1 Introduction

Axial movement of a cylinder in the case of stagnation-point flow and heat transfer has many applications in manufacturing processes. For example, the cooling processes or cleaning processes of punching instruments and drilling tools are the sample of industrial applications. The following picture may best describe how a radial flow can be arranged in order to coat the surface of a cylinder with any kind of protection material. This coating can be considered as protection against erosion or for the purpose of insulation. The flow on the cylinder is coming from all directions.

Existing solutions of the problem of axisymmetric stagnation-point flow and heat transfer on either a cylinder or a flat plate are for viscous, incompressible fluid. These studies started by Hie- menz [1] who obtained an exact solution of the Navier–Stokes equations governing the two-dimensional stagnation-point flow on a flat plate and went on by Homann [2] which was an analogous axisymmetric study, and by Howarth [3] and Davey [4] where results for stagnation flow against a flat plate for axisymmetric cases were presented. Wang [5,6] was first to find an exact solution for the problem of axisymmetric stagnation flow on an infinite stationary circular cylinder and continued by Gorla [7–11] which are a series of steady and unsteady flows and heat transfer over a circular cylinder in the vicinity of the stagnation point for the cases of constant axial movement and the special case of axial harmonic motion of a nonrotating cylinder. Cunning et al. [12] have considered the stagnation flow problem on a rotating circular cylinder with constant angular velocity, and Grosch et al. [13] and Takhar et al. [14] who studied special cases of unsteady viscous flow on an infinite circular cylinder. The more recent works of the same type are the ones by Saleh and Rahimi [15] and Rahimi and Saleh [16,17] which are exact solution studies of a stagnation-point flow and heat transfer on a circular cylinder with time-dependent axial and rotational movements, and studies by Shokrgozar and Rahimi [18–22] are exact solutions of stagnation-point flow and heat transfer but on a flat plate. Fluid flow and Mixed convection transport from a Plate in a rolling and extrusion process have been studied by Karwe and Jaluria [23]; in this research, the heat transfer arising due to the movement of a continuous heated plate in processes such as hot rolling and hot extrusion has been studied. Kang et al. [24] have experimentally investigated the convective cooling of a heated continuously moving material. They considered the effects of thermal buoyancy, material speed, and properties of the material and the fluid on the thermal field. Forced convection heat transfer from a continuously moving heated cylindrical rod in materials processing has been considered by Choudhury and Jaluria [25]. They presented numerical solutions to the vorticity, temperature, and stream function equations in cylindrical coordinate system and another numerical simulation of continuously moving flat sheet has been presented by Karwe and Jaluria [26]. Recently, the results of axisymmetric stagnation flow of incompressible fluid on a heated vertical plate with surface slip and annular axisymmetric stagnation flow on a moving cylinder have been reported by Hong and Wang [27,28]. Useful information in the area of stagnation point flow in the CVD reactor has been experimentally extracted by Memon and Jaluria [29]. This experimental research will be used to understand the buoyancy induced and momentum driven flow structure encountered in an impinging jet CVD reactor.

Magnetohydrodynamic stagnation point flow of second grade fluid over a permeable stretching cylinder has been studied by Hayat et al. [30]. They used suitable transformations to convert nonlinear partial differential equations into the nonlinear ordinary differential equations. In this research, variation of different parameters on the velocity, temperature, and concentration profiles have been shown graphically. They also computed numerical values of skin friction coefficient, Nusselt number and Sherwood number. An adaptive mesh strategy for high compressible flows based on nodal re-allocation has been presented by Bono and Awruch [31]. The development of a simple and computationally effective methodology to adapt finite-element meshes to simulate compressible flows with strong shock waves was the main objective of their work. The nodal re-allocation adaptivity, used in this
research, starts from an initial mesh and the grids are concentrated in the desired region without any grid tangling.

Some existing compressible flow studies but in the stagnation region of bodies and by using boundary layer equations include the study by Subhashini and Nath [32] as well as Kumari and Nath [33,34], which are in the stagnation region of a body, and work of Katz [35] as well as Afzal and Ahmad [36], Libby [37], and Gersten et al. [38], which are all general studies in the stagnation region of a body. Existing compressible flow studies are all general studies in the stagnation region of a body and by using boundary layer equations. Stagnation point flow and heat transfer of a viscous, compressible fluid on a flat plate have been investigated by Mozayyeni and Rahimi [39,40].

The only study that deals with stagnation-point flow and heat transfer of a viscous fluid, with temperature-dependent density on a cylinder is by Mohammadiun and Rahimi [41]. They obtained an exact solution of the Navier–Stokes equations for the case of a stationary cylinder.

The problem of stagnation-point flow and heat transfer for the case of temperature-dependent density when the cylinder is moving axially has not been considered so far. In this research work, solution of the problem of axisymmetric stagnation-point flow and heat transfer is presented for the case of compressible, viscous fluid on a cylinder when it is moving axially with a constant velocity. An exact solution of the Navier–Stokes equations and the energy equation is obtained. The self-similar solution is reached by introducing the appropriate similarity variables. Sample distributions of shear stress and temperature fields at Reynolds numbers ranging from 0.1 to 1000 are presented for different values of Prandtl numbers and fluid compressibility factor. The compressibility factor and Mach number have been considered in the ranges of 0–0.09 and 0.01–0.1, respectively, and Prandtl number from 0.1 to 1. Because of these restrictions, the radial velocities approaching the cylinder should be assumed in the range of 3.4 m/s to 34 m/s.

