the Paratirolites Limestone of the various Transcaucasian localities. This is a comparatively low number when the

Figure 5. Columnar sections of the Paratirolites Limestone in the Aras Valley, Ali Bashi 4, Ali Bashi 1 and Zal sections, with their ammonoid zonation.
intensive fieldwork of the Russian team is considered. Teichert et al. (1973), when describing the Ali Bashi sections, had even fewer specimens (only about 75), most of which were float collections without reference to a distinct horizon.

In contrast to the mentioned studies on ammonoids, microfossils have been shown to allow zonation within the Paratirolites Limestone. Kozur (2005, 2007) and Shen & Mei (2010), for instance, showed six conodont zones (Clarkina bachmanni Zone to C. hauschkei Zone) for the Paratirolites Limestone. Ghaderi (in Ghaderi et al. 2014b) largely confirmed this subdivision and also defined six zones (Clarkina changxingensis Zone to C. hauschkei Zone). It is thus obvious that the Paratirolites Limestone can no longer be treated as a single, uniform rock unit.

In four field campaigns between 2010 and 2013, we intensely investigated the Paratirolites Limestone in outcrops in the vicinity of Julfa and collected more than 310 determined ammonoid specimens from this rock unit. We measured five complete sections in the Ali Bashi Mountains, one in the Aras Valley 2 km west of the classical Dorasham locality, and one 2.2 km north-northeast of Zal, 22 km south of Julfa. With this study, we will demonstrate the potential for a more detailed ammonoid zonation within the Paratirolites Limestone. Another aim of the study is the documentation of the extinction patterns of Late Permian ammonoid faunas.

All of the ammonoids collected in situ were measured regarding their position in the rock column with respect to the extinction horizon. In the following, the stratigraphical position is thus explained in metres below this horizon (which is equal to the top surface of the Paratirolites Limestone).

Investigated outcrops

Outcrops of the Late Permian Paratirolites Limestone are known from north and south of the Aras (Araxes) River in the vicinity of Dzhulfa (Nakhichevan; Azerbaijan) and Julfa (East Azerbaijan; Iran) (Figs 1, 5).

1. Aras Valley (39.015° N, 45.434° E). This section was first described by Ghaderi et al. (2014b) and Leda et al. (2014); it is located about 19 km west-northwest of the towns of Dzhulfa and Julfa immediately west of the Aras (Araxes) River. At this place, the Aras River marks the political boundary between Iran and the province of Nakhchievan (Azerbaijan), and Late Permian rocks are exposed on both sides. The new Aras Valley section has a position approximately 2 km north-west of the famous Dorasham II section described by Ruzhencev et al. (1965).

2. Kuh-e-Ali Bashi (= Ali Bashi Mountains; 9 km west of Julfa). The Paratirolites Limestone is exposed in a number of parallel sections over an extension of about 1.5 km. We studied five of the numerous sections, which are positioned along a strike from west-northwest to east-southeast:

(a) Ali Bashi N section (38.941° N, 45.516° E). This section has not been studied previously. It begins in the higher portion of the Ali Bashi Formation and ranges into the Elikah Formation. The Paratirolites Limestone is well exposed and can be investigated over an outcrop length of 200 m.

(b) Ali Bashi 4 section of Teichert et al. (1973) (38.942° N, 45.516° E). This is the section figured by Stepanov et al. (1969). It is the most complete of all the sections in the Ali Bashi Mountains and ranges from the Codonofusiella Beds (exposed in the stream at the base of the section) into the Elikah Formation. The lower part of the Ali Bashi Formation is poorly exposed because of a scree cover. The Paratirolites Limestone, the Boundary Clay and the base of the carbonate member of the Elikah Formation are perfectly exposed over a distance of 100 m.

(c) Ali Bashi 1 section of Teichert et al. (1973) (38.940° N, 45.520° E). This section begins in the upper part of the Julfa Beds and exposes the shaly part of the Ali Bashi Formation, the Paratirolites Limestone, the Boundary Clay and the base of the carbonate member of the Elikah Formation. The Paratirolites Limestone is rather well exposed over a distance of 50 m.

(d) Ali Bashi P section (38.937° N, 45.523° E). This is a small outcrop at the south side of the side valley and exposes the upper portion of the Paratirolites Limestone.

(e) Ali Bashi M section (38.936° N, 45.524° E). The section is located on the north side of the main valley and exposes the Paratirolites Limestone as well as the base of the Elikah Formation in several small exposures. Kozur (2005) studied this section for its conodont stratigraphy; it was named ‘Ali Bashi locality 1’ there.

3. Zal (22 km SSW of Julfa and 2.2 km north-northwest of the village of Zal) (38.733° N, 45.580° E). In this section, the entire Late Permian succession is exposed; the section ranges high up into the Early Triassic Elikah Formation.

Ammonoid zonation within the Paratirolites Limestone

An ammonoid zonation for the Paratirolites Limestone did not exist until the preliminary proposal by Korn (in Ghaderi et al. 2014b). In the major previous investigations (e.g. Shevyrev 1965, 1968; Stepanov et al. 1969; Teichert et al. 1973), the unit has not been subdivided and the ammonoid findings were not assigned to specific horizons.
During our field investigations, we paid particular attention to the precise position of the ammonoid specimens in the rock column; all in situ collected specimens were recorded with detailed lithostratigraphical information (in terms of position below the extinction horizon, which is equivalent to the top surface of the Paratirolites Limestone). We collected more than 230 specimens in this way.

The morphological evolution of the paratirolitid ammonoids allows for a subdivision of the Paratirolites Limestone into eight biozones, which only partly correlate with the conodont biozones (Fig. 6). Five separable ammonoid zones (defined by first occurrences of index species) were distinguished within the Paratirolites Limestone by Ghaderi et al. (2014): however, this zonation is revised and refined here, in ascending order:

1. **Dzulfites zalensis Zone.** This zone may begin already below the Paratirolites Limestone, but scarce fossil content precludes a precise statement.

2. **Paratirolites trapezoidalis Zone.** This zone also has a position at the base of the Paratirolites Limestone, where the taxonomic diversity of the ammonoid faunas is still rather low. The interval contains paratirolitid ammonoids with unsubdivided or bifid prongs of the external lobe. *Paratirolites trapezoidalis* Shevyrev, 1965 best defines the base of this interval, which is difficult to recognize because of the rarity of fossils at the base of the Paratirolites Limestone. The index fossil was recorded, in the Ali Bashi 4 section, from a horizon 4.10 m below the extinction horizon. The thickness of this zone is thus about 0.75 m.

3. **Paratirolites kittli Zone.** This interval shows the main occurrence of the genus *Paratirolites*, of which also *Paratirolites vediensis* Shevyrev, 1965 can be used as an index fossil besides the nominate species *Paratirolites kittli* Stoyanow, 1910. Even without distinct species attribution, specimens of this zone are usually clearly assigned to this zone because of the strongly serrated external, adventive and lateral lobes. This interval is, in the Aras Valley and Ali Bashi sections, often very fossiliferous and thus easily recognizable. In the Ali Bashi N section, *P. kittli* occurs first at 3.35 m below the extinction horizon, indicating a thickness of about 1.05 m for this zone.

4. **Stoyanowites dieneri Zone.** The entry of paratirolitids with laterally compressed whorl sections, among which *Paratirolites dieneri* Stoyanow, 1910 is the type species of the new genus *Stoyanowites*, characterizes the next biozone within the Paratirolites Limestone. In the Aras Valley section, this species occurs first at 2.30 m below the extinction horizon; the *Stoyanowites dieneri* Zone thus has a thickness of 0.40 m in this section.

5. **Alibashites mojisovicisi Zone.** With the entry of the genus *Alibashites*, species richness within the Paratirolites Limestone reaches its maximum. Almost simultaneously, several species of this genus as well as the genus *Abichites* appear, making the zone easily recognizable. The *Alibashites mojisovicisi* Zone has a thickness of 0.40 m in the sections.

6. **Abichites abichi Zone.** *Abichites abichi* Shevyrev, 1965 marks the base of this zone, in which the genus *Abichites* is dominant. The zone has a thickness of 0.55 m.

7. **Abichites stoyanowi Zone.** A higher portion of the Paratirolites Limestone is dominated by paratirolitid ammonoids with quadrate or slightly compressed
whorl cross sections and weakened sculpture. Such forms usually belong to the genus *Abichites*, which possesses a suture line with bifid or unsubdivided prongs of the external lobe. The index fossil *Abichites stoyanowi* (Kiparisova, 1947) occurs, in the Aras Valley section, with first specimens at 0.95 m below the extinction horizon. The thickness of this zone is thus about 0.65 m.

8. **Arasella minuta Zone.** At the top of the *Paratirolites* Limestone is a thin interval, about 0.30 m thick, which is dominated by very small ammonoids with simple suture lines. *Arasella minuta* (Zakharov, 1983) is the most common of these and can be used for the definition of this zone, which ends at the top surface of the *Paratirolites* Limestone (= mass extinction horizon).

The occurrence of ammonoid species is irregular in the *Paratirolites* Limestone. While in the lower portion, during the *Dzhulfites zalensis* and *Paratirolites trapezoidalis* zones only one or two species co-occur, species richness increases in the *Paratirolites kittli* Zone with up to five co-occurring species. The highest diversity was recorded in the *Alibashites mojsisovici* Zone with nine species; thereafter a discontinuous decrease is observed. Immediately below the extinction horizon, three species were recorded (Fig. 7).

Material and methods

More than 340 ammonoid specimens collected during four field campaigns between 2010 and 2013 were available for study. Three hundred and twelve of these specimens...
were determined (Supplemental material Table 1); they derive from the following localities: Aras Valley (142 specimens); Ali Bashi N (116 specimens); Ali Bashi 4 (19 specimens); Ali Bashi 1 (nine specimens); Ali Bashi P (seven specimens); Ali Bashi M (one specimen); Zal (16 specimens).

All specimens are preserved as internal moulds; shell material is extremely rare as it was dissolved in early diagenesis, and when present it is restricted to the inner whorls. Preservation of the specimens is therefore poor. In many cases, the specimens are preserved only from the lower side facing the sediment, while the upper side was eroded or dissolved during burial of the specimens (Leda et al. 2014). Preparation of the specimens often benefits from the presence of a thin clay film separating the ammonoid moulds and the surrounding sediment.

In the following, two of us (DK and AG) describe 28 ammonoid species from the Paratirolites Limestone. It appears that the total ammonoid diversity of this unit is not yet complete. There are a number of fragmentary or poorly preserved specimens left undescribed; these could not be attributed to any of the species described herein, therefore these fragments may represent other new species.

Descriptive terminology for conch morphology is after Korn (2010). Abbreviations of conch dimensions (Fig. 8) are: dm, conch diameter; ww, whorl width; wh, whorl height; uw (= dm₁−wh₁−wh₂), umbilical width; ah, aperture height. The whorl expansion rate (WER) was calculated as \[\frac{dm}{(dm - ah)^2} \]. The imprint zone rate (IZR) characterizes the whorl overlap, and can be calculated as \(\frac{wh - ah}{wh} \). A list of measurements of the studied specimens is provided in Supplemental material Table 1.

For the shape of the cross sections, an additional explanation of terminology is given (Fig. 9), distinguishing between trapezoidal, quadrat, subtrapezoidal, circular and oval. The terminology of the suture line follows Korn et al. (2003), meaning that a difference between an A-mode (goniatitic) and a U-mode (prolecanitic and thus also ceratic) sutureal ontogeny, as proposed by Schindewolf (1929), is not accepted. The sutural elements described here are therefore external (E), adventive (A), lateral (L), umbilical (U) and internal (I) lobes (Fig. 10). The suture lines in the figures are drawn, where possible, from umbilical seam to umbilical seam. Solid lines refer to empirical sutures, dotted lines to reconstructions by mirroring.

The stratigraphical position of individual specimens and the range of species are given in metres below the extinction horizon (top surface of the Paratirolites Limestone).
Institutional abbreviations

Systematic palaeontology (DK and AG)

Order Goniatitida Hyatt, 1884
Suborder Tornoceratina Wedekind, 1914
Superfamily Pseudohaloritoida Ruzhencev, 1957
Family Pseudohaloritidae Ruzhencev, 1957
Subfamily Shouchangoceratinae Zhao & Zheng, 1977

Genus Neoaganides Plummer & Scott, 1937

Type species. Neoaganides grahamensis Plummer & Scott, 1937, by original designation.

Included species. Neoaganides costatus Yang & Yang, 1992, p. 596 (Hubei); Neoaganides dictyon Zhou, 1987, p. 310 (Hunan); Neoaganides gigantus Liang, 1983, p. 608 (Hunan); Neoaganides grahamensis Plummer & Scott, 1937, p. 350 (Texas); Neoaganides laevigatus Yang & Yang, 1997, p. 596 (Hubei); Neoaganides meitianensis Zheng, 1984, p. 310 (Hunan); Imitoceras (Aganides) multiseptatus Chao, 1940, p. 70 (Hunan); Neoaganides nesennis Frest, Glenister & Furnish, 1981, p. 23 (N. Iran); Neoaganides paulus Zhao, Liang & Zheng, 1978, p. 72 (Jiangxi); Neoaganides rectilobatus Ruzhencev, 1950, p. 89 (South Urals); Neoaganides tabantalensis Ruzhencev, 1952, p. 58 (South Urals); Neoaganides ultimus sp. nov.

Derivation of name. From Latin ultimus, the last, because of its high stratigraphical occurrence in the Late Permian.

Holotype. MB.C.25169 (Fig. 11A).

Type locality and horizon. Ali Bashi 1 section; 0.65 m below the top of the Paratirolites Limestone (Abichites stoyanowi Zone).

Diagnosis. Neoaganides with lenticular conch (ww/dm = 0.40–0.45). Suture line with very shallow adventive lobe.

Description. All specimens show very similar conch proportions as exemplified by the holotype. The specimen is rather poorly preserved, being coated by a thin clay film (Fig. 11A). It has a conch diameter of 18 mm and is thinly discoidal (ww/dm = 0.42) with a completely closed umbilicus. The conch is widest at the umbilical margin, from which the flanks converge towards the narrowly rounded venter. The coiling rate is moderately high (WER = 2.00). The suture line of the holotype has a deep, parallel-sided external lobe and a very shallow (less than half the depth of the external lobe), broadly rounded adventive lobe (Fig. 11C).

Remarks. Teichert et al. (1973, p. 404, pl. 4, figs 5, 6) and Frest et al. (1981, p. 25, pl. 3, figs 20–22, text-fig. 15) described and figured two specimens from “the middle of the Ali Bashi Formation” in open nomenclature under

Figure 10. Descriptive terms for the suture lines of the paratirolitid ammonoids, exemplified by Paratirolites kittii Stoyanow, 1910, specimen MB.C.25215, Aras Valley, −2.65 m; at 55.8 mm dm, 20.2 mm wh. E, external lobe; A, adventive lobe; L, lateral lobe; U, umbilical lobe; I, internal lobe.

Figure 11. Neoaganides ultimus sp. nov. A, lateral view, holotype, MB.C.25169, Ali Bashi 1, −0.65 m; B, dorsal view, para- type, MB.C.25170, Ali Bashi 4, −1.05 m; C, holotype, MB. C.25169, suture line at 6.1 mm ww, 5.8 mm wh. Scale bar = 2 mm.

Neoaganides ultimus sp. nov.

Type species. Neoaganides xiaoheensis Xu, 1977, p. 560 (Hunan).

Derivation of name. From Latin ultimus, the last, because of its high stratigraphical occurrence in the Late Permian.

Holotype. MB.C.25169 (Fig. 11A).

Type locality and horizon. Ali Bashi 1 section; 0.65 m below the top of the Paratirolites Limestone (Abichites stoyanowi Zone).

Diagnosis. Neoaganides with lenticular conch (ww/dm = 0.40–0.45). Suture line with very shallow adventive lobe.

Description. All specimens show very similar conch proportions as exemplified by the holotype. The specimen is rather poorly preserved, being coated by a thin clay film (Fig. 11A). It has a conch diameter of 18 mm and is thinly discoidal (ww/dm = 0.42) with a completely closed umbilicus. The conch is widest at the umbilical margin, from which the flanks converge towards the narrowly rounded venter. The coiling rate is moderately high (WER = 2.00). The suture line of the holotype has a deep, parallel-sided external lobe and a very shallow (less than half the depth of the external lobe), broadly rounded adventive lobe (Fig. 11C).

Remarks. Teichert et al. (1973, p. 404, pl. 4, figs 5, 6) and Frest et al. (1981, p. 25, pl. 3, figs 20–22, text-fig. 15) described and figured two specimens from “the middle of the Ali Bashi Formation” in open nomenclature under
‘Neoaganides sp. nov.’ and ‘Neoaganides sp. 2’, respectively. It is not clear if they are conspecific, but they differ from the specimens from the *Paratirolites* Limestone in their larger size (up to 32 mm dm), their more parallel flanks and the presence of shallow ribs on the flanks at 15 mm dm.

Neoaganides nesenensis from the Wuchiapingian Nesen Formation of the Alborz Mountains (Frest et al. 1981) is based on a specimen of 23 mm dm. It has a wider conch (ww/dm = 0.47) than *N. ultimus* (ww/dm = 0.42) with less strongly converging flanks. The coiling rate is much higher in *N. nesenensis* (WER = 2.35) than in *N. ultimus* (WER = 2.00).

Neoaganides ultimus differs from all other species of the genus in the very shallow adventive lobe. Usually the adventive lobe is as deep as the external lobe, but in *N. ultimus* it reaches less than half of the depth.

Stratigraphical range. *Paratirolites* Limestone; 1.15 to 0.65 m below the extinction horizon (upper part of the *Abichites abichi* Zone and lower part of the *Abichites stoyanowi* Zone).

