A Quotient OF Topological Fundamental Groups

Hamid Torabi

Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, Iran
hamid.torabi86@yahoo.com

Abstract

In this talk, we discuss on the topological properties of a quotient of topological fundamental groups via a new subgroups of fundamental group, namely small generated subgroup, constructed by small loops which presence of them is equivalent to absence of homotopically Hausdorffness properties.

1 Introduction

In 2002, a work of Biss initiated the development of a theory in which the familiar fundamental group $\pi_1(X, x)$ of a topological space X becomes a topological space denoted by $\pi_1^{top}(X, x)$ by endowing it with the quotient topology inherited from the path components of based loops in X with the compact-open topology. Among other things, Biss claimed that $\pi_1^{top}(X, x)$ is a topological group. However, there is a gap in his proof. Brazas discovered some interesting counterexamples for continuity of multiplication in $\pi_1^{top}(X, x)$ (for more details, see [1]).

In fact, $\pi_1^{top}(X, x)$ was a quasitopological group, that is, a group with a topology such that inversion and all translations are continuous. Although, Brazas by removing some open subsets of $\pi_1^{top}(X, x)$ make it a topological group, but it is an interesting question that when these two topologies are equivalent. In the sequel, by introducing some spaces, we give a partial answer to this question.

If a space X is not homotopically Hausdorff, then there exist $x \in X$ and a nontrivial loop in X based at x which is homotopic to a loop in every neighborhood

2010 Mathematics Subject Classification. Primary 20F38; Secondary 20k45 , 20F34.
Key words and phrases. Topological fundamental group, SG subgroup, Semi-locally small generated space.
U of x. Z. Virk [4] called these loops as small loops and showed that for every \(x \in X \) they form a subgroup of \(\pi_1(X, x) \) which is named small loop group and denoted by \(\pi_1^s(X, x) \). In general, various points of X have different small loop groups and hence in order to have a subgroup independent of the base point, Virk [4] introduced the SG (small generated) subgroup, denoted by \(\pi_1^s(X, x) \), as the subgroup generated by the following set

\[
\{ [\alpha * \beta * \alpha^{-1}] | [\beta] \in \pi_1^s(X, x), \alpha \in P(X, x) \},
\]

where \(P(X, x) \) is the space of all paths from \(I \) into \(X \) with initial point \(x \) (see [3] for further details).

Throughout this article, all the homotopies between two paths are relative to end points, \(X \) is a topological space with the base point \(x \in X \).

2 Main results

Definition 2.1. ([4]) The small loop group \(\pi_1^s(X, x) \) of \((X, x) \) is the subgroup of the fundamental group \(\pi_1(X, x) \) consisting of all homotopy classes of small loops. The SG subgroup of \(\pi_1(X, x) \), denoted by \(\pi_1^s(X, x) \), is the subgroup generated by the following set

\[
\{ [\alpha * \beta * \alpha^{-1}] | [\beta] \in \pi_1^s(X, x), \alpha \in P(X, x) \},
\]

where \(P(X, x) \) is the space of all paths in \(X \) with initial point \(x \).

Definition 2.2. We call a space \(X \) semi-locally small generated if and only if for each \(x \in X \) there exists an open neighborhood \(U \) of \(x \) such that \(i_*\pi_1(U, x) \leq \pi_1^s(X, x) \), where \(i : U \hookrightarrow X \) is the inclusion map.

Theorem 2.3. If \((X, x) \) is a pointed topological space and \(U \) is an open neighborhood of the identity element \([e_x] \in \pi_1^{top}(X, x) \), then \(\pi_1^s(X, x) \subseteq U \).

Corollary 2.4. Every nonempty open or closed subset of \(\pi_1^{top}(X, x) \) is a disjoint union of some cosets of \(\pi_1^s(X, x) \).

Proof. Since \(\pi_1^{top}(X, x) \) is the disjoint union of all cosets of \(\pi_1^s(X, x) \), it suffices to prove the theorem for open subsets of \(\pi_1^{top}(X, x) \). For this, let \(V \) be a nonempty open subset of \(\pi_1^{top}(X, x) \) and \(g \in V \). Then \(g^{-1}V \) is an open subset of \(\pi_1^{top}(X, x) \) containing \([e_x] \) and hence by Theorem 2.3, \(\pi_1^s(X, x) \subseteq g^{-1}V \) which implies that \(g\pi_1^s(X, x) \subseteq V \). Hence \(V = \bigcup_{g \in V} g\pi_1^s(X, x) \).

The natural quotient map \(p : \pi_1^{top}(X, x) \rightarrow \pi_1^s(X, x) \) induce the quotient topology on the algebraic quotient group \(\pi_1^s(X, x) / \pi_1^s(X, x) \) which we denote it by \((\pi_1^s(X, x))^{top} \). By the previous corollary we can prove that:
Theorem 2.5. For a topological space X, $\pi_1^{q\text{top}}(X, x)$ is a topological group if and only if $\left(\frac{\pi_1(X, x)}{\pi_1^y(X, x)} \right)^{\text{top}}$ is a topological group.

Theorem 2.6. For a topological space X, $\pi_1^{q\text{top}}(X, x)$ is an indiscrete topological group if and only if $\left(\frac{\pi_1(X, x)}{\pi_1^y(X, x)} \right)^{\text{top}}$ is an indiscrete topological group.

Theorem 2.7. For a topological space X, $\left(\frac{\pi_1(X, x)}{\pi_1^y(X, x)} \right)^{\text{top}}$ is a discrete topological group if and only if X is semi-locally small generated.

Corollary 2.8. If X is semi-locally small generated, then $\pi_1^{q\text{top}}(X, x)$ is a topological group.

By the following example, we use Theorem 2.5 to find a non semi-locally small generated space with topological fundamental group as a topological group.

Example 2.9. Let HA be the Harmonic Archipelago space and let $X = [0, 1] \cup \{1/n\} \times HA_{n+1}$, where HA_n is scaled Harmonic Archipelago by the scaler $1/n$. $\pi_1^{q\text{top}}(X, x)$ is topological group since $\left(\frac{\pi_1(X, x)}{\pi_1^y(X, x)} \right)^{\text{top}}$ is a topological group.

References