Suborder *Goniatitina* Hyatt, 1884
Superfamily *Neoicoceratoidea* Hyatt, 1900
Family *Paragastrioceratidae* Ruzhencev, 1951
Subfamily *Pseudogastrioceratinae* Furnish, 1966

Genus *Pseudogastrioceras* Spath, 1930

Type species. *Goniatites Abichianus* von Möller, 1879, by original designation.

Included species. *Goniatites abichianus* von Möller, 1879, p. 230 (Azerbaijan); *Pseudogastrioceras gigantium* Zhao, Liang & Zheng, 1978, p. 74 (Jiangxi); *Pseudogastrioceras guangxiense* Zhao, Liang & Zheng, 1978, p. 73 (Guangxi); *Pseudogastrioceras guizhouense* Zhao, Liang & Zheng, 1978, p. 74 (Guizhou); *Pseudogastrioceras jiangxiense* Zhao, Liang & Zheng, 1978, p. 74 (Jiangxi); *Pseudogastrioceras relicum* sp. nov. (North-west Iran); *Pseudogastrioceras szechuanense* Chao, 1965, p. 1821 (Sichuan).

Pseudogastrioceras relicum sp. nov.
(Fig. 12)

Derivation of name. From Latin *relicum* = the remaining, because the species is the last one of the group.

Figure 12. *Pseudogastrioceras relicum* sp. nov., holotype, MB.C.25173, Ali Bashi N, float. A, lateral and dorsal views; B, suture line at 20.3 mm ww, 16.9 mm wh. Scale bars: A = 5 mm; B = 2 mm.

Holotype. MB.C.25173 (Fig. 12).

Type locality and horizon. Ali Bashi N section; *Paratirolites* Limestone, float.

Material. Only the holotype; a second specimen is still in situ at the base of the *Paratirolites* Limestone in the Aras Valley section.

Diagnosis. *Pseudogastrioceras* with moderately large conch; diameter attaining 70 mm. Conch shape thinly discoidal (ww/dm = 0.40–0.45), involute (uw/dm = 0.05) with converging flanks and broadly rounded venter. Ornament with about 15 faint spiral lines on the venter.

Description. Only one incomplete specimen (Fig. 12) is available for study, and hence a detailed description of the species is impossible. The overall conch geometry, the ornament and the suture line are typical for *Pseudogastrioceras*. The holotype is a fragment of a phragmocone, which was approximately 40 mm in diameter; it is thinly discoidal with a very narrow umbilicus (ww/dm = 0.42; uw/dm = 0.05–0.10). The last three septa of the specimen show conspicuous crowding, so it can be assumed that it is an adult individual. The ww/wh ratio of the specimen is 0.80. The flanks converge strongly towards the rounded venter. No parts of the shell are preserved; the internal mould is smooth except for about 15 faint spiral lines on the venter. The suture line, drawn at a phragmocone whorl height of 20 mm (Fig. 12B), is typical for *Pseudogastrioceras* with a wide external lobe and an unsubdivided median saddle reaching half of the external lobe depth. The V-shaped adventive lobe is slightly asymmetric with a slightly curved dorsal flank.
Remarks. *Pseudogastrioceras abichianum* is a very common component in the lower part of the Wuchiapin-gian Julfa Formation of the sections in the vicinity of the Aras Valley (Ruzhencev & Shevyrev 1965). This species can reach a large diameter with phragmocone dimensions of 80 mm in diameter, which is twice the value of the Changhsingian specimen described here. In contrast to *P. relicuum* with about 15 spiral lines restricted to the venter, *P. abichianum* has, at a similar conch diameter, about 30 much stronger spiral lines, which extend across the venter and the outer flanks. The umbilicus is possibly a little wider in *P. abichianum*.

The new species mainly differs from the South Chinese species described by Zhao et al. (1978) in the shape of the external lobe, in which the prongs are asymmetrical with a concave dorsal flank.

Stratigraphical range. *Paratirolites* Limestone; most probably only in the lower part (*Dzhulfites zalensis* Zone). The position is assumed, as at the type locality fossils older than the *Paratirolites* Limestone have not been found. A second specimen, which has not been extracted from the outcrop, has a position approximately 4 m below the extinction horizon at the type locality.

Order *Ceratitida* Hyatt, 1884
Suborder *Paraceltitina* Shevyrev, 1968
Superfamily *Xenodiscoidea* Frech, 1902
Family *Dzhulfitidae* Shevyrev, 1965

Included genera. *Dzhulfites* Shevyrev, 1965; *Paratirolites* Stoyanow, 1910; *Julfotirolites* gen. nov.; *Alibashites* gen. nov.; *Abichites* Shevyrev, 1965; *Stoyanowites* Korn, 2014.

Diagnosis. Representatives of the superfamily *Xenodiscoidea* with small to large conch, in which the ontogeny displays up to four stages, beginning with an unsculptured initial stage followed by a juvenile stage with transverse ribs, a subadult stage with coarse ribs often ending in pronounced ventrolateral nodes or spines and an adult stage with weakening of the sculpture. Suture line usually with serrated external, adventive, lateral and umbilical lobes; some species with simple prongs of the external lobe.

Description. Nearly all of the species in the family have some conch, ornament and suture line characters in common. Two of these characters are the coiling rate (the WER ranges between 2.00 and 2.40) and the umbilical width (the uw/dm ratio ranges between 0.35 and 0.45). Most of the species included in the family *Dzhulfitidae* share a distinct ontogeny, in which four growth stages can be separated:

1. The initial stage (up to about 5 mm dm) is widely evolute with oval or circular whorl cross section; it does not possess ribs or spines.
2. The juvenile stage (between 5 and 15 mm dm) has an oval or circular whorl cross section; it is weakly ornamented with faint ribs on the midflank.
3. The subadult stage usually ends with a conspicuous change in the conch ornament; the diameter of this change differs between the various species within the family. The subadult stage is the most diagnostic for many of the species; it best displays differences in the general shape of the whorl cross section (circular, oval, quadrate, rectangular, pear-shaped or trapezoidal), the shape of the venter (rounded, flattened, tectiform or concave), the sculpture (in many cases with coarse ribs, which often form distinctive ventrolateral nodes or spines) and the suture line (which varies in the depth of the external lobe, the degree of serration of the external, adventive and lateral lobe and the width and shape of the saddles). In most of the specimens, the position of the end of the subadult stage is indicated by the conspicuous crowding of the last septa produced during ontogeny.
4. The adult stage represents the terminal body chamber. The species of the family *Dzhulfitidae* often differ in the shape of the conch cross section and sculpture of the body chamber. In most of the species, the beginning of the terminal body chamber coincides with a more or less sudden change in the ornamentation, such as weakening of the ribs or nodes. Rather often, the adult stage is similar in various species despite significant differences in the subadult stage.

The suture line is a somewhat variable character among the representatives of the family *Dzhulfitidae* and can be used for taxonomic purposes with some limitations. The principal sutural formula is (E1 Em E1) A L U I, of which E1, A, L and U often display ceratitic serration (i.e. with small notches at the base of the lobes). The study of a rich material from Julfa demonstrates:

1. The genera and species within the family can sometimes be separated by means of suture line characters, particularly depth of the external lobe and the number of notches.
2. Intraspecific variation in size, shape and the degree of serration of the individual lobes occurs in some of the species; specimens from one stratigraphical position and with closely resembling conch and ornament features may possess rather different suture lines.
3. A general simplification trend of the suture lines occurs within the *Paratirolites* Limestone; the suture lines of the paratirolitid ammonoids show the strongest serration near the base of the rock unit, where in some of the specimens the notching of the lobes begins to extend to the lower flanks of the saddles. Towards the top of the *Paratirolites* Limestone, a nearly continuous decrease in the number of secondary notches is observable.
4. The prongs of the external lobe are often unserrated in the specimens from the base and top of the Paratirolites Limestone, while specimens from the middle part show more or less strong secondary subdivision of the E lobe.

5. Many specimens show asymmetrical suture lines, particularly visible in the different numbers of notches of sutural elements on both sides of the conch. In some specimens, the prongs of the external lobe are bifid on one side and unserrated on the other.

6. In most of the species, the external lobe has the same depth as the adventive lobe; it is only rarely shorter, as in the genus Stoyanowites, and only in this respect resembles the majority of the Changhsingian ammonoids described from South China.

Remarks. Shevyrev (1965) introduced the family Dzhulfitidae specifically for species already described by Stoyanow (1910) from the Paratirolites Limestone. But, unfortunately, he chose the rather poorly known Dzhulfites as the name-giving genus, which itself was based on Dzhulfites spinosus Shevyrev, 1965, then known by 10 moderately preserved specimens. Shevyrev’s (1965) choice is even more incomprehensible as he could have defined the family Paratirolitidae based on better and more specific material.

Dzhulfites is the name-giving genus but occupies a rather marginal position in the morphological spectrum of the family. Two of the most characteristic features for the paratirolitid ammonoids — the deep external lobe and the often-strong secondary serration of lobes — are absent in this genus. Another problem with this genus is that the two species D. spinosus and D. nodosus have been described from incomplete specimens. Dzhulfites spinosus displays a conch morphology with a trapezoidal whorl cross section and ornament with conical ventral lateral nodes that would speak for its incorporation in Paratirolites, but the suture line is characterized by a short external lobe, which in contrast to Paratirolites does not reach the depth of the adventive lobe. As D. spinosus is the type species of the genus Dzhulfites, it needs to be clearly separated from the stratigraphically older species of Paratirolites.

Shevyrev’s family contained the three genera Dzhulfites Shevyrev, 1965, Paratirolites Stoyanow, 1910 and Abichites Shevyrev, 1965. According to Shevyrev (1965), only the latter two occur in the Paratirolites Limestone, while Dzhulfites should be restricted to an older ammonoid zone, separated by the ‘Bernhardites Zone’ (now Shevyrevites Zone) from the beds with Paratirolites.

In total, Shevyrev (1965) separated 10 species within the three genera of the family, most founded on rather well-preserved material and supported by good illustrations of the suture lines. However, he did not discuss possible intraspecific variability within the material, and he figured only one or two specimens of each species.

The lack of such a discussion led Teichert & Kummel to lump together many of the species earlier described by Stoyanow (1910) and Shevyrev (1965, 1968). Teichert & Kummel (in Teichert et al. 1973) argued for the extensive variability of the discussed species and regarded only one genus (Paratirolites) with three species (one species of each of Shevyrev’s genera) as justified. One has to bear in mind, however, that Teichert & Kummel had only about 60 specimens under study, most of them being fragments collected from float below the outcrops of the Paratirolites Limestone. Unlike Shevyrev (1965), these authors did not provide a sufficient reasoning for their approach to the taxonomy and classification of the paratirolitid ammonoids. Instead, they expressed a very vague reasoning for why they used a strikingly restricted concept, which is mainly based on the interpretation of the Paratirolites Limestone as a uniform rock unit (Teichert et al. 1973, p. 413):

“Because of fragmentary preservation, our collection is not suited for a detailed analysis of this variation. However, because the specimens are all from a single unit (approximately 3 m thick) within a very limited geographical range, we believe it more prudent to assume they are a single species; otherwise the only limit on the number of species recognized would be the number of specimens available.”

Although Shevyrev (1965, 1968) probably had better arguments (particularly because he studied the better material) for his species concept for the paratirolitids, other authors tended to follow Teichert et al. (1973), Bando (1979) and Taraz et al. (1981), for instance, when discussing the Late Permian and Early Triassic ammonoids from the Hambast Mountains, 55 km ESE of Abadeh (Central Iran), almost fully adopted the restrictive scheme proposed by Teichert et al. (1973). Moreover, in these two publications, they suggested rather long stratigraphical occurrences for each of the three separated species, which should occur between “one to ten meters below the base of the Lower Triassic Claraia beds” (Bando 1979, p. 135). Interestingly, Bando (1979, p. 134), who had 135 specimens of Paratirolites (in the wider sense) from the Hambast Mountains, also did not provide a scientific reason for following Teichert et al. (1973):

“The present writer also believes the Dzhulfites and Abichites are synonymy of Paratirolites [sic].”

In her compilation of the Permian ammonoid genera and species, Leonova (2002) followed the view of Shevyrev and accepted all of his genera and species. Our investigation of the rich material from the northwestern Iranian localities (more than 300 specimens, about 250 of which have been collected in situ) largely supports the species concept for the paratirolitids as proposed by Shevyrev (1965, 1968) and suggests that the species richness for paratirolitids is higher. Our material shows that the morphological characters (conch shape, suture line and sculpture) show a stratigraphical succession.
Genus *Dzhulfites* Shevyrev, 1965

Type species. *Dzhulfites spinosus* Shevyrev, 1965, by original designation.

Included species. *Dzhulfites hebes* sp. nov. (North-west Iran); *Dzhulfites nodosus* Shevyrev, 1965 (Azerbaijan); *Dzhulfites spinosus* Shevyrev, 1965 (Azerbaijan); *Dzhulfites zalensis* sp. nov. (North-west Iran).

Diagnosis. Representatives of the family Dzhulfitidae with moderately large to large conch; maximum adult diameters are between 80 and 120 mm. Subadult stage with trapezoidal whorl cross section, adult stage variable. Subadult stage with small to large conical ventrolateral nodes, adult stage with weakening sculpture. Suture line with external lobe that does not reach the depth of the adventive lobe; prongs of the external lobe simple or bifid.

Remarks. Shevyrev (1965) distinguished *Dzhulfites* and *Paratirolites* by using the shape of the external lobe, which was thought to be short with unserrated prongs in *Dzhulfites* but deep and serrated in *Paratirolites*. The two genera were reported to be separated stratigraphically by a complete ammonoid zone in which they were lacking; *Dzhulfites* was recorded well below the *Paratirolites* Limestone. Our investigations revealed that *Dzhulfites* may possess weakly subdivided prongs of the external lobe (Fig. 13A), and representatives of *Paratirolites* with an unserrated external lobe also occur in the *Paratirolites* Limestone, particularly at its base. However, the depth of the external lobe is a diagnostic character separating the two genera.

It might be argued that the secondary subdivision of the external lobe is rather plastic and thus not a clear distinguishing criterion for the two genera, a view seemingly corroborated by the occasional finding of paratirolitids with an asymmetrical external lobe (see below, *Abichites subtrapezoidalis* from the upper part of the *Paratirolites* Limestone). However, our material from the base of the *Paratirolites* Limestone demonstrates that conch shapes and ornament are always correlated with distinct suture lines and that all species of *Paratirolites* have a deep external lobe. The depth of the external lobe is thus a stable character, and hence *Dzhulfites* is regarded as separable from *Paratirolites*.

In contrast to the statements given by Ruzhencev & Shevyrev (1965) and Shevyrev (1965, 1968), but according to our collections, it is clear that *Dzhulfites* still occurs in the *Paratirolites* Limestone. However, the genus is restricted to the lowest part of the rock unit and almost reaches the lowest occurrence of the genus *Paratirolites*.

Dzhulfites zalensis sp. nov. (Fig. 14)

Derivation of name. Named after the type locality.

Holotype. MB.C.25176, Weyer collection 2002 (Fig. 14A).

![Figure 13. *Dzhulfites spinosus* Shevyrev, 1965, suture lines. A, MB.C.25174, Aras Valley, float; at 25.5 mm ww, 15.2 mm wh; B, MB.C.25175, Aras Valley, float; at 17.5 mm ww, 10.0 mm wh. Scale bars = 2 mm.](image1)

![Figure 14. *Dzhulfites zalensis* sp. nov., holotype, MB.C.25176, Zal, −5.30 m. A, lateral and dorsal views; B, suture line at 18.7 mm ww, 16.3 mm wh; C, whorl cross section proportions Scale bars: A = 5 mm; B = 2 mm.](image2)
Type locality and horizon. Zal section; 5.30 m below the top of the Paratirolites Limestone (Dzhulfites zalensis Zone).

Diagnosis. Dzhulfites with a conch reaching 70 mm dm. Subadult stage with trapezoidal, weakly depressed whorl cross section (ww/wh = 1.25) and broadly arched venter; 15 coarse ribs ending in hook-shaped ventrolateral nodes per volution. Adult stage with trapezoidal and weakly depressed whorl cross section (ww/wh = 1.05), flat venter and angular ventrolateral shoulder; without change of sculpture. Prongs of the external lobe bifid; altogether about 18 notches of the E, A and L lobes.

Description. Holotype is a partly corroded, incomplete specimen with 58 mm conch diameter (Fig. 14A). Half of the last volution belongs to the body chamber; of the phragmocone, the last three chambers are visible showing a closer spacing of the last two. The whorl profile is trapezoidal and weakly depressed (ww/wh = 1.05) with a flat venter separated from the flanks by an angular ventrolateral shoulder. The body chamber shows a sculpture with seven coarse ribs per half volution. These ribs extend with a slightly concave course across the flank and turn forward and end in a hook-shaped node at the ventrolateral shoulder. The venter is smooth. Only small parts of the suture line can be seen in the holotype (Fig. 14B). They show the small external lobe with bifid prongs and the much deeper, U-shaped adventive lobe with numerous small denticles.

Remarks. Dzhulfites zalensis differs from the other species of the genus in the narrower umbilicus, the completely flat venter in the adult stage and the angular ventrolateral shoulder. The ribs ending in hook-shape ventrolateral nodes are another criterion and make a separation from species of the genus Paratirolites easy.

Stratigraphical range. Paratirolites Limestone; 5.30 to 4.65 m below the extinction horizon (Dzhulfites zalensis Zone).

Dzhulfites hebes sp. nov. (Fig. 15)

Derivation of name. After Latin hebes = blunt, referring to the shape of the conical nodes.

Holotype. MB.C.25181 (Fig. 15A).

Type locality and horizon. Ali Bashi N section; 4.40 m below the top of the Paratirolites Limestone (Dzhulfites zalensis Zone).

Material. Two specimens from Ali Bashi N.

Diagnosis. Dzhulfites with a conch reaching 100 mm dm. Subadult stage with oval, weakly depressed whorl cross section (ww/wh = 1.35) and broadly rounded venter; 10 coarse conical lateral nodes per volution. Adult stage with trapezoidal and weakly depressed whorl cross section (ww/wh = 1.05), broadly rounded venter and rounded ventrolateral shoulder; about 15 coarse ventrolateral nodes. Prongs of the external lobe simple; altogether about 24 notches of the E, A and L lobes.

Description. Holotype MB.C.25181 is a specimen with conch diameter of 77 mm (Fig. 15A). The conch is discoidal at the end of the phragmocone (56 mm dm) and possesses an oval weakly depressed whorl cross section (ww/wh = 1.35) with broadly rounded venter. The sculpture consists of coarse, rounded nodes with a position on the midflank. There is no significant change in ornamentation on the body chamber, which also shows coarse nodes but...
with a position in a more ventral direction. The body chamber shows a transformation of the whorl profile towards a trapezoidal shape with a pronounced ventral shoulder.

Paratype MB.C.25182 (Ali Bashi N, ~4.40 m) allows the study of the ventral portion of the suture line (Fig. 15B). It shows the short external lobe (about two-thirds of the adventive lobe depth) with simple V-shaped prongs. The adventive lobe is very narrow and almost parallel sided with numerous small denticles.

Remarks. *Dzhulfites hebes* differs from the other species of *Dzhulfites* in the shape of the venter, which is broadly rounded in the new species, but more or less flattened in the others. *Paratirolites kittli* is a species with similar conch morphology, but has the deep external lobe, which is much shorter in *Dzhulfites hebes*.

Stratigraphical range. *Paratirolites* Limestone; 4.40 m below the extinction horizon (upper part of the *Dzhulfites zalensis* Zone).

Genus *Paratirolites* Stoyanow, 1910

Type species. *Paratirolites kittli* Stoyanow, 1910, by original designation.

Included species. *Paratirolites birunii* sp. nov. (North-west Iran); *Paratirolites coronatus* sp. nov. (North-west Iran); *Paratirolites kittli* Stoyanow, 1910 (Azerbaijan); *Paratirolites multiconus* sp. nov. (North-west Iran); *Paratirolites quadratus* sp. nov. (North-west Iran); *Paratirolites serus* sp. nov. (North-west Iran); *Paratirolites trapezoidalis* Shevyrev, 1965 (Azerbaijan); *Paratirolites vediensis* Shevyrev, 1965 (Armenia); *Stephanites (?) waageni* Stoyanow, 1910 (Azerbaijan) (synonym of *Paratirolites kittli* Stoyanow, 1910); *Paratirolites compressus* Ehiro, 1996 (Japan); *Xenodiscus douvillei* Diener, 1914 (Madagascar).

Diagnosis. Representatives of the family Dzhulfitidae with moderately large to very large conch; maximum adult diameters are between 60 and 250 mm. Adult stage with trapezoidal whorl cross section. Subadult stage with large conical ventrolateral nodes; adult stage with significantly weakening sculpture. Suture line with deep external lobe; the depths of external lobe and adventive lobe are nearly identical.

Remarks. The continuous nature of conch, suture and ornament characters within the family Dzhulfitidae make an unequivocal definition of the genus *Paratirolites* rather difficult. The distribution of characters within the species of the family Dzhulfitidae let us assume that *Paratirolites* is paraphyletic, from which the genera *Alibashites*, *Stoyanowites* and *Abichites* derived. Therefore, the genus *Paratirolites* will here be defined by the use of some key characters but also by the absence of other features.

The main characters of the genus *Paratirolites* are the following:

1. The subadult stage is characterized by the presence of a trapezoidal, weakly to moderately depressed whorl cross section (ww/wh = 1.10–1.80) with pronounced ventrolateral shoulder and more or less flattened venter.
2. The adult stage has a trapezoidal whorl cross section.
3. The subadult stage possesses a sculpture with 10 to 20 pronounced conical ventrolateral nodes per revolution.
4. The sculpture becomes strikingly weaker on the adult body chamber; the nodes become much less dominant or even disappear on the mature body chamber.
5. The suture line possesses a deep external lobe; the external lobe is as deep as the adventive lobe or even deeper.

Shevyrev (1965, 1968) separated *Paratirolites* from *Dzhulfites* on the basis of the suture lines. *Dzhulfites* was thought to possess a shallow external lobe with unsubdivided prongs, while *Paratirolites* should have an external lobe with serrated prongs. The strictly in-situ collected new material demonstrates that such a separation is problematic for several reasons:

1. Some specimens within the family Dzhulfitidae show asymmetrical suture lines; it is not uncommon that one prong is simple and the other one bifid.
2. Morphologically very similar specimens may differ rather widely; unsubdivided and serrated prongs of the external lobe may occur in the same horizons.
3. The complexity of the suture lines within the family Dzhulfitidae displays a distinct temporal pattern; stratigraphically older and also younger species tend to possess simple external lobes, while species in the middle portion of the *Paratirolites* Limestone show a stronger serration.

In summary, *Paratirolites* differs from the other genera of the family Dzhulfitidae as follows:

1. *Dzhulfites* possesses a shorter external lobe, which does not reach the depth of the adventive lobe. This is in contrast to *Paratirolites*, which shows an external lobe as deep as the adventive lobe or even deeper. This appears to be the only criterion to separate the two genera.
2. *Stoyanowites* also shows a shallow external lobe (like *Dzhulfites*) and has a much weaker sculpture without conical ventrolateral nodes in the subadult stage.
3. *Alibashites* has an intermediate morphological position between *Paratirolites* and *Abichites*. It possesses the subadult sculpture with conical ventrolateral nodes of *Paratirolites*, but lacks the trapezoidal whorl profile of that genus. The species of *Alibashites* still possess conical nodes in the subadult stage, but species of the genus show a subtrapezoidal or quadrato whorl cross section in the adult stage.

4. *Abichites* occurs in the upper portion of the *Paratirolites* Limestone and can be interpreted as descendant from *Paratirolites*, morphologically and stratigraphically. *Abichites* has a subadult and adult conch morphology with a rectangular or oval whorl profile and does not show the strong ventrolateral nodes developed in *Paratirolites* and *Alibashites*.

5. *Paratirolites compressus* Ehiro, 1966 from the Kitakami Massif of Japan is based on poorly preserved material, which cannot be attributed to *Paratirolites* with certainty.

6. *Xenodiscus Douvillei* Diener, 1914 from Madagascar is also described from insufficiently preserved material. The species was intensely discussed by Tozer (1969), who concluded that it is a Permian species belonging to *Paratirolites*. However, the shape of the conch with the angular coiling of the comparatively rather narrow umbilicus and the shape of the conch with the angular coiling of the conch makes a sculpture composed of a few conical nodes makes a sculpture composed of a few conical nodes make a sculpture likely.

Paratirolites trapezoidalis Shevyrev, 1965

(Fig. 16)

1965 *Paratirolites trapezoidalis* Shevyrev: 177, pl. 24, fig. 1.
1968 *Paratirolites trapezoidalis* Shevyrev; Shevyrev: 92, pl. 4, fig. 1.
2014b *Paratirolites trapezoidalis* Shevyrev; Korn in Gha-deri *et al.*: text-fig. 7E.

Holotype. PIN 1252/129; illustrated by Shevyrev (1965, pl. 24, fig. 1).

Type locality and horizon. Dorasham 2 (Azerbaijan); *Paratirolites* Limestone.

Diagnosis. *Paratirolites* with a conch reaching 120 mm dm. Subadult stage with trapezoidal, depressed whorl cross section (ww/wh = 1.50) and flattened, slightly tectiform venter; 10–12 coarse ribs, which end in coarse conical ventrolateral nodes, per volution. Adult stage with strongly trapezoidal and weakly depressed whorl cross section (ww/wh = 1.40), flattened venter and angular ventrolateral shoulder; weak straight riblets and numerous small ventrolateral nodes. Prongs of the external lobe usually unsubdivided; altogether 12–16 notches of the E, A and L lobes.

Description. Specimen MB.C.25183 (Ali Bashi 4, –3.20 m) is a fragmentary, slightly deformed specimen of 84 mm conch diameter; three-quarters of a volution of the body chamber as well as small parts of the phragmocone are preserved (Fig. 16A). The conch is thinly discodeal and subevolute in the last volution (ww/dm = 0.45; uw/dm = 0.35) and shows a ventrally weakly depressed trapezoidal whorl cross section (ww/wh = 1.40) with an angular ventrolateral shoulder. This separates the flanks from the flattened venter, which possesses a very shallow keel. The phragmocone shows a trapezoidal whorl cross section and prominent conical ventrolateral nodes (about six per half volution). These nodes become rapidly much weaker on the adult body chamber; here they originate from rounded and shallow, straight riblets. These riblets are strongest on the outer flanks; on the venter they are barely visible and extend with a broad semicircular projection. About 10 of these ribs and nodes can be counted on half a volution.

The suture line of specimen MB.C.25183, drawn at a whorl height of 16 mm (corresponding to a phragmocone diameter of about 45 mm), shows a parallel-sided external lobe with narrow V-shaped asymmetric prongs (Fig. 16E). The wide venter accommodates the nearly symmetric, parallel-sided ventrolateral saddle and the slightly asymmetrical, strongly serrated adventive lobe, in which the lobe base has a semicircular outline. In the serrated lateral lobe, which has a position on the midflank, the base is almost horizontal. It possesses four small notches and has diverging flanks.

Specimen MB.C.25184 (Ali Bashi N, –3.45 m) is an immature individual with 54 mm conch diameter, of which the last half volution belongs to the body chamber (Fig. 16B). The conch is thinly discodeal and subevolute in the last volution (ww/dm = 0.45; uw/dm = 0.43) and possesses a weakly depressed trapezoidal whorl cross section (ww/wh = 1.40) with flattened diverging flanks, a subangular ventrolateral shoulder and a broadly rounded venter. The last volution possesses 11 strong ventrolateral nodes, which positions do not correspond on both sides of the conch.

The suture line of specimen MB.C.25184 (drawn at 10.5 mm whorl height; about 33 mm phragmocone diameter) has a parallel-sided external lobe with nearly symmetrical prongs that possess two small notches (Fig. 16F). The ventrolateral saddle is tongue-shaped and nearly symmetrical. The asymmetrical adventive lobe is almost as deep as the external lobe; it is much deeper on the dorsal side and possesses about seven little notches.

Remarks. *Paratirolites trapezoidalis* differs from *P. bir-uni* in the much wider whorl cross section in the adult stage at 80 mm dm (ww/wh = 1.40 in *P. trapezoidalis* but
only 0.80 in *P. birunii*). *Paratirolites vediensis* has a similar conch shape, but differs from *P. trapezoidalis* in the stronger ventrolateral nodes in the adult stage. *Paratirolites coronatus* has an even wider whorl cross section (ww/wh = 1.60–1.80 in *P. coronatus* but only 1.40 in *P. trapezoidalis*); the species has also less coarse but more numerous ventrolateral nodes in the subadult stage (15 in *P. coronatus* but only 10 in *P. trapezoidalis*).

A superficially similar species is the stratigraphically older *Dzhulfites spinosus*, which has the same conch shape and sculpture in the subadult growth stage. The two species, however, are easily separable by the depth of the

Figure 16. Paratirolites trapezoidalis Shevyrev, 1965. *A–D*, lateral and dorsal views; *A* MB.C.25183, Ali Bashi 4, −3.20 m; *B*, MB.C.25184, Ali Bashi N, −3.45 m; *C*, MB.C.25185, Ali Bashi N, float; *D*, MB.C.25186, Ali Bashi N, −2.95 m. *E*, *F*, suture lines; *E*, MB.C.25183, at 38.0 mm ww, 16.6 mm wh; *F*, MB.C.25184, at 19.5 mm ww, 10.6 mm wh, × 2.5. *G*, whorl cross section proportions. Scale bars: *A–D* = 5 mm; *E*, *F* = 2 mm.

external lobe; in *P. trapezoidalis* it is as deep as the adventive lobe but in *D. spinosus* much shallower.

Stratigraphical range. *Paratirolites* Limestone; 4.10 to 3.05 m below the extinction horizon (*Paratirolites trapezoidalis* Zone and lower part of the *Paratirolites kittli* Zone).

Paratirolites coronatus sp. nov.
(Figs 17, 18)

Derivation of name. From Latin *corona* = crown, because of the shape of the whorl profile.

Holotype. MB.C.25195 (Fig. 17A).

Type locality and horizon. Aras Valley section; 2.90 m below the top of the *Paratirolites* Limestone (*Paratirolites kittli* Zone).

Material. Five specimens (Aras Valley, Ali Bashi N).

Diagnosis. *Paratirolites* with a conch reaching 125 mm dm. Subadult stage with trapezoidal, moderately depressed whorl cross section (ww/wh = 1.60–1.80) and flattened tectiform venter; 15 coarse conical ventrolateral nodes per volution. Adult stage with extremely trapezoidal and moderately depressed whorl cross section (ww/wh = 1.60–1.90), flattened tectiform venter and subangular ventrolateral shoulder; weak ventrolateral nodes. Prongs of the external lobe trifid or multiply serrated; altogether 11–24 notches of the E, A and L lobes.

Description. Holotype MB.C.25195 is a rather well-preserved specimen with 77 mm conch diameter (Fig. 17A). It shows the partly weathered body chamber (last half volution) and about half of a volution of the phragmocone. The conch is pachyconic and subevolute in the last volution (ww/dm = 0.69; uw/dm = 0.41), and possesses a ventrally moderately depressed trapezoidal whorl cross section (ww/wh = 1.72). During the last half volution, a significant widening of the whorl can be recorded; at 56 mm dm the ww/dm ratio is only 0.56 (ww/wh = 1.72).

The specimen shows flat, strongly diverging flanks, which are separated from the slightly curved venter by an angular ventrolateral shoulder. The sculpture changes significantly on the last preserved volution; the first 300° show shallow ribs on the flank, which end in conical ventrolateral nodes, but the last 60° display a sudden weakening of the ribs. The ventrolateral nodes are very small in this growth stage.

![Figure 17. *Paratirolites coronatus* sp. nov. A, lateral and dorsal views, holotype, MB.C.25195, Aras Valley, −2.90 m; B, whorl cross section proportions. Scale bar = 5 mm.](image1)

![Figure 18. *Paratirolites coronatus* sp. nov., suture lines. A, MB.C.25196, Aras Valley, float; at 18.0 mm wh; B, holotype, MB.C.25195, Aras Valley, −2.90 m; at 31.5 mm ww, 17.3 mm wh; C, MB.C.25197, Aras Valley, −3.55 m; at 15.8 mm wh. Scale bars = 2 mm.](image2)
The suture line of holotype MB.C.25195 (at 17 mm whorl height; about 55 mm phragmocone diameter) shows a narrow external lobe with parallel flanks and asymmetrical prongs that show two little additional notches on their ventral flank (Fig. 18B). The symmetric ventrolateral saddle is rather narrow and continuously rounded. The adventive lobe is asymmetrical and much deeper on the dorsal side; it possesses four rather large notches.

The suture lines drawn from several specimens demonstrate a wide morphological range in general shape and degree of secondary subdivision of individual elements (Fig. 18). Specimen MB.C.25196 (Aras Valley, float; at approximately 47 mm dm) possesses a deep V-shaped external lobe with strongly serrated prongs, while this lobe is small and short in specimen MB.C.25197 (Aras Valley, −3.55 m; at approximately 44 mm dm). In the latter, the prongs possess only three small notches.

Remarks. *Paratirolites coronatus* is the paratirolitid with the widest conch, resulting from the coronate ventrolateral shoulder. Therefore, it cannot be confused with any other species. *Paratirolites coronatus* differs from *P. vediensis* and the other species in the more strongly trapezoidal whorl cross section of the adult stage.

Stratigraphical range. *Paratirolites* Limestone; 3.55 to 2.90 m below the extinction horizon (uppermost part of the *Paratirolites trapezoidalis* Zone and lower part of the *Paratirolites kittli* Zone).

Paratirolites birunii sp. nov.
(Fig. 19)

Derivation of name. After Abu al-Rayhan Muhammad ibn Ahmad al-Biruni (973–1048), a Persian Muslim scholar and polymath from the Khwarezm region.

Holotype. MB.C.25200 (Fig. 19A).

Type locality and horizon. Ali Bashi 4 section; 3.20 m below the top of the *Paratirolites* Limestone (*Paratirolites kittli* Zone).

Diagnosis. *Paratirolites* with a conch reaching 115 mm dm. Subadult stage with trapezoidal, weakly depressed whorl cross section (ww/wh = 1.35) and broadly rounded venter; 10 strong ventrolateral nodes per volution. Adult stage with trapezoidal and weakly compressed whorl cross section (ww/wh = 0.80), slightly flattened tectiform...
venter and subangular ventrolateral shoulder; numerous small ventrolateral nodes. Prongs of the external lobe simple or bifid; altogether 12–14 notches of the E, A and L lobes.

Description. Holotype MB.C.25200 is a more or less complete but somewhat corroded specimen with 82 mm conch diameter; preserved in the specimen are the partly weathered body chamber and the last two and a half whorls of the phragmocone (Fig. 19A). The conch is thinly discoidal and subevolute in the last volution (ww/dm = 0.29; uw/dm = 0.41) and possesses a laterally compressed trapezoidal whorl cross section (ww/wh = 0.79) with a subangular ventrolateral shoulder and a flattened venter. In the penultimate volution, prominent conical ventrolateral nodes (about five per half volution) are the dominant sculpture elements; these become rapidly much weaker and more densely spaced on the adult body chamber (about 20 per half volution).

Paratype MB.C.25201 (Ali Bashi N, -3.35 m) shows a suture line with a narrow, Y-shaped external lobe at a whorl height of 16 mm (corresponding to a phragmocone diameter of about 45 mm). Its flanks are almost parallel in the lower part and diverge strongly in the upper half; the prongs of the external lobe are very narrow and lanceolate. The wide venter accommodates the asymmetrical, dorsally slightly inclined ventrolateral saddle and the asymmetrical, strongly serrated adventive lobe that is deeper on its dorsal side. The lateral and umbilical lobes, both on the inner half of the flank, are much smaller than the adventive lobe and are also strongly serrated (Fig. 19B).

Remarks. *Paratirolites birunii* differs from *P. trapezoidalis* in the much narrower whorl cross section of the adult stage at 80 mm dm (ww/wh = 0.80 in *P. birunii* but 1.40 in *P. trapezoidalis*). The species differs from *P. kittli*, which shows similar conch proportions, in the coarser and fewer conical nodes (10 in *P. birunii* but 20 in *P. kittli*) of the subadult stage.

Stratigraphical range. *Paratirolites* Limestone; 3.35 to 2.70 m below the extinction horizon (*Paratirolites kittli* Zone).

Paratirolites kittli Stoyanow, 1910
(Figs 20–22)

1910 *Paratirolites kittli* Stoyanow: 82, pl. 9, figs 1, 2.
1910 *Stephanites*? *waageni* Stoyanow: 89, pl. 8, fig. 3.
1934 *Paratirolites kittli* Stoyanow; Spath: 366, text-fig. 125a-d.
1934 *Paratirolites waageni* (Stoyanow); Spath: 367.
1947 *Paratirolites kittli* Stoyanow; Voinova et al.: 169, pl. 40, fig. 4, text-fig. 67.

![Figure 20. Paratirolites kittli Stoyanow, 1910, lateral and dorsal views of MB.C.25210, Ali Bashi N, −2.65 m. Scale bar = 5 mm.](image)

![Figure 21. Paratirolites kittli Stoyanow, 1910, suture lines. A, MB.C.25215, Aras Valley, −2.65 m; at 55.8 mm dm, 20.2 mm wh; B, MB.C.25211, Aras Valley, float; at 17.8 mm wh; C, MB.C.25212, Aras Valley, −3.30 m; at 21.0 mm ww, 16.7 mm wh; D, MB.C.25213, Ali Bashi N, −2.95 m; at 15.5 mm wh; E, MB.C.25216, Ali Bashi N, −3.10 m; at 39.7 mm dm, 18.7 mm ww, 13.9 mm wh. Scale bars = 2 mm.](image)
1947 Stephanites waageni (Stoyanow); Voinova et al.: 167, pl. 40, fig. 3.

1957 Paratirolites kittli Stoyanow; Kummel: 179, text-fig. 1a, b.

1958 Paratirolites kittli Stoyanow; Voinova et al., pl. 8, fig. 5a, b.

1965 Paratirolites kittli Stoyanow; Shevyrev: 174, pl. 22, fig. 4.

1965 Paratirolites waageni (Stoyanow); Shevyrev: 175, pl. 22, figs 5, 6.

1968 Paratirolites kittli Stoyanow; Shevyrev: 90, pl. 3, fig. 1.

1968 Paratirolites waageni (Stoyanow); Shevyrev: 90, pl. 2, figs 6, 7.

1983 Pseudotirolites azariani Rostovcev in Zakharov: 154, pl. 15, fig. 5.

Lectotype. The specimen figured by Stoyanow (1910, pl. 9, fig. 1).

Type locality and horizon. Dorasham (Azerbaijan); Paratirolites Limestone.

Diagnosis. Paratirolites with a conch reaching 190 mm dm. Subadult stage with rounded trapezoidal, weakly to moderately depressed whorl cross section (ww/wh = 1.30–1.60) and rounded venter; 10–12 very coarse ventrolateral nodes per volution. Adult stage with strongly trapezoidal and weakly depressed whorl cross section (ww/wh = 1.00–1.30), flattened tectiform venter and sub- angular ventrolateral shoulder; weak ventrolateral nodes. Prongs of the external lobe usually multiply serrated; altogether 12–21 notches of the E, A and L lobes.

Description. Specimen MB.C.25210 (Ali Bashi N, −2.65 m) is a more or less complete specimen with 140 mm conch diameter. Its body chamber is strongly weathered but the last two volutions of the phragmocone are rather well preserved (Fig. 20). The conch is thinly discoidal and subevolute in the last conch (ww/dm = 0.40; uw/dm = 0.42) and shows a weakly depressed trapezoidal whorl cross section (ww/wh = 1.12) with flattened diverging flanks, a subangular ventrolateral shoulder and a broadly rounded venter. A similar whorl cross section can also be seen in the subadult stage at about 60 mm conch diameter. Particularly the penultimate volution (up to 60 mm dm) displays prominent conical ventrolateral nodes (10 per volution); these nodes become weaker and more densely spaced on the last preserved volution.

Specimen MB.C.25217 (Ali Bashi N, −3.35 m) is another rather complete specimen with 132 mm conch diameter; it also has a strongly corroded body chamber. The conch is thinly discoidal and subevolute in the last volution (ww/dm = 0.42; uw/dm = 0.43) and possesses a

Figure 22. Paratirolites kittli Stoyanow, 1910. A–C, lateral and dorsal views; A, MB.C.25214, Ali Bashi N, −3.30 m; B, MB.C.25215, Aras Valley, −2.65 m; C, MB.C.25216, Ali Bashi N, −3.10 m. D, whorl cross section. Scale bars = 5 mm.

Ammonoids from the Late Permian Paratirolites Limestone
weakly depressed trapezoidal whorl cross section (ww/wh = 1.27). The flanks are flattened and diverge strongly; they are separated from the slightly flattened venter by a subangular ventrolateral shoulder. Strong ventrolateral nodes are developed up to a conch diameter of about 96 mm; they are particularly prominent on the penultimate volution (10 per volution). On the last preserved volution these nodes become significantly weaker.

The suture line of specimen MB.C.25212 (Aras Valley, −3.30 m; drawn at 16.7 mm whorl height, referring to about 50 mm phragmocone diameter) shows strong serration of the external, adventive and lateral lobes (Fig. 21C). This serration is much more prominent than in most other representatives of the genus and affects not only the lobe bases but migrates upwards to their flanks with the presence of very small notches. The external lobe is parallel sided and the adjacent ventrolateral saddle is narrower than the strongly serrated adventive lobe.

The suture line of specimen MB.C.25216 (Ali Bashi N, −3.10 m) provides insight into the morphology of the intermediate growth stage (Fig. 22C). It has 40 mm conch diameter and possesses a moderately depressed whorl cross section (ww/wh = 1.54) with a broadly rounded venter. Ten coarse conical nodes are present on the midflank and migrate, on the last preserved volution, towards the ventrolateral area.

In the suture line of specimen MB.C.25216 (drawn at 40 mm phragmocone dm), the external lobe is remarkable because it possesses converging flanks and it is much deeper than the adventive lobe (Fig. 21E). Its prongs are slightly pouched and serrated with small notches at the base. The wide venter accommodates the parallel-sided, rounded ventrolateral saddle and the asymmetrical adventive lobe, which shows deeper notches on its dorsal side.

Remarks. Paratirolites kittli differs from the otherwise similar P. vediensis in the more rounded whorl cross section of the subadult stage, which in the latter is trapezoidal with a flattened venter and flattened diverging flanks.

The figure provided by Stoyanow (1910, pl. 9, figs 1, 2) shows a paratirolitid ammonoid, which has, at about 40 mm conch diameter, small and pointed ventrolateral nodes. In this large number of nodes, P. kittli differs from the other species of Paratirolites, which have a lower number of coarser, conical nodes. Stoyanow’s figure shows a suture line with two notches of the prongs in the external lobe, which agrees with the material described here.

Shevyrev (1965, 1968) figured a specimen with 75 mm conch diameter. This specimen has 10 coarse ventrolateral nodes, and in this respect is dissimilar to the original description of P. kittli. It probably belongs to another species.

Stoyanow (1910) had only one fragment of his species Stephanites? waageni. Despite this limited original material, a rather good characterization of this species was provided. The figured specimen is a fragment of the phragmocone with a whorl height of 22 mm, meaning that the total diameter of the conch including the body chamber was at least 110 mm. It shows a ventrally depressed whorl profile with convex flanks and a broadly rounded venter. The flank shows sharp ribs, which produce sharp conical nodes in the midflank area. With this morphological inventory, it can be attributed to P. kittli with some certainty.

Shevyrev (1965) had 24 specimens, making it the most common species of the genus. He published three suture lines, all of which show less strongly serrated lobes when compared with the new material described here.

Stratigraphical range. Paratirolites Limestone; 3.35 to 1.55 m below the extinction horizon (Paratirolites kittli Zone to Alibashites mojsisovici Zone).

Paratirolites vediensis Shevyrev, 1965
(Figs 23, 24)
1965 *Paratirolites vediensis* Shevyrev: 176, pl. 23, fig. 1.

1968 *Paratirolites vediensis* Shevyrev; Shevyrev: 92, pl. 5, fig. 1.

1969 *Paratirolites vediensis* Shevyrev; Stepanov et al., pl. 13, fig. 5.

2014b *Paratirolites vediensis* Shevyrev; Korn in Ghaderi et al., text-fig. 7G.

Holotype. PIN 1478/2; illustrated by Shevyrev (1965, pl. 23, fig. 1).

Type locality and horizon. Vedi (Armenia); *Paratirolites* Limestone.

Material. Thirty-two specimens (Aras Valley, Ali Bashi N).

Diagnosis. *Paratirolites* with a conch reaching 250 mm dm. Subadult stage with trapezoidal, weakly depressed whorl cross section (ww/wh = 1.20—1.50) and flattened tectiform venter; 10—15 coarse ventrolateral nodes per volition. Adult stage with strongly trapezoidal and weakly depressed whorl cross section (ww/wh = 1.00—1.20), flattened tectiform venter and angular ventrolateral shoulder; weak ventrolateral nodes. Prongs of the external lobe usually multiply serrated; altogether 14–20 notches of the E, A and L lobes.

Description. Specimen MB.C.25264 (Ali Bashi N, −2.65 m) is an incomplete specimen with 112 mm conch diameter; preserved are one-third of the strongly weathered body chamber and two volutions of the phragmocone (Fig. 23A). The specimen is, because of strong weathering, only preserved from one side. The conch is thinly discoidal and subevolute at 86 mm dm (ww/dm = 0.42; uw/ dm = 0.44) and possesses a weakly depressed trapezoidal whorl cross section (ww/wh = 1.49). The flanks are flattened and diverge strongly; they are separated from the slightly flattened venter by a subangular ventrolateral shoulder. Strong ventrolateral nodes are developed up to a
conch diameter of about 85 mm; they are particularly prominent on the penultimate volution (10 per volution). On the last preserved volution these nodes become significantly weaker.

Specimen MB.C.25265 (Aras Valley, −3.05 m) has 117 mm conch diameter and closely resembles specimen MB.C.25264 in conch shape and sculpture. Its body chamber is less weathered and shows 12 weak ventrolateral nodes per half volution (Fig. 23B).

Specimen MB.C.25266 (Aras Valley, float) is a rather well preserved specimen with 66 mm conch diameter. It shows a strongly trapezoidal whorl cross section with slightly flattened, tectiform venter. The sculpture consists of coarse and pointed ventrolateral spines, which develop out of ribs on the flank (Fig. 24A). The suture line of the specimen shows a rather strongly serrated external lobe with slightly asymmetric prongs; the external lobe is deeper than the adventive lobe (Fig. 24E).

The suture line of specimen MB.C.25268 (Ali Bashi N, −2.65 m) has, at 22 mm whorl height (corresponding to 60 mm phragmocone diameter), a parallel-sided external lobe with narrow parallel-sided prongs that are strongly serrated at the base (Fig. 24C). The ventrolateral saddle appears to be slightly inflated and is broadly rounded; it is wider than the strongly serrated adventive lobe. A fine serration with a number of little notches can also be seen in the lateral and umbilical lobes, of which the latter has a position at the umbilical seam.

Remarks. Paratirolites vediensis differs from P. waageni in the strongly trapezoidal whorl cross section with flattened venter of the subadult stage, which shows a rounded venter in P. waageni. It differs from P. trapezoidalis, which possesses a very similar conch geometry, in the much coarser ribs of the adult stage (which in P. trapezoidalis are much more numerous and delicate), and in the stronger serrated prongs of the external lobes (usually multiply serrated in P. vediensis, but simple or bifid in P. trapezoidalis).

Shevyrev (1965) based his new species on only one specimen, but the newly collected specimens confirm his idea for a separation. In most cases, separation from the otherwise similar P. waageni is rather easy and justifies the introduction of this species.

Stratigraphical range. Paratirolites Limestone; 3.30 to 2.10 m below the extinction horizon (Paratirolites kiti Zone to lower part of the Stoyanowites dieneri Zone).

Paratirolites quadratus sp. nov.
(Fig. 25)

Derivation of name. After the nearly quadrate whorl profile of the adult stage.

Holotype. MB.C.25296 (Fig. 25A).

Type locality and horizon. Ali Bashi N section; 1.70 m below the top of the Paratirolites Limestone (Stoyanowites dieneri Zone).

Material. Two specimens (Aras Valley).

Diagnosis. Paratirolites with a conch reaching 90 mm dm. Subadult stage with trapezoidal, weakly depressed whorl cross section (ww/wh = 1.35) and broadly rounded venter; about 12 ribs ending in spiny ventrolateral nodes. Adult stage with weakly trapezoidal to nearly quadrate and weakly depressed whorl cross section (ww/wh = 1.20), weakly concave venter and angular ventrolateral shoulder; coarse and shallow ribs on the flanks. Prongs of the external lobe multiply serrated; altogether about 17 notches of the E, A and L lobes.

Description. Holotype MB.C.25296 is a well-preserved specimen with 62 mm conch diameter; preserved are a part of the body chamber (half of the last volution) and the last three volutions of the phragmocone (Fig. 25A). The conch is thinly discoidal and subevolute in the last volution (ww/dm = 0.40; uw/dm = 0.39). It shows a sub-trapezoidal, ventrally depressed whorl cross section (ww/wh = 1.21) at the largest diameter. The specimen shows a narrow and oblique umbilical wall and slightly concave

Figure 25. Paratirolites quadratus sp. nov., holotype, MB.C.25296, Ali Bashi N, −1.70 m. A, lateral and dorsal views; B, suture line at 30.8 mm ww, 13.9 mm wh; C, whorl cross section proportions. Scale bars: A = 5 mm; B = 2 mm.
and diverging flanks, which are separated from the flattened, slightly concave venter by an angular margin. The sculpture of the juvenile stage (up to 12 mm dm) consists of rounded ribs, which become more pronounced during ontogeny. At 22 mm dm, these ribs develop spiny ventrolateral nodes, of which 10 can be counted for one volution (up to 49 mm dm). At a larger diameter (above 49 mm dm), these ventrolateral nodes are weakened but the ribs produce sharp dorsolateral nodes.

The suture line, drawn at 14 mm whorl height (representing about 40 mm phragmocone diameter) of the holotype possesses a parallel-sided external lobe with narrow prongs that display two narrow notches (Fig. 25B). The ventrolateral saddle has a slightly bulbous shape and is slightly asymmetrical and dorsally inclined. On the venter follows an asymmetrical adventive lobe with seven little notches.

Remarks. *Paratirolites quadratus* differs from the other species of *Paratirolites* in the slightly trapezoidal, nearly quadrate whorl profile in the adult conch and the very long, spiny ventrolateral nodes.

Stratigraphical range. *Paratirolites* Limestone; 1.70 m below the extinction horizon (*Stoyanowites dieneri* Zone).

Paratirolites multiconus sp. nov.
(Fig. 26)

Derivation of name. From Latin *multi* = many, and *conus* = cone, because of the large number of ventrolateral nodes.

Holotype. MB.C.25298 (Fig. 26A).

Type locality and horizon. Dorasham (Azerbaijan); *Paratirolites* Limestone.

Material. Two specimens (Aras Valley, Ali Bashi N).

Diagnosis. *Paratirolites* with a conch reaching 100 mm dm. Subadult stage with trapezoidal, weakly depressed whorl cross section (ww/wh = 1.10) and rounded venter; 20 weak ribs, which end in conical ventrolateral nodes, per volution. Adult stage with slightly trapezoidal and weakly compressed whorl cross section (ww/wh ~0.85), rounded venter and narrowly rounded ventrolateral shoulder; numerous small ventrolateral nodes. Prongs of the external lobe multiply serrated; about 18 notches of the E, A and L lobes.

Description. Specimen MB.C.25298 (Ali Bashi N, −1.10 m) is unfortunately a somewhat corroded specimen, but nevertheless shows a number of characters (Fig. 26A). It has a diameter of 82 mm, and more than half of the last volution belongs to the body chamber. The phragmocone shows a trapezoidal whorl cross section with broadly rounded venter; it is ornamented with ribs, which become stronger with distance to the umbilicus and end in conical ventrolateral nodes. About 20 such ribs

Figure 26. *Paratirolites multiconus* sp. nov. A, B, lateral and dorsal views; A, holotype, MB.C.25298, Ali Bashi N, −1.10; B, paratype, MB.C.25299, Aras Valley, −1.15 m; C, holotype, MB.C.25298, suture line at 16.5 mm wh. D, whorl cross section proportions. Scale bars: A, B = 5 mm; C = 2 mm.
occupy the flanks of one volution. The ribs become much finer on the adult body chamber, where they are visible as numerous (about 25 per half volution) weak riblets ending in small ventrolateral nodes.

The suture line of specimen MB.C.25298 (drawn at 16.5 mm wh, corresponding to a phragmocone diameter of 55 mm) possesses an external lobe, which is pouched in the lower half (Fig. 26C). Its prongs are slightly asymmetrical, being bifid and trifid with small secondary notches. The adventive and lateral lobes are strongly serrated with six small notches each.

The smaller specimen MB.C.25299 (Ali Bashi N, −1.15 m) is also not very well preserved. It has, at 49 mm conch diameter, a thinly discoidal and subevolute shape (ww/dm = 0.36; uw/dm = 0.43) with a trapezoidal whorl cross section (ww/wh = 1.06) and a rounded venter. It possesses 20 weak ribs on the last preserved volution; these ribs form slightly elongate ventrolateral nodes (Fig. 26B). The venter is smooth.

Remarks. *Paratirolites multiconus* differs from the other species of *Paratirolites* in the slender conch and the larger number of ventrolateral nodes.

Stratigraphical range. *Paratirolites* Limestone; 1.15 to 1.10 m below the extinction horizon (*Abichites abichi* Zone).

Paratirolites serus sp. nov.

(Fig. 27)

Derivation of name. From Latin *serus* = late, because of the high stratigraphical occurrence.

Holotype. MB.C.25300 (Fig. 27A).

Type locality and horizon. Ali Bashi N section, 0.65 m below the top of the *Paratirolites* Limestone (*Abichites stoyanowi* Zone).

Material. Five specimens (Aras Valley, Ali Bashi N, Ali Bashi 1).

Diagnosis. *Paratirolites* with a conch reaching 80 mm dm. Subadult stage with strongly trapezoidal, moderately depressed whorl cross section (ww/wh = 1.60) and rounded venter; 12 weak ribs, which end in coarse conical ventrolateral nodes, per volution. Adult stage with slightly trapezoidal and moderately depressed whorl cross section (ww/wh = 1.60), flattened venter and angular ventrolateral shoulder; numerous sharp ribs on the flank. Prongs of the external lobe simple; altogether about eight notches of the E, A and L lobes.

Description. Holotype MB.C.25300 (Ali Bashi N, −0.65 m) is an incomplete specimen with 51 mm conch diameter; most of the specimen represents the phragmocone and only a quarter of the body chamber is preserved (Fig. 27A). The maximum diameter of the phragmocone is 40 mm; the conch is discoidal in this stage with a trapezoidal, weakly depressed whorl cross section (ww/wh = 1.30), which has a tectiform venter. The last volution of

Figure 27. *Paratirolites serus* sp. nov. A, B, lateral and dorsal views; A, holotype, MB.C.25300, Ali Bashi N, −0.65 m; B, paratype, MB.C.25301, Ali Bashi N, −0.85 m. C, D, suture lines; C, holotype, MB.C.25300, at 10.5 mm wh; D, paratype, MB.C.25301, at 9.5 mm wh. E, whorl cross section proportions. Scale bars: A, B = 5 mm; C, D = 2 mm.
the phragmocone is ornamented with 10 rounded ribs on the flank, which end in coarse conical ventrolateral nodes. These nodes become much weaker on the body chamber and are replaced by elongate dorsolateral nodes.

The suture line of the holotype (drawn at 10.5 mm wh) shows a rather narrow, parallel-sided external lobe, which possesses narrowly V-shaped, unsubdivided prongs (Fig. 27C). The inflated ventrolateral saddle is broadly rounded, the adventive lobe possesses six notches and the lateral lobe is bifid.

The smaller paratype MB.C.25301 (Ali Bashi N, −0.85 m) is fully chambered with 41 mm conch diameter. It has a pentagonal whor cross section with tectiform venter and diverging flanks (Fig. 27B). The ornament consists of 10 conical ventrolateral nodes on the last phragmocone volution, the penultimate volution possessing eight such nodes. The suture line has an unsubdivided external lobe.

Remarks. Subadult specimens of *Paratirolites serus* resemble some stratigraphically older species such as *P. waageni* and particularly *P. vediensis*. The new species differs from these in the smaller conch diameter (40 mm maximum phragmocone diameter in contrast to 70–80 mm in *P. waageni* and *P. vediensis*), the presence of elongate dorsolateral nodes on the body chamber, and in the much simpler suture line with an unsubdivided external lobe.

The two species *Alibashites mojsisovici* and *A. ferdowsii* are similar in the subadult stage, but they possess a square-shaped (*A. mojsisovici*) or subtrapezoidal (*A. ferdowsii*) body chamber with a flat venter.

Stratigraphical range. *Paratirolites* Limestone; 0.95 to 0.55 m below the extinction horizon (lower part of the *Abichites stoyanowi* Zone).

Genus *Julfotirolites* gen. nov.

Derivation of name. Named after the similarity with *Tirolites* and *Paratirolites*, and the town of Julfa.

Type species. *Julfotirolites kozuri* sp. nov., North-west Iran.

Diagnosis. Representatives of the family Dzhulfitidae with large conch; maximum adult diameters are about 105 mm. Adult stage with oval, compressed whorl cross section. Subadult stage with large conical ventrolateral nodes, adult stage with weak ribs. Suture line with deep external lobe; the depths of external lobe and adventive lobe are nearly identical.

Remarks. The monospecific new genus *Julfotirolites* differs from *Paratirolites* and *Alibashites* in the shape of the adult stage, which shows an oval cross section in *Julfotirolites* but is trapezoidal in *Paratirolites* and subtrapezoidal in *Alibashites*.

Julfotirolites kozuri sp. nov. (Fig. 28)

Derivation of name. Named after H. W. Kozur (1942–2013) for his stratigraphical work on the Permian–Triassic boundary beds in Iran.

Holotype. MB.C.25305 (Fig. 28A).

Type locality and horizon. Aras Valley section; float of the *Paratirolites* Limestone.

Material. Three specimens (Aras Valley, Ali Bashi N).

Diagnosis. *Julfotirolites* with a conch reaching 105 mm dm. Subadult stage with oval, weakly depressed whorl cross section (ww/wh = 1.20) and rounded venter; 10 coarse conical ventrolateral nodes per volution. Adult stage with oval and weakly compressed whorl cross section (ww/wh = 0.65), rounded venter and rounded ventrolateral shoulder; weak ribs on the midflank. Prongs of the external lobe trifid; altogether 13–15 notches of the E, A and L lobes.

Description. Holotype MB.C.25305 (float) is a rather well preserved internal mould of a fully septate specimen.
with a conch diameter of 54 mm (Fig. 28A). The specimen shows a change of conch shape and sculpture already before the end of the phragmocone; the whorl cross section becomes slender on the last preserved volition and the ww/wh ratio is reduced from 1.20 at 37 mm dm to 0.76 at 54 mm dm. The ribs become weaker at the same time; the number of ribs changes from 10 per whorl to eight per half whorl.

The suture line of the holotype shows, at 50 mm dm, a rather narrow external lobe with narrow prongs, which possess three little notches (Fig. 28B). The ventrolateral saddle is broadly rounded and almost symmetrical. The adventive lobe is strongly serrated with nine small notches of irregular size, while the lateral lobe has only three notches.

Paratype MB.C.25306 (Ali Bashi N, −2.65 m) has, with 66 mm conch diameter, a conch and sculpture similar to the holotype. The specimen is rather poorly preserved, but shows the rapid weakening of the ornament from conical midflank nodes to fine ribs within one volition.

Remarks. Julfotirolites kozuri differs from Paratirolites species in the rounded venter and the compressed whorl cross section.

Stratigraphical range. Paratirolites Limestone; about 2.85 m below the extinction horizon (Paratirolites kittli Zone).

Genus Alibashites gen. nov.

Derivation of name. Named after the Ali Bashi Mountains east of Julfa.

Type species. Xenodiscus (Paratirolites?) Mojsisovici Stoyanow, 1910.

Included species. Alibashites ferdowsii sp. nov. (North-west Iran); Xenodiscus (Paratirolites?) Mojsisovici Stoyanow, 1910 (Azerbaijan); Alibashites stepanovi sp. nov. (North-west Iran); Alibashites uncinatus sp. nov. (North-west Iran).

Diagnosis. Representatives of the family Dzhulfitidae with moderately large to large conch; maximum adult diameters are between 85 and 110 mm. Adult stage with subtrapezoidal or quadrate whorl cross section. Subadult stage with large conical ventrolateral nodes, adult stage with weak ribs. Suture line with deep external lobe; the depths of external lobe and adventive lobe are nearly identical.

Remarks. Alibashites has an intermediate morphological position between Paratirolites and Abichites. It possesses the subadult sculpture with conical ventrolateral nodes of Paratirolites but lacks the trapezoidal whorl profile of that genus. Abichites has a similar adult conch morphology with a rectangular or subtrapezoidal whorl profile but does not possess the strong ventrolateral nodes developed in Alibashites.

Alibashites mojsisovici (Stoyanow, 1910)
(Paratirolites)

1910 Xenodiscus (Paratirolites?) Mojsisovici Stoyanow:
79, pl. 8, fig. 1.
1965 Abichites mojsisovici (Stoyanow); Shevyrev: 180,
pl. 23, fig. 4.
1968 Abichites mojsisovici (Stoyanow); Shevyrev: 95, pl.
4, fig. 3.
1969 Abichites mojsisovici (Stoyanow); Stepanov et al.,
pl. 13, fig. 4.

Lectotype. The specimen figured by Stoyanow (1910, pl.
8, fig. 1).

Type locality and horizon. Dorasham (Azerbaijan);
Paratirolites Limestone.

Material. Eighteen specimens (Aras Valley, Ali Bashi N,
Ali Bashi 4, Ali Bashi 1).

Diagnosis. Alibashites with a conch reaching 90 mm dm.
Subadult stage with circular, weakly depressed whorl
cross section (ww/wh = 1.00 − 1.20) and rounded venter;
13 coarse ventrolateral nodes per volition. Adult stage
with quadrate and weakly compressed whorl cross section
(ww/wh = 0.95 − 1.00), almost flat venter and subangular
ventrolateral shoulder; low ribs on the flanks, forming
very weak dorsolateral and ventrolateral nodes. Prongs of
the external lobe variable, simple to trifid; 8–13 notches
of the E, A and L lobes.

Description. Specimen MB.C.25308 (Ali Bashi 4, −1.35
m) is a fairly well-preserved specimen with 62 mm conch
diameter; preserved are the partly weathered body cham-
ber (last half volition) and the last two volutions of the
phragmocone (Fig. 29A). The conch is extremely discoi-
dal and subevolute in the last volition (ww/wh = 0.30;
ww/dm = 0.44) and possesses, at the largest diameter, a
trapezoidal whorl cross section with about equal values
for whorl width and whorl height (ww/wh = 0.98). At this
stage, the flanks are slightly concave and diverge slowly
towards the flattened venter; flanks and venter are sepa-
rated by a subangular margin. One volition earlier (at
about 32 mm dm), the ww/wh ratio is much higher (ww/
wh = 1.45) due to coarse ventrolateral nodes. The venter
is broadly rounded in this growth stage. The sculpture
changes significantly in the growth stage at 37 mm dm.
While the last two volutions of the phragmocone possess
very strong, spiny ventrolateral nodes (8–10 per volu-
tion), they become rapidly weaker at the terminal body
chamber and are replaced there by densely spaced sharp
ribs, which terminate in weak nodes placed at the ventro-
lateral edge.

The smaller specimen MB.C.25310 (Ali Bashi 4,
−1.70 m) is also rather well preserved and has a conch
diameter of 44 mm. The last half volition belongs to the
body chamber and one and a half volutions of the phragmocone are preserved (Fig. 29C). At 44 mm dm, the conch is extremely discoidal and subevolute in the last volition (ww/dm 0.34; uw/dm 0.44) and possesses a subquadrate whorl cross section (ww/wh 1.13). The flanks are nearly flat in this stage and are separated from the flattened venter by a subangular margin. The last portion of the phragmocone possesses prominent ventrolateral nodes (11 per volition), which perform as obstacles for the umbilical wall of the following volition. On the body chamber, the ventrolateral nodes are weak and less pronounced than the sharp dorsolateral nodes.

The suture line of specimen MB.C.25310, drawn at 8 mm whorl height (about 25 mm phragmocone diameter) has a slightly pouched external lobe with narrow lanceolate prongs (Fig. 29F). The broadly rounded ventrolateral saddle is asymmetrical and ventrally inclined. The adventive and lateral lobes have a position on the flank. Both are serrated with converging flanks; the adventive lobe shows one small and two large notches, whereas the lateral lobe has three very small notches.

Suture lines of other specimens differ particularly in the shape of the external lobe. Specimen MB.C.25309 (Ali Bashi 4, −1.55 m; wh = 10 mm, corresponding to a phragmocone diameter of 32 mm) has pouched prongs (Fig. 29E), and specimen MB.C.25310 (Ali Bashi 1, −1.40 m; wh = 12.5 mm, corresponding to a phragmocone diameter of 40 mm) possesses asymmetrical ventral prongs with three little notches (Fig. 29D).

Remarks. *Alibashites ferdowsii* has coarse nodes in the subadult stage like *A. mojisovicsi*, but this species shows a much wider whorl cross section (ww/wh 0.95–1.00) than *A. mojisovicsi* (ww/wh = 0.95–1.00) in the adult stage.

Alibashites mojisovicsi differs from the species of *Abichites*, which may develop a similar adult stage, in the coarse subadult ventrolateral nodes.

Stratigraphical range. *Paratirolites* Limestone; 1.90 to 1.15 m below the extinction horizon (*Alibashites mojisovicsi* Zone and lower part of the *Abichites abichi* Zone).

Alibashites ferdowsii sp. nov.

(Fig. 30)

Derivation of name. After Hakim Abu ’l-Qasim Ferdowsi Tusi (940–1020), important and influential Persian poet and author of the epic *Shahnameh*.
Holotype. MB.C.25327 (Figs 30A).

Type locality and horizon. Aras Valley section; float of the Paratirolites Limestone (probably Stoyanowites dienieri Zone).

Diagnosis. Alibashites with a conch reaching 100 mm dm. Subadult stage with circular to subtrapezoidal, weakly depressed whorl cross section (ww/wh = 1.25–1.50) and broadly rounded venter; 10–12 very coarse ventrolateral nodes. Adult stage with subtrapezoidal and weakly depressed whorl cross section (ww/wh = 1.20–1.50) with converging flanks, almost flat venter and angular ventrolateral shoulder; sharp ribs on the flanks, forming short dorsolateral nodes and stronger ventrolateral nodes. Prongs of the external lobe variable in shape, bifid to multiply serrated; altogether 15–18 notches of the E, A and L lobes.

Description. Holotype MB.C.25327 (Aras Valley, float; 58 mm conch diameter) shows a part of the body chamber (less than half volution) and about one fairly well preserved volution of the phragmocone (Fig. 30A). The conch is thinly discoidal and subevolute in the last volution (ww/dm = 0.42; uw/dm = 0.42) and shows a subtrapezoidal, ventrally depressed whorl cross section (ww/wh = 1.38). The whorls are, in the adult stage, thickest at the broadly rounded umbilical margin and the flanks converge slowly toward the subangular ventrolateral shoulder. This separates the shallow tectiform venter from the flanks. The last preserved volution displays the transition from

Figure 30. Alibashites ferdowsii sp. nov. A—D, lateral and dorsal views; A, holotype, MB.C.25327, Aras Valley, float; B, paratype, MB.C.25328, Aras Valley, float; C, paratype, MB.C.25329, Ali Bashi N, float; D, paratype, MB.C.25330, Aras Valley, −1.75 m. E, F, suture lines; E, paratype, MB.C.25331, Ali Bashi N, float; at 14.0 mm wh; F, paratype, MB.C.25328, Aras Valley, float; at 16.0 mm ww, 11.6 mm wh. G, whorl cross section proportions. Scale bars: A—D = 5 mm; E, F = 2 mm.
the strongly ribbed subadult stage with prominent conical ventrolateral nodes into the adult stage with sharp ribs and low elevate dorsolateral and ventrolateral nodes.

Paratype MB.C.25329 (Aras Valley, −1.75 m; 53 mm conch diameter) closely resembles the holotype in conch shape and sculpture. Differences can be seen in the shape of the venter, which in specimen MB.C.25330 shows a shallow keel on the last half volution (Fig. 30C).

Morphologically similar are also paratypes MB. C.25330 (Ali Bashi N, float; 65 mm dm; Fig. 30D) and MB.C.25328 (Aras Valley, float; 58 mm dm; Fig. 30B). MB.C.25330 shows a rather well-rounded venter until 48 mm conch diameter.

The suture line is somewhat variable in the new species. The two figured paratypes MB.C.25331 (Fig. 30E) and MB.C.25328 (Fig. 30F) differ in the pronunciation of the secondary notches of the external lobe (rather large in MB.C. 25331, but barely visible in MB.C.25328), and in the shape of the adventive lobe (deep and semicircular in MB.C.25331, but flattened in MB.C.25328).

Remarks. This species shows an intermediate morphological position between the genera Paratirolites and Abichites. Characteristic for Paratirolites is the intermediate growth stage with trapezoidal whorl cross section with the prominent conical ventrolateral nodes; similar to Abichites is the flat venter in the adult stage. The intermediate position of Alibashites ferdowsii is also visible in the suture line; on the one side is the more complex external lobe in Paratirolites (with serrated prongs of the external lobe), and on the other side is Abichites (with a trend towards unserrated prongs of the external lobe).

Alibashites ferdowsii differs from A. mojsisovicci in the wide and weakly depressed whorl cross section (ww/wh = 1.25−1.50) and in the ribbed adult stage, which displays dorsolateral as well as ventrolateral nodes.

Stratigraphical range. Paratirolites Limestone; 1.85 to 1.45 m below the extinction horizon (Alibashites mojsisovicci Zone and lowest part of the Abichites abichi Zone).

Alibashites uncinatus sp. nov. (Fig. 31)

Derivation of name. From the Latin uncinatus = hook shaped, because of the form of the ribs.

Holotype. MB.C.25335 (Fig. 31A).

Type locality and horizon. Aras Valley section; 1.90 m below the top of the Paratirolites Limestone (Stoyanowites dieneri Zone).

Figure 31. Alibashites uncinatus sp. nov. A–D, lateral and dorsal views; A, holotype, MB.C.25335, Aras Valley, −1.90 m; B, paratype, MB.C.25336, Aras Valley, float; C, paratype, MB.C.25337, Aras Valley, float; D, paratype, MB.C.25338, Aras Valley, −1.45 m. E, F, suture lines; E, holotype, MB.C.25335, at 13.2 mm wh; F, paratype, MB.C.25338, at 12.3 mm wh. G, whorl cross section proportions. Scale bars: A–D = 5 mm; E, F = 2 mm.

Diagnosis. Alibashites with a conch reaching 85 mm dm. Subadult stage with trapezoidal whorl cross section (ww/wh = 1.00) and flattened venter; 10–12 shallow ribs forming pointed dorsolateral and ventrolateral nodes. Adult stage with subtrapezoidal and weakly compressed whorl cross section (ww/wh = 0.70–0.80), flattened or concave venter and angular ventrolateral shoulder; weak dense ribs on the flanks, forming weak nodes in the ventrolateral area. Prongs of the external lobe simple to multiply serrated; altogether 12–16 notches of the E, A and L lobes.

Description. Holotype MB.C.25335 (Aras Valley, −1.90 m) is a fairly well preserved specimen with 64 mm conch diameter (Fig. 31A). It displays the transformation from the subadult into the adult stage, characterized by the change of the whorl cross section from trapezoidal (widest in the ventrolateral area) to subtrapezoidal (widest near the umbilicus). The ornament changes parallel to the whorl cross-section shape: the subadult stage shows coarse ribs with conical ventrolateral nodes, while the adult stage possesses weaker ribs with dorsolateral nodes and weaker ventrolateral nodes.

Similar conch proportions can be seen in paratype MB.C.25336 (Aras Valley, −1.95 m) at 51 mm conch diameter. This specimen shows a subtrapezoidal whorl cross section, which is widest near the rounded umbilical margin. The slightly concave flanks converge towards the flattened, barely convex venter (Fig. 31D). One volution earlier, the whorl cross section is trapezoidal and widest in the ventrolateral area. A transformation of the ornament is also visible on the last volution; the ventrolateral conical nodes lose their strength while the dorsolateral nodes become more prominent.

The smaller paratypes MB.C.25336 and MB.C.25337 (both Aras Valley, float) display, at 46 and 37 mm conch diameter, respectively, the subtrapezoidal whorl cross section of the subadult stage. In both specimens the ventrolateral nodes show a hook-shaped ending; they are the dominant ornament feature (Fig. 31B, C).

The suture line of holotype MB.C.25335 possesses a rather wide external lobe with nearly parallel flanks (Fig. 31E). The prongs show a trifurcation at the base and the adventive and lateral lobes have five and four small notches, respectively. The suture line of specimen MB.C.25338 differs in the simple and narrow external lobe without any secondary serration (Fig. 31F).

Remarks. Alibashites uncinatus differs from A. stepanovi in the shape of the subadult whorl cross section, which is wider (ww/wh = 1.00) than in A. uncinatus (ww/wh = 0.70–0.80). Another distinguishing feature is the more pronounced ventrolateral nodes in the subadult stage of S. unicus. Alibashites mojsisovicsi possesses much coarser ventrolateral nodes in the subadult stage.

Stratigraphical range. Paratirolites Limestone; 1.95 to 1.45 m below the extinction horizon (uppermost part of the Stoyanowites dieneri Zone and lowest part of the Abichites abichi Zone).

Alibashites stepanovi sp. nov.
(Fig. 32)

1973 Paratirolites mojsisovicsi (Stoyanow); Teichert & Kummel in Teichert et al.: pl. 6, fig. 8, 9, pl. 7, fig. 6.

Derivation of name. Named after D. L. Stepanov, one of the pioneers of Permian–Triassic stratigraphy in the Ali Bashi Mountains.

Holotype. MB.C.25345 (Fig. 32).

Type locality and horizon. Ali Bashi M section; 1.60 m below the top of the Paratirolites Limestone (Stoyanowites dieneri Zone).

Diagnosis. Alibashites with a conch reaching 110 mm dm. Subadult stage with trapezoidal, weakly compressed whorl cross section (ww/wh = 0.70–0.80) and rounded venter; 25 biconvex ribs forming small umbilical nodes and ending in elongate ventrolateral nodes. Adult stage with subtrapezoidal, weakly compressed whorl cross section (ww/wh = 0.60–0.70) and moderately wide umbilicus (uw/dm = 0.40–0.45), flattened venter and subangular ventrolateral shoulder; very weak dense ribs on the flanks, coarsest in the dorsolateral and ventrolateral areas. Prongs of the external lobe usually bifid; 9–15 notches of the E, A and L lobes.

Description. Holotype MB.C.25345 (Ali Bashi M, −1.60 m) is at 83 mm conch diameter the largest of the specimens (Fig. 32A). It is incomplete, with the last half volution belonging to the body chamber. At this stage, the conch is extremely discoidal and subevolute (ww/dm = 0.22; uw/dm = 0.42) with a weakly compressed whorl cross section (ww/wh = 0.70). The whorls are widest near the rounded umbilical wall and converge slowly towards the subangular ventrolateral shoulder. The flanks are slightly concave and the venter is flat. The ornament consists of weak ribs on the phragmocone, forming elongate sharp nodes in the dorsolateral and ventrolateral areas. The ornament is very similar on the body chamber, but the ribs are more numerous (20 on half a volution) and weaker.

The two smaller paratypes MB.C.25346 and MB.C.25347 (Aras Valley, −1.85 m), both with 60 mm conch diameter, are very similar in their conch proportions and
ornament (Fig. 32B, C). They differ only in the shape of the whorl cross section, with the first specimen showing nearly parallel flanks but the second showing slightly concave flanks. Furthermore, specimen MB.C.25346 shows weaker riblets on the body chamber in comparison with specimen MB.C.25347.

Paratype MB.C.25348 (Aras Valley, −1.45 m) shows the immature morphology and ornament at 43 mm diameter (Fig. 32D). The conch proportions are similar to those seen in the larger specimens; the flanks are slightly trapezoidal and the venter is a flattened tectiform.

The suture line of paratype MB.C.25348 has, at 10 mm wh, a rather simple external lobe, which is asymmetrical with respect to secondary subdivision (one prong being subdivided into two notches). The flanks of the external lobe are parallel, the ventrolateral saddle is nearly symmetrical and the adventive and lateral lobes show parallel flanks. They are subdivided into seven and five secondary notches, respectively (Fig. 32E).

Remarks. *Alibashites stepanovi* differs from the superficially similar *Stoyanowites dieneri* in the converging flanks of the adult stage and much denser ribs, which in *A. stepanovi* are short but in *S. dieneri* are developed into longer spines. A similar species is *A. uncinatus*, but this species has a stouter subadult stage (ww/wh = 1.00, in contrast to 0.70–0.80 in *A. stepanovi*) and coarser ventrolateral nodes in the subadult stage.

Figure 32. *Alibashites stepanovi* sp. nov. A–D, lateral and dorsal views; A, holotype, MB.C.25345, Ali Bashi M, −1.60 m; B, paratype, MB.C.25346, Aras Valley, −1.85 m; C, paratype, MB.C.25347, Aras Valley, −1.85 m; D, paratype, MB.C.25348, Aras Valley, −1.45 m; E, paratype, MB.C.25348, suture line at 9.3 mm ww, 10.0 mm wh. F, whorl cross section proportions. Scale bars: A–D = 5 mm; E = 2 mm.
Stratigraphical range. *Paratirolites* Limestone; 1.90 to 1.45 m below the extinction horizon (*Alibashites mojisivosici* Zone and lowermost part of the *Abichites abichi* Zone).

Genus *Abichites* Shevyrev, 1965

Type species. *Kashmirites?* stoyanowi Kiparisova, 1947 by original designation.

Included species. *Abichites abichi* Shevyrev, 1965 (Azerbaijan); *Abichites alibashiensis* sp. nov. (North-west Iran); *Abichites ariaeii* sp. nov. (North-west Iran); *Abichites paucinodus* sp. nov. (North-west Iran); *Abichites shahriari* sp. nov. (North-west Iran); *Kashmirites?* stoyanowi Kiparisova, 1947 (Azerbaijan); *Abichites subtrapezoidalis* sp. nov. (North-west Iran); *Abichites terminalis* sp. nov. (North-west Iran).

Diagnosis. Representatives of the family Dzhulfittidae with small to moderately large conch; maximum adult diameters are between 30 and 90 mm. Adult stage with quadrate, rectangular or oval whorl cross section. Subadult stage with weakly to moderately strong lateral ribs; adult stage with weak ornament. Suture line with deep external lobe; the depths of the external lobe and adventive lobe are nearly identical.

Remarks. The species of *Abichites* show a quadrate, rectangular or oval adult whorl cross section with parallel flanks, subangular or angular ventrolateral shoulder and flattened venter. The ontogeny shows a rather sudden morphological change from the more or less strongly ribbed intermediate stage to the more delicately ribbed adult stage.

A comparison of the newly collected material from the North-west Iranian localities with the specimens described by Shevyrev (1965, 1968) from Dorasham indicates some differences: ‘*A. mojisivosici*’ is better placed in another genus based on the shape of the whorl profile. The figured specimen of *A. stoyanowi* has a more compressed whorl cross section (ww/dm = 0.25; ww/wh = 0.70–0.90) than any of the specimens from North-west Iran. This discrepancy cannot be explained here.

Within the genus *Abichites*, two morphological trends can be observed, and in this respect the genus displays a morphological evolution like that of *Paratirolites*:

1. A significant size decrease, from a maximum conch diameter of 90 mm in the stratigraphically older species to 25–30 mm in the stratigraphically youngest species.
2. A simplification of the suture lines, visible in the decreased number of sutural notches.

Shevyrev (1965, 1968) illustrated four suture lines of the three species included by him in the genus *Abichites* (including *A. mojisivosici*). These suture lines were drawn from specimens between 10 and 13 mm whorl height — that is, corresponding to a phragmocone diameter of 30–40 mm. Three of the four suture lines show serrated prongs of the external lobe. This is in striking contrast to this study, in which the majority of the material shows simple lanceolate prongs of the external lobe.

Species of *Abichites* were found to occur only in the upper half of the *Paratirolites* limestone; they show a successive stratigraphical occurrence with limited overlaps. The stratigraphical succession (in metres below the top of the *Paratirolites* Limestone) of the species is *A. subtrapezoidalis* (2.10–1.45 m) — *A. abichi* (1.50–0.65 m) — *A. alibashiensis* (1.40–0.50 m) — *A. ariaei* (1.50–0.70 m) — *A. stoyanowi* (0.95–0.35 m) — *A. paucinodus* (0.70–0.35 m) as well as *A. shahriari* and *A. terminalis* in the uppermost beds of the *Paratirolites* Limestone. Serrated prongs of the external lobe have been found particularly in the stratigraphically older species, whereas the two youngest species usually show simple prongs. According to the conch shape and sculpture, the stratigraphically successive species of *Abichites* may not represent a morphocline and probably not a phylogenetic sequence.

Suture lines of a number of specimens between 3.0 and 14.5 mm whorl height (i.e. corresponding to a phragmocone diameter between 9 and 45 mm) are presented here to demonstrate the wide variability within the material. It is evident that specimens which share the same conch morphology and sculpture may differ strikingly in the outline of the external lobe. In some cases, asymmetrical external lobes can be seen, and larger specimens tend to more often possess serrated lobes.

Abichites subtrapezoidalis sp. nov. (Figs 33, 34)

Derivation of name. Named after the subtrapezoidal whorl cross section.

Holotype. MB.C.25371 (Fig. 33D).

Type locality and horizon. Aras Valley section (North-west Iran); *Paratirolites* Limestone.

Diagnosis. *Abichites* with a conch reaching 90 mm dm. Subadult stage with circular, weakly compressed to depressed whorl cross section (ww/wh = 0.90–1.10) and rounded venter; 20 weak ribs per volution. Adult stage with a subtrapezoidal or quadrate, weakly depressed whorl cross section (ww/wh = 1.00–1.05), venter nearly flat; numerous sharp ribs forming sharp dorsolateral and
ventrolateral nodes. Prongs of the external lobe simple or bifid; altogether 12–13 notches of the E, A and L lobes.

Description. Paratype MB.C.25373 (Ali Bashi 4, −2.01 m) is extremely discoidal and widely umbilicate (ww/dm = 0.29; uw/dm = 0.46). The whorl cross section is subquadrate (ww/wh = 0.92) and widest near the rounded umbilical margin, from where the flanks converge concavely towards the sharp ventrolateral shoulder that separates the flank from the flattened venter (Fig. 33B). The last third of the last volution belongs to the body chamber; on this the sculpture consists of faint ribs, which are sharpest near the umbilicus and fade out towards the venter. The phragmocone is poorly preserved but shows weak and rounded ribs.

Paratype MB.C.25372 (Aras Valley, float) with 59 mm conch diameter is very similar in conch shape and ornament but has a weakly depressed whorl cross section (ww/wh = 1.11) (Fig. 33A). This specimen shows the suture line (drawn at 14.6 mm wh, corresponding to a conch diameter of about 50 mm) with a parallel-sided external lobe and bifid prongs. The adventive lobe and also the lateral lobe are strongly serrated with seven and eight small notches, respectively (Fig. 34A).

Holotype MB.C.25371 (Aras Valley, float) has a diameter of 48 mm and shows the last part of the phragmocone with septal crowding at 35 mm diameter as well as a part of the body chamber (Fig. 33D). Its general conch

Figure 33. *Abichites sustrapezoidalis* sp. nov. A–E, lateral and dorsal views; A, paratype, MB.C.25372, Aras Valley, float; B, paratype, MB.C.25373, Ali Bashi 4, −2.01 m; C, paratype, MB.C.25374, Aras Valley, −1.45 m; D, holotype, MB.C.25371, Aras Valley, float; E, paratype, MB.C.25375, Aras Valley, float. F, conch proportions. Scale bars = 5 mm.

Figure 34. *Abichites sustrapezoidalis* sp. nov., suture lines. A, paratype, MB.C.25372, Aras Valley, float; at 11.7 mm ww, 14.6 mm wh; B, paratype, MB.C.25373, Ali Bashi 4, −2.01 m; at 12.0 mm ww, 12.5 mm wh; C, holotype, MB.C.25371, Aras Valley, float; at 33.8 mm dm, 13.4 mm ww, 11.4 mm wh; D, paratype, MB.C.25375, Aras Valley, float; at 9.7 mm ww, 9.5 mm wh. Scale bars = 2 mm.
morphology is thinly discoidal and subevolute (ww/dm = 0.35; uw/dm = 0.43) with a moderate coiling rate (WER = 2.22). The phragmocone displays a circular whorl cross section and possesses sharp, slightly curved ribs on the flank (two per volution). Shape and sculpture change on the body chamber; the whorl cross section is quadrate (ww/wh = 1.02) with slightly concave flanks that are separated from the flattened venter by an angular ventrolateral shoulder. The ribs become weaker and form sharp and elongate dorsolateral and ventrolateral nodes on the body chamber. The suture line of holotype MB.C.25371 (drawn at 9.7 mm wh) possesses a pouched external lobe with lanceolate, unserrated prongs, a broadly rounded inflated ventrolateral saddle and a multiply serrated adventive lobe (Fig. 34C).

Paratype MB.C.25375 (Aras Valley, float; 9.5 mm wh, corresponding to a phragmocone diameter of 30 mm) displays a suture line with a slightly pouched external lobe with subparallel flanks (Fig. 34D). The lobe shows differently shaped prongs; one is lanceolate and the other is bifid. The ventrolateral saddle as well as the lateral saddle are nearly symmetrical and have parallel flanks. The adventive lobe has a position on the outer flank; it is slightly asymmetrical like the lateral lobe and strongly serrated.

Remarks. *Abichites subtrapezoidalis* differs from the other species of *Abichites* in the whorl cross section, which in this species is widest near the umbilicus and shows flanks converging toward the flattened venter. In this respect it resembles *A. ferdowsii*, which, however, possesses coarse conical ventrolateral nodes in the subadult stage. The adult ornament of *A. subtrapezoidalis* consists of fine sharp ribs, which form sharp elongate nodes around the umbilicus and on the outer flanks; this separates the species from most of the others, which possess coarse ribs or subadult ventrolateral nodes.

Stratigraphical range. *Paratirolites* Limestone; 2.10 to 1.45 m below the extinction horizon (*Stoyanowites dieneri* Zone and lowest part of the *Abichites abichi* Zone).

Abichites abichi Shevyrev, 1965
(Fig. 35)

1910 *Xenodiscus aff. kapila* (Diener); Stoyanow: 87, pl. 9, fig. 3.
1965 *Abichites abichi* Shevyrev: 181, pl. 24, fig. 4.
1968 *Abichites abichi* Shevyrev; Shevyrev: 96, pl. 4, fig. 4.

Holotype. PIN 1252/137; illustrated by Shevyrev (1965, pl. 24, fig. 4).

Type locality and horizon. Dorasham 2 section; *Paratirolites* Limestone.

Diagnosis. *Abichites* with a conch reaching 75 mm dm. Subadult stage with subquadrate, weakly depressed to compressed whorl cross section (ww/wh = 1.20) and slightly flattened venter; with 15 rounded straight ribs on the flanks. Adult stage with subquadratale whorl cross section (ww/wh = 1.00), parallel flanks and flattened venter; with weak rounded ribs on the flanks. Prongs of the external lobe usually simple; 7–12 notches of the E, A and L lobes.

Description. Specimen MB.C.25389 (Ali Bashi 1, −0.65 m) is an incomplete specimen with 44.5 mm conch diameter. Preserved are a part of the body chamber (less then half of the last volution) and one and a half volutions of the phragmocone (Fig. 35A). The conch is extremely
discoidal and subevolute in the last volution (ww/dm = 0.33; uw/dm = 0.42) and possesses, at the largest diameter, a quadrate whorl cross section (ww/wh = 1.00) with slightly concave flanks and venter. The flanks are separated from the tabulate venter by an angular edge. The last volution displays 20 sharp ribs, which form weak umbilical nodes. The penultimate volution shows rounded ribs.

The suture line of specimen MB.C.25389 (drawn at 32 mm dm) shows a parallel-sided external lobe with simple, slightly pouch prongs (Fig. 35D). The adventive lobe is asymmetrical and deeper on the umbilical side; it is serrated with seven small notches. The lateral lobe has only four notches.

The two smaller specimens MB.C.25390 (Fig. 35B) and MB.C.25391 (Fig. 35C) (both Ali Bashi N, −0.85 m) with 37 and 34 mm diameter, respectively, are similar in conch shape and ornament. They differ from specimen MB. C.25389 in the subquadrate, ventrally depressed whorl cross section (ww/wh = 1.18). The venter is a flattened tectiform in the two specimens.

Remarks. *Abichites abichi* differs from the otherwise similar species *A. subtrapezoidalis* in the quadrate adult whorl cross section (trapezoidal in *A. subtrapezoidalis*). The body chamber of *A. abichi* has stronger ribs than *A. subtrapezoidalis* does. *Abichites alibashiensis* has a similar body chamber, but differs from *A. abichi* in the coarse ventrolateral nodes of the subadult stage.

Stratigraphical range. *Paratirolites* Limestone; 1.50 to 0.65 m below the extinction horizon (*Abichites abichi* Zone and lower part of the *Abichites stoyanowi* Zone).

Abichites alibashiensis sp. nov.

(Fig. 36)

![Figure 36. Abichites alibashiensis sp. nov. A, B, lateral and dorsal views; A, holotype, MB.C.25399, Ali Bashi N, −1.40 m; B, paratype MB.C.25400, Ali Bashi 1, −0.71 m; C, holotype, MB.C.25399, suture line at 9.7 mm wh. D, whorl cross section proportions. Scale bars: A, B = 5 mm; C = 2 mm.](image-url)
The suture line of the holotype (drawn at 9.7 mm wh, corresponding to a phragmocone diameter of 30 mm), shows a parallel-sided external lobe with bifid prongs (Fig. 36C). The ventrolateral saddle is slightly inflated, the parallel-sided adventive lobe has four small secondary notches and the lateral lobe has a similar shape with four notches.

Remarks. *Abichites alibashiensis* differs from *A. abichi*, *A. stoyanowi* and *A. subtrapezoidalis* in the sharp ribs of the subadult stage. Species of *Alibashites* possess subadult ribs but also ventrolateral nodes; these are *A. mojsisovici* (with very weak adult ribs) and *A. ferdowsii* (with a much more compressed whorl cross section).

Stratigraphical range. *Paratirolites* Limestone; 1.40 to 0.50 m below the extinction horizon (*Abichites abichi* Zone and lower part of the *Abichites stoyanowi* Zone).

Abichites ariaeii sp. nov. (Fig. 37)

Derivation of name. Named after Ali Asghar Ariaei, the father of the geology of Eastern Iran.

Holotype. MB.C.25410 (Fig. 37A).

Type locality and horizon. Ali Bashi N locality; 1.15 m below the top of the *Paratirolites* Limestone (*Stoyanowites dieneri* Zone).

Diagnosis. *Abichites* with a conch reaching 85 mm dm. Subadult stage with oval, weakly compressed whorl cross section (ww/wh = 0.85–1.00) and rounded venter; 20–25 low and rounded midflank ribs. Adult stage with subquadrate and weakly compressed whorl cross section (ww/wh = 0.85–1.00), rounded venter and rounded ventrolateral shoulder but transformed into a totally flat venter at the end of the body chamber; weak and low ribs on the flanks. Prongs of the external lobe simple; 7–9 notches of the E, A and L lobes.

Description. The largest of the specimens is holotype MB.C.25410 (Ali Bashi N, −1.15 m) with 60 mm conch diameter (Fig. 37A). It is incompletely preserved, but displays the adult morphology, in which the conch is extremely discoidal and subevolute (ww/dm = 0.29; uw/dm = 0.40) with a nearly quadrate whorl cross section (ww/dm = 0.96). The whorls are widest in the midflank area and converge slightly towards the angular ventrolateral shoulder. The venter is nearly flat in this growth stage, but flattening of the venter appears only during the last half volution. The sculpture is visible on the last one and a quarter whors; it consists of rounded ribs, which appear to be strongest on the outer flank. The venter is smooth.

![Figure 37. Abichites ariaeii sp. nov. A–E, lateral and dorsal views; A, holotype, MB.C.25410, Ali Bashi N, −1.15 m; B, paratype, MB.C.25411, Ali Bashi P, −0.70 m; C, paratype, MB.C.25412, Ali Bashi 4, −0.75 m; D, paratype, MB.C.25413, Aras Valley, −0.85 m; E, paratype, MB.C.25414, Aras Valley, −0.75 m; F, G, suture lines; F, paratype, MB.C.25412, at 8.1 mm ww, 7.4 mm wh; G, paratype, MB.C.25414, at 4.5 mm ww, 4.5 mm wh. H, whorl cross section proportions. Scale bars: A–E = 5 mm; F, G = 2 mm.](image_url)
Paratype MB.C.25411 (Ali Bashi P, −0.70 m) is an incomplete specimen with 43 mm conch diameter; it shows a part of the body chamber (more than half of the last volution) and one volution of the phragmocone (Fig. 37B). The conch is extremely discoidal and subevolute in the last volution (ww/dm = 0.29; uw/dm = 0.43) and shows, at the largest diameter, an oval, laterally compressed whorl cross section (ww/wh = 0.84) with a rounded venter. The sculpture consists of 20 ribs on the last volution; they are shallow, rounded and strongest on the inner flank, and extend in a slightly projected direction.

Paratype MB.C.25412 (Ali Bashi N, −0.75 m; 42 mm conch diameter) is very similar to the holotype in conch shape (ww/dm = 0.30; uw/dm = 0.43) and ornament (Fig. 37C). In this specimen, the ribs are confined to the inner flank area.

The suture line of paratype MB.C.25412, drawn at 7.5 mm wh (about 24 mm phragmocone diameter) shows a parallel-sided external lobe with narrow lanceolate prongs (Fig. 37F). The ventrolateral saddle is slightly asymmetrical and broadly rounded. The adventive and lateral lobes have a position on the flank; the first possesses two notches and the latter three.

Remarks. *Abichites ariaeii* differs from the other species of the genus in the rounded venter present throughout most of its ontogeny. Unlike other species, which possess a longer adult stage with a flat venter, only the last portion of the body chamber has a flattened venter. The ornament of *A. ariaeii* shows only rather weak, rounded ribs on the flank, which is in contrast to most of the other species, which have sharp ribs or ventrolateral nodes.

Stratigraphical range. *Paratirolites* Limestone; 1.15 to 0.70 m below the extinction horizon (upper part of the *Abichites abichi* Zone and lower part of the *Abichites stoyanowi* Zone).

Abichites stoyanowi (Kiparisova, 1947)
(Fig. 38)

1910 *Xenodiscus radians* (Waagen); Stoyanow: 86, pl. 9, fig. 5.
1910 *Xenodiscus* sp. indet. Stoyanow: 87, pl. 9, fig. 6.
1965 *Abichites stoyanowi* Kiparisova; Shevyrev: 179, pl. 24, figs 2, 3.
1968 *Abichites stoyanowi* Kiparisova; Shevyrev: 94, pl. 3, fig. 5, pl. 4, fig. 2.
2014b *Abichites stoyanowi* Kiparisova; Korn in Ghaderi et al., text-fig. 7H.

Lectotype. The specimen figured by Stoyanow (1910, pl. 9, fig. 5).

Type locality and horizon. Dorasham (Azerbaijan); *Paratirolites* Limestone.

Material. Twenty specimens (Aras Valley, Ali Bashi N, Ali Bashi 1, Ali Bashi P).

![Figure 38](https://example.com/figure38.png)
Figure 38. Abichites stoyanowi (Kiparisova, 1947). **A, B,** lateral and dorsal views; **A,** MB.C.25419, Ali Bashi N, −0.35 m; **B,** MB.C.25420, Ali Bashi N, float. **C, D,** suture lines; **C,** MB.C.25419, at 9.9 mm wh; **D,** MB.C.25420, at 7.5 mm ww, 9.6 mm wh. **E,** whorl cross section proportions. Scale bars: **A, B** = 5 mm; **C, D** = 2 mm.
Diagnosis. *Abichites* with a conch reaching 70 mm dm. Subadult stage with circular, weakly compressed whorl cross section (ww/wh = 0.90–1.00) and rounded venter; 16–20 moderately weak ribs per volution. Adult stage with quadrate and weakly compressed whorl cross section (ww/wh = 0.90–1.00), flat venter and subangular to angular ventrolateral shoulder; altogether 12–14 sharp concavo-convex ribs per half volution on the flanks. Prongs of the external lobe simple or bifid; 7–11 notches of the E, A and L lobes.

Description. Specimen MB.C.25420 (Ali Bashi N, −0.35 m) has 37 mm conch diameter and shows the beginning of the terminal body chamber at 28 mm dm (Fig. 38B). The body chamber has a quadrate whorl cross section (ww/wh = 1.00) with slightly concave flanks, a sharp ventrolateral margin and a slightly concave venter. The body chamber possesses rather sharp, linear ribs on the flanks and the phragmocone has rounded ribs with wide distances between them.

Specimen MB.C.25419 (Ali Bashi N, float), with 36 mm conch diameter, is rather well preserved and allows the study of the intermediate growth stage (Fig. 38A). It is extremely discoidal and subevolute (ww/dm = 0.30; uw/dm = 0.41) with a subquadrate whorl cross section (ww/wh = 0.91). The whorl is widest near the rounded umbilical margin, from where the flanks converge barely towards the sharp ventrolateral shoulder that separates the flank from the slightly concave venter. This specimen shows sharp and slightly sigmoidal ribs on the last volution, while the inner whorls possess straight and rounded ribs.

The two figured suture lines are similar in their general outline. However, they differ in the prongs of the external lobe, which are bifid in specimen MB.C.25420 (Fig. 38D) and simple in specimen MB.C.25419 (Fig. 38C).

Remarks. *Abichites stoyanowi* differs from *A. ariaei* in the shape of the venter, which in *A. ariaei* is rounded and flat only in the last growth stage but which becomes flat much earlier in *A. stoyanowi*. *Abichites abichi* is another similar species, but possesses much stronger ribs. *Abichites subtrapezoidalis* has a similar whorl cross section, but only very weak riblets around the umbilicus on the adult body chamber.

Stratigraphical range. *Paratirolites* Limestone; 0.95 to 0.30 m below the extinction horizon (*Abichites stoyanowi* Zone).

Abichites paucinodus sp. nov. (Fig. 39)

Derivation of name. From the Latin *pauci* = few, and *nodus* = node, because of the few lateral nodes in the subadult stage.

Holotype. MB.C.25439 (Fig. 39A).

Figure 39. *Abichites paucinodus* sp. nov., holotype, MB.C.25439, Ali Bashi N, −0.35 m. A, lateral and dorsal views; B, suture line at 14.4 mm wh; C, whorl cross section proportions. Scale bars: A = 5 mm; B = 2 mm.
Type locality and horizon. Ali Bashi N section; 0.35 m below the top of the Paratirolites Limestone (Abichites stoyanowi Zone).

Material. Six specimens (Aras Valley, Ali Bashi N, Ali Bashi 1).

Diagnosis. Abichites with a conch reaching 65 mm dm. Subadult stage with oval, weakly compressed whorl cross section (ww/wh = 0.90–1.00) and rounded venter; eight low and rounded midflank ribs. Adult stage with rectangular and weakly compressed whorl cross section (ww/wh = 0.80–1.00), flattened venter and angular ventrolateral shoulder; few weak and low ribs on the flanks. Prongs of the external lobe simple; 9–12 notches of the E, A and L lobes.

Description. Holotype MB.C.25439 (Ali Bashi N, −0.35 m) is a somewhat corroded specimen with 49 mm conch diameter; a segment of 100'/C14 of the body chamber is preserved (Fig. 39A). The conch shape is extremely discoidal and subevolute (ww/dm = 0.30; uw/dm = 0.38) with a weakly compressed rectangular whorl cross section (ww/wh = 0.78) and a rather high coiling rate (WER = 2.34). The body chamber shows the transformation of the rounded venter in the subadult stage towards the flattened adult form. The sculpture of the body chamber consists of wide-standing low and rounded radial ribs, which form weak dorsolateral and ventrolateral nodes.

The suture line of holotype MB.C.25439 (drawn at 14.4 mm whorl height, corresponding to a phragmocone diameter of 44 mm) has a rectangular external lobe with parallel flanks and narrow V-shaped unserrated prongs (Fig. 39B). The adventive lobe is serrated with seven secondary notches, and the lateral lobe has four notches.

Remarks. Abichites paucinodus differs from the other species of Abichites in the narrower umbilicus (uw/dm less than 0.40 in A. paucinodus, but 0.43 in most of the other species).

Stratigraphical range. Paratirolites Limestone; 0.75 to 0.35 m below the extinction horizon (Abichites stoyanowi Zone).

Abichites shahriari sp. nov. (Fig. 40)

Derivation of name. After Mohammad-Hossein Shahriar (1906–1988), the last poet of the lineage of classical legendary Iranian Azerbaijani poets.

Holotype. MB.C.25445 (Fig. 40A).

Type locality and horizon. Ali Bashi N section; Paratirolites Limestone (probably Arasella minuta Zone).

Material. Two specimens (Aras Valley, Ali Bashi N).

Diagnosis. Abichites with a conch reaching 25 mm dm. Subadult and adult stage with oval, weakly compressed whorl cross section and rounded venter; 15 weak midflank ribs per volution. Adult stage with oval and weakly compressed whorl cross section (ww/wh = 0.85–0.90) and rounded venter; very faint riblets on the flanks. Prongs of the external lobe trifid; nine notches of the E, A and L lobes.

Description. Holotype MB.C.25445 (Ali Bashi N, float) is a slightly weathered specimen of 20 mm conch diameter, of which a little more than half a volution belongs to the body chamber (Fig. 40A). The conch is subevolute (uw/dm = 0.37) with an oval, weakly compressed whorl profile (ww/wh = 0.86). The ornament shows 15 rounded ribs on one volution on the phragmocone, but on the body chamber the ornament is weakened and forms weak blunt riblets, which extend in a forwards direction across the flanks and wedge out near the venter.

The suture line of holotype MB.C.25445 has, at 12.0 mm dm, 3.6 mm wh. Scale bars: A, B = 5 mm; C = 2 mm.

Diagnosis. Abichites with a conch reaching 25 mm dm. Subadult and adult stage with oval, weakly compressed whorl cross section and rounded venter; 15 weak midflank ribs per volution. Adult stage with oval and weakly compressed whorl cross section (ww/wh = 0.85–0.90) and rounded venter; very faint riblets on the flanks. Prongs of the external lobe trifid; nine notches of the E, A and L lobes.

Description. Holotype MB.C.25445 (Ali Bashi N, float) is a slightly weathered specimen of 20 mm conch diameter, of which a little more than half a volution belongs to the body chamber (Fig. 40A). The conch is subevolute (uw/dm = 0.37) with an oval, weakly compressed whorl profile (ww/wh = 0.86). The ornament shows 15 rounded ribs on one volution on the phragmocone, but on the body chamber the ornament is weakened and forms weak blunt riblets, which extend in a forwards direction across the flanks and wedge out near the venter.

The suture line of holotype MB.C.25445 has, at 12.0 mm phragmocone diameter, a rather wide external lobe with slightly diverging flanks and with slightly serrated asymmetrical prongs (Fig. 40B). On the flanks follow the similarly asymmetrical adventive and lateral lobes, both of which possess three little notches.

Discussion. Abichites shahriari differs from A. stoyanowi in the smaller size (reaching only about half of the conch diameter) and in the profile of the adult whorl, which is oval in A. shahriari but rectangular in A. stoyanowi. Abichites ariaeii has a similar whorl profile but differs in the much coarser ribs at comparable conch diameters. Abichites shahriari differs from A. terminalis...
in the wider whorl profile (ww/dm = 0.85 in A. shahriari but only 0.75 in A. terminalis) and the much coarser ornament.

Stratigraphical range. Top horizon of the *Paratirolites* Limestone (*Arasella minuta* Zone).

Abichites terminalis sp. nov. (Fig. 41)

Derivation of name. From Latin *terminalis* = belonging to the boundary, because of its occurrence at the extinction horizon.

Holotype. MB.C.25447 (Fig. 41A).

Type locality and horizon. Ali Bashi P section; uppermost horizon of the *Paratirolites* Limestone (*Arasella minuta* Zone).

Diagnosis. *Abichites* with a conch reaching 20 mm dm. Subadult and adult stage with oval, weakly compressed whorl cross section and rounded venter; very weak midflank riblets. Adult stage with oval and weakly compressed whorl cross section (ww/wh = 0.75–0.80) and rounded venter; extremely faint riblets on the flanks. Prongs of the external lobe simple; A and L lobes rounded with very small notches.

Description. Holotype MB.C.25447 is an incomplete specimen with 11 mm diameter; it is subevolute with a weakly compressed oval whorl profile (uw/dm = 0.37; ww/wh = 0.76) and a rounded venter (Fig. 41A). The chambered portion of the specimen displays shallow straight riblets on the flank, while the body chamber appears to be nearly smooth.

The suture line of the holotype has, at 3 mm whorl height (corresponding to a phragmocone diameter of about 9 mm), a slightly pouched external lobe with nearly parallel flanks (Fig. 41B); the prongs of the external lobe are narrow and simple. Both the adventive and the lateral lobe are slightly asymmetrical; they possess a very weak serration at the bases.

Remarks. *Abichites terminalis* differs from *A. shahriari* in the narrower, more compressed whorl profile and the much weaker ornament in the subadult stage.

Stratigraphical range. Top horizon of the *Paratirolites* Limestone (*Arasella minuta* Zone).

Stoyanowites Korn, 2014

Type species. *Paratirolites Dieneri* Stoyanow, 1910.

Included species. *Stoyanowites aspinosus* sp. nov. (North-west Iran); *Paratirolites dieneri* Stoyanow, 1910 (Azerbaijan).

Diagnosis. Representatives of the family Dzhulfitidae with moderately large conch; maximum adult diameters are between 80 and 95 mm. Subadult and adult stages with rectangular and compressed whorl cross section. Subadult stage with weak to moderately strong lateral ribs; adult stage with weak ornament. Suture line with an external lobe that is much shorter than the adventive lobe.

Remarks. *Stoyanowites* is separated by most of the other genera of the family Dzhulfitidae by the short external lobe, which does not reach the depth of the adventive and lateral lobes. Only *Dzhulfites* is similar in this respect, but this genus is characterized by coarse ventrolateral nodes absent in *Stoyanowites*.

Stoyanowites dieneri (Stoyanow, 1910) (Fig. 42)

1910 *Paratirolites dieneri* Stoyanow: 83, pl. 8, fig. 2.
1934 *Paratirolites dieneri* Stoyanow; Spath: 366, text-fig. 125e.
1965 *Paratirolites dieneri* Stoyanow; Shevyrev: 178, pl. 23, figs 2, 3.
1968 *Paratirolites dieneri* Stoyanow; Shevyrev: 93, pl. 3, figs 2, 3.
1973 *Paratirolites mojisovicsi* Stoyanow; Teichert & Kummel in Teichert et al.: pl. 7, fig. 1.
2014b *Stoyanowites dieneri* (Stoyanow); Korn in Ghaderi et al., text-fig. 7F.

Lectotype. The specimen figured by Stoyanow (1910, pl. 8, fig. 2).
Type locality and horizon. Dorasham section; *Paratirolites* Limestone.

Diagnosis. *Stoyanowites* with a conch reaching 95 mm dm. Subadult stage with oval, weakly compressed whorl cross section (ww/wh = 0.80) and rounded venter; 16 fine ribs forming weak and rounded dorsolateral and ventrolateral nodes. Adult stage with parallel flanks and weakly compressed whorl cross section (ww/wh = 0.60–0.70), rounded venter and subangular ventrolateral shoulder; weak dorsolateral nodes. Prongs of the external lobe bifid; altogether 10–16 notches of the E, A and L lobes; external lobe shorter than adventive lobe.

Description. Specimen MB.C.25451 (Aras Valley, float) is a slightly deformed and weathered specimen, but still shows a number of conch, ornament and suture details (Fig. 42A). It has a conch diameter of 57 mm and half of the last whorl belongs to the body chamber. The conch is extremely discoidal (ww/dm = 0.21) with a wide umbilicus (uw/dm = 0.49) and a strongly compressed whorl cross section (ww/wh = 0.49). The flattened flanks are parallel and are separated from the flattened venter by an angular margin. Three stages of the ornament can be separated: (1) wide-standing rounded ribs in the juvenile stage; (2) predominance of weak ventrolateral nodes in the subadult stage; and (3) coupled dorsolateral and ventrolateral riblets, the latter being coarser, on the body chamber.

The suture line of specimen MB.C.25451 (13 mm wh, corresponding to a phragmocone diameter of 38 mm) shows a rather small external lobe with subparallel flanks; the prongs are parallel sided and end in a finely serrated base (Fig. 42B). The depth of the external lobe reaches only two-thirds of the adventive lobe; these lobes are separated by a narrowly rounded ventrolateral saddle. Both the adventive lobe and the lateral lobe are parallel sided; the adventive lobe is the wider of the two and possesses seven small notches; the lateral lobe has three notches.

Remarks. *Stoyanowites dieneri* differs from *S. aspinosus* in the presence of dorsolateral nodes and the lack of dense ribs on the body chamber.

Stratigraphical range. *Paratirolites* Limestone; 2.30 to 1.65 m below the extinction horizon (*Stoyanowites dieneri Zone and Alibashites mojsisovici Zone*).

Stoyanowites aspinosus sp. nov. (Fig. 43)

Derivation of name. From Latin *spinosus* = spiny, because of the lack of dorsolateral and ventrolateral spines.

Holotype. MB.C.25458 (Fig. 43A).

Type locality and horizon. Aras Valley section; 0.95 m below the top of the *Paratirolites* Limestone (*Abichites stoyanowi* Zone).

Diagnosis. *Stoyanowites* with a conch reaching 80 mm dm. Subadult stage with oval, weakly compressed whorl cross section (ww/wh = 0.70) and rounded venter; 15 narrow and rounded ribs on the flanks. Adult stage with oval and weakly compressed whorl cross section (ww/wh = 0.60) and moderately wide umbilicus (uw/dm = 0.40–0.45), rounded venter and rounded ventrolateral shoulder; very weak ribs on the flanks, coarsest in the ventrolateral area. Prongs of the external lobe bifid; 8–9 notches of the E, A and L lobes.

Description. Holotype MB.C.25458 (Aras Valley, −0.95 m) is a slightly weathered specimen with 50 mm conch diameter; one-quarter of the last preserved volution belongs to the body chamber (Fig. 43A). A little more
than one volution of the phragmocone can be studied. The conch is extremely discoidal and subevolute in the last volution (ww/dm = 0.18; uw/dm = 0.44) and possesses, at the largest diameter, an oval, laterally compressed whorl cross section (ww/wh = 0.63). The coiling rate is moderate (WER = 1.86). A change in the ornament can be observed on the last volution. While the penultimate volution displays straight and rounded riblets arranged in wide distances (five riblets per half volution), the last portion of the phragmocone and the body chamber show a conspicuous tendency toward more densely spaced, sharp and concave riblets. Furthermore the riblets on the penultimate volution show low dorsolateral and ventrolateral nodes, which are not present on the last volution.

The suture line of holotype MB.C.25458 (drawn at 12.5 mm wh, corresponding to a phragmocone diameter of 37 mm) is remarkable because it differs strikingly from most of the other paratirolitid ammonoids. It possesses a parallel-sided, short external lobe with bifid prongs. The adventive lobe is very small and bifid; it reaches only half the depth of the external lobe (Fig. 43C). The lateral lobe is almost twice as wide and deep as the adventive lobe and possesses five secondary notches.

Paratype MB.C.25459 is a somewhat corroded specimen with 64 mm conch diameter (Fig. 43B). Half of the last volution belongs to the body chamber, which shows the transformation from the rounded venter to the flat and slightly concave shape of the venter, then separated by an angular margin from the flattened flanks. The body chamber shows also the changes in the ornament from rather coarse ribs ending in ventrolateral nodes to much finer, densely arranged ribs, which extend with a forward bending on the flank.

The suture line of the smaller paratype MB.C.25460 (Aras Valley, float; drawn at 9 mm wh, corresponding to a phragmocone diameter of 27 mm) has a similar outline (Fig. 43D). Its external lobe is very short and reaches only half the depth of the adventive lobe. Adventive and lateral lobes show the same depth, but the adventive lobe is narrower and is bifid, while the lateral lobe possesses four notches.

Remarks. *Stoyanowites aspinosus* differs from *S. dieneri* in the absence of dorsolateral nodes and the presence of densely spaced curved riblets on the body chamber.

Stratigraphical range. *Paratirolites* Limestone; 1.55 to 0.95 m below the extinction horizon (upper part of the *Stoyanowites dieneri* Zone and *Alibashites mojsisovici* Zone).

Family **Xenodiscidae** Frech, 1902

Included genera. *Arasella* Korn, 2014; *Iranites* Teichert & Kummel, 1973; *Phisonites* Shevyrev, 1965; *Shevyrevites* Teichert & Kummel, 1973; *Xenaspis* Waagen, 1879; *Xenodiscus* Waagen, 1879.

Figure 43. *Stoyanowites aspinosus* sp. nov. **A, B,** lateral and dorsal views; **A,** holotype, MB.C.25458, Aras Valley, −0.95 m; **B,** paratype, MB.C.25459, Ali Bashi N, −1.50 m. **C, D,** suture lines; **C,** holotype, MB.C.25458, at 12.5 mm wh; **D,** paratype, MB.C.25460, Ali Bashi N, float, at 9.0 mm wh. **E,** whorl cross section proportions. Scale bars: **A, B** = 5 mm; **C, D** = 2 mm.
Diagnosis. Representatives of the superfamily Xenodiscoidea with small to moderate-sized conch, in which the ontogeny is usually simple with similar juvenile, subadult and adult stages. Suture line with unserrated or weakly serrated, short but rather wide external lobe; adventive, lateral and umbilical lobe often multidentate; some species with a simplified suture line without serrations.

Genus Arasella Korn, 2014

Type species. *Sinoceltites? minutus* Zakharov, 1983.

Remarks. The monospecific genus *Arasella* is a somewhat problematical because of its very simple suture line; an unambiguous attribution to a distinct family is therefore difficult. The shape of the external lobe speaks for placing it in the family Xenodiscidae rather than the Dzhulfitidae. The shape of the conch and the sculpture are similar to *Shevyrevites* from the lower part of the Changhsingian, but this genus has multidentate adventive and lateral lobes.

Arasella minuta (Zakharov, 1983)
(Fig. 44)

1983 *Sinoceltites? minutus* Zakharov: 153, pl. 15, fig. 1, 2.
2014 *Arasella minuta* (Zakharov); Korn in Ghaderi et al.: text-fig. 71.

Holotype. BPI 4/813; illustrated by Zakharov (1983, pl. 15, fig. 1).

Type locality and horizon. Akhura (Azerbaijan); probably top of the *Paratirolites* Limestone.

Diagnosis. *Arasella* with a conch reaching 35 mm dm. Subadult and adult stage with circular whorl cross section (ww/wh = 0.85–1.05) and rounded venter; 20–22 sharp ribs on the flanks. External lobe with V-shaped prongs; adventive and lateral lobes broadly rounded.

Description. Specimen MB.C.25462 (Ali Bashi N, −0.10 m) is the best-preserved specimen available for study (Fig. 44A). It has 30 mm conch diameter and gives insight about two whorls, in which the conch shape and ornament does not change. The specimen is extremely discoidal with a wide umbilicus (ww/dm = 0.25; uw/dm = 0.46) and possesses an oval, weakly compressed whorl profile (ww/wh = 0.78) with broadly rounded venter. There are about 24 sharp ribs per volution; they are straight on the flanks and turn forward in the ventrolateral area and then suddenly weaken. The venter is free of ribs.

Specimen MB.C.25463 (Ali Bashi N, −0.30 m) has a conch diameter of 22 mm, but only one volution, half of which belongs to the body chamber, can be studied (Fig. 44B). The conch is extremely discoidal and evolute (ww/dm = 0.29; uw/dm = 0.45) with a circular whorl cross section (ww/wh = 1.02). The ornament consists of about 20 sharp ribs on the flank; some of these ribs end in short ventrolateral spines. The venter is smooth.

The suture line of specimen MB.C.25463 (drawn at 5.6 mm wh) shows a small and short external lobe, which reaches only half the depth of the adventive lobe (Fig. 44C). The prongs of the external lobe are V-shaped. The adventive lobe is the dominant sutural element; it is

![Figure 44. Arasella minuta (Zakharov, 1983). A, B, lateral and dorsal views; A, MB.C.25462, Aras Valley, −0.10 m; B, MB.C.25463, Ali Bashi N, −0.30 m. C, suture line at 5.6 mm wh, MB.C.25463. Scale bars = 2 mm.](attachment://image)
nearly symmetrical and broadly rounded, while the smaller lateral lobe is more asymmetrical and narrowly rounded.

Remarks. *Arasella minuta* can easily be separated from all other ammonoids from the *Paratirolites* Limestone because of its very simple suture line with rounded adventive and lateral lobes and the short external lobe.

Stratigraphical range. *Paratirolites* Limestone; from 0.30 m below up to the extinction horizon (*Arasella minuta* Zone).

Conclusions

The region of Julfa (East Azerbaijan, Iran) and Dzhulfà (Nakhichevan, Azerbaijan) is one of only a few regions worldwide in which fossiliferous Late Permian sedimentary successions with diverse ammonoid assemblages are exposed. In this region, the latest Permian is represented by the 4 to 5 m thick *Paratirolites* Limestone, a deep shelf sediment that spans an interval of about 1.5 million years before the end-Permian mass extinction (Schobben et al. 2015).

From the outcrops in the Aras Valley and the Ali Bashi Mountains, we collected about 230 specimens with detailed in situ documentation; they belong to the genera *Neoagamides*, *Pseudogastrioceras*, *Dzhulfites*, *Paratirolites*, *Julfotirolites* gen. nov., *Alibashites* gen. nov., *Abichites*, *Stoyanowites* and *Arasella*. The succession of ammonoid species within the *Paratirolites* Limestone allows for a subdivision of the rock unit into eight biozones (defined by the first occurrence of the zonal index species), in ascending order: *Dzhulfites zalensis* Zone, *Paratirolites trapezoidalis* Zone, *Paratirolites kitiili* Zone, *Stoyanowites dieneri* Zone, *Alibashites mojissovisci* Zone, *Abichites abichi* Zone, *Abichites stoyanowi* Zone and *Arasella minuta* Zone. With this fine resolution, the ammonoid stratigraphy matches the precision of the conodont stratigraphy (Kozur 2005, 2007; Shen & Mei 2010; Ghaderi et al. 2014b).

The material described here is, after the time-equivalent Chinese occurrences, the most diverse assemblage known from the critical interval before the end-Permian mass extinction (Schobben et al. 2015). From the outcrops in the Aras Valley and the Ali Bashi Mountains, we collected about 230 specimens with detailed in situ documentation; they belong to the genera *Neoagamides*, *Pseudogastrioceras*, *Dzhulfites*, *Paratirolites*, *Julfotirolites* gen. nov., *Alibashites* gen. nov., *Abichites*, *Stoyanowites* and *Arasella*. The succession of ammonoid species within the *Paratirolites* Limestone allows for a subdivision of the rock unit into eight biozones (defined by the first occurrence of the zonal index species), in ascending order: *Dzhulfites zalensis* Zone, *Paratirolites trapezoidalis* Zone, *Paratirolites kitiili* Zone, *Stoyanowites dieneri* Zone, *Alibashites mojissovisci* Zone, *Abichites abichi* Zone, *Abichites stoyanowi* Zone and *Arasella minuta* Zone. With this fine resolution, the ammonoid stratigraphy matches the precision of the conodont stratigraphy (Kozur 2005, 2007; Shen & Mei 2010; Ghaderi et al. 2014b).

The region of Julfa (East Azerbaijan, Iran) and Dzhulfà (Nakhichevan, Azerbaijan) is one of only a few regions worldwide in which fossiliferous Late Permian sedimentary successions with diverse ammonoid assemblages are exposed. In this region, the latest Permian is represented by the 4 to 5 m thick *Paratirolites* Limestone, a deep shelf sediment that spans an interval of about 1.5 million years before the end-Permian mass extinction (Schobben et al. 2015). From the outcrops in the Aras Valley and the Ali Bashi Mountains, we collected about 230 specimens with detailed in situ documentation; they belong to the genera *Neoagamides*, *Pseudogastrioceras*, *Dzhulfites*, *Paratirolites*, *Julfotirolites* gen. nov., *Alibashites* gen. nov., *Abichites*, *Stoyanowites* and *Arasella*. The succession of ammonoid species within the *Paratirolites* Limestone allows for a subdivision of the rock unit into eight biozones (defined by the first occurrence of the zonal index species), in ascending order: *Dzhulfites zalensis* Zone, *Paratirolites trapezoidalis* Zone, *Paratirolites kitiili* Zone, *Stoyanowites dieneri* Zone, *Alibashites mojissovisci* Zone, *Abichites abichi* Zone, *Abichites stoyanowi* Zone and *Arasella minuta* Zone. With this fine resolution, the ammonoid stratigraphy matches the precision of the conodont stratigraphy (Kozur 2005, 2007; Shen & Mei 2010; Ghaderi et al. 2014b).

The material described here is, after the time-equivalent Chinese occurrences, the most diverse assemblage known from the critical interval before the end-Permian mass extinction. It is striking that the two regions (South China and Transcaucasan/North-west Iran) differ significantly in the composition of their ammonoid assemblages. While the family Dzhulfitidae (with the genera *Dzhulfites*, *Paratirolites*, *Julfotirolites*, *Alibashites*, *Abichites*, *Stoyanowites*) is absent in China, the North-west Iranian occurrences did not yield other ceratitid ammonoid families (e.g. *Pseudozirotliitidae*, *Pleuronodoceratidae*) characteristic in China.

The ammonoid species richness varies within the investigated *Paratirolites* Limestone; the richest interval is in the upper part of the rock unit, followed by a decrease in diversity towards the horizon marking the end-Permian mass extinction.

Acknowledgements

We want to express our thanks to Adel Najafzadeh, Mehdi Abassi and Hossein Hobbi (Aras Free Zone Office, Julfa) for their support with the field sessions. Dieter Weyer (Berlin) is acknowledged for providing ammonoid material from Zal. We further acknowledge the intensive preparation efforts performed by Evelin Stenzel and Markus Brinkmann (Berlin), and the photography of the specimens by Jonas Jahn, Sebastian Sladeczek, Jana Suchocka and Sabine Zachert (Berlin). Many thanks also to Sonny A. Walton (Berlin) for checking the English. DK, LL and MS acknowledge financial support which was provided by the Deutsche Forschungsgemeinschaft (DFG; projects Ko1829/12-1 and Ko2011/8-1). We gratefully acknowledge the constructive peer reviews by Arnaud Brayard (Dijon) and Masayuki Ehiro (Sendai).

Supplemental material

Supplemental material for this article can be accessed here at http://dx.doi.org/10.1080/14772019.2015.1119211

References