2 Problem Formulation

Flow and its schematic mechanism is considered in cylindrical coordinates (r, φ, z) with corresponding velocity components (u, v, w); see Figs. 1 and 2. We consider the steady-state laminar flow of a viscous, compressible fluid along with heat transfer in the neighborhood of an axisymmetric stagnation point of an infinite circular cylinder moving with a constant axial velocity. An external axisymmetric radial stagnation flow of strain rate $\dot{\kappa}$ impinges on the cylinder of radius a, centered at $r = 0$. To introduce the strain rate $\dot{\kappa}$, it must be referred to solution of the inviscid flow at the so far distance from the cylinder that it is obtained by using the continuity equation as follows. Considering Fig. 3:

\[
\begin{align*}
\frac{\partial (\rho u)}{\partial r} + \frac{\rho u}{r} + \frac{\partial (\rho w)}{\partial z} &= 0 \\
\end{align*}
\]
In these equations \(P, \rho, v, \) and \(T \) are the fluid pressure, density, kinematic viscosity, and temperature. The boundary conditions for velocity field are

\[
\begin{align*}
r & = a: \quad u = 0, \quad w = V \\
r & \to \infty: \quad u = -k(r - a^2/r), \quad w = 2kz
\end{align*}
\]

(7)

(8)

In which, Eq. (7) is the no-slip condition on the cylinder wall and \(V \) is the axial velocity of the cylinder. Relations (8) show that the viscous flow solution approaches, in a manner analogous to the Hiemenz flow, the potential flow solution as \(r \to \infty\), Ref. [12].

For the temperature field we have

\[
\begin{align*}
r & = a: \quad T = T_w = \text{const} \tan \theta, \quad \text{for defined wall temperature (Dirichlet c.c)} \\
r & \to \infty: \quad T \to T_\infty
\end{align*}
\]

(9)

Transformations (10) satisfy Eq. (3) automatically and their insertion into Eqs. (4) and (5) yields a coupled system of differential equations in terms of \(f(\eta), H(\eta) \), and an expression for the pressure

\[
\begin{align*}
\Gamma \{ c^3 f'''' + 3 c^2 f''' + c^2 f'' f' + (c')^2 c f' \} + c f'' f' + c f'' + c f' \\
+ \Re \left[1 + c f' f' + c f'' - c (f')^2 \right] & = 0 \\
\Gamma \left(c^2 H'' + c c f' H' \right) + c H' + \Re(f H' - f' H) & = 0
\end{align*}
\]

(12)

(13)

\[
p - p_0 = \int_0^\eta \left[1 - \frac{1}{2} \frac{f'}{f} - \frac{f''}{f} \frac{1}{\Re(f')} \right] d\eta - 2 \left(\frac{\eta}{a} \right)^2
\]

(14)

In these equations, \(\eta(\eta) = \rho(\eta)/\rho_\infty \), \(\Re = ka^2/2v \), \(\Gamma(\eta) = 1 + \int_0^\eta d\eta/c(\eta) \), and prime indicates differentiation with respect to \(\eta \). From conditions (7) and (8), the boundary conditions for Eqs. (12) and (13) are as follows:

\[
\begin{align*}
\eta & = 0: \quad f = 0, \quad f' = 0, \quad H = V c(0) \\
\eta & \to \infty: \quad f' = 1, \quad H = 0
\end{align*}
\]

(15)

To model the variation of density with respect to temperature, the following Boussinesq approximation is used assuming low Mach number flow:

\[
\rho \approx \rho_\infty \left[1 - \beta(T - T_\infty) \right] \Rightarrow \rho/\rho_\infty = c(\eta) = 1 - \beta(T - T_\infty)
\]

(16)

In the above relation, \(\rho_\infty \) and \(\beta \) are freestream density and compressibility factor, respectively. To transform the energy equation into a nondimensional form, we introduce

\[
\theta(\eta) = \begin{cases}
\frac{\eta}{a}, & \text{for the case of defined wall temperature} \\
\frac{\eta}{a q_w \gamma}, & \text{for the case of defined wall heat flux}
\end{cases}
\]

(17)
where \(\gamma = a q_w / 2k \) is used in figures and presented results.

Making use of Eqs. (10) and (17) the energy equation may be written as

\[
\frac{1}{\text{Re} \cdot \text{Pr}} \left[\Gamma (c^2 \vartheta' + cc' \vartheta') + c \vartheta' \right] + f \vartheta' = 0
\]

(18)

With boundary conditions as

\[
\eta = 0: \begin{cases} \theta = 1, \\ -\vartheta' [1 - \beta \left(\frac{a q_w}{2k} \right)] = 1, \end{cases} \quad \text{for the case of defined wall temperature}
\]

\[
\eta \to \infty: \quad \theta = 0, \quad \text{for both cases}
\]

The local Nusselt number is given by

\[
\text{Nu} = \frac{h a}{2k} = \begin{cases} -\vartheta'(0) c(0), & \text{for the case of defined wall temperature} \\ \frac{1}{\theta(0)}, & \text{for the case of defined heat flux} \end{cases}
\]

(19)

(20)

Because of \(c(\eta) \), Eqs. (12)–(14), and (18) are dependent. Note that for the case of incompressible fluid \(\rho(\eta) = \rho_\infty \), Eq. (12) is exactly reduced to the equation obtained by Wang in Ref. [5] for radial component of the velocity and also Eq. (18) reduces to the equation obtained by Gorla in Ref. [7], with consideration of starting value for the variable \(\eta \).

3 Shear Stress

Assuming the cylinder is infinite and considering that any one of the boundary conditions is not the function of \(z \)-axis, so the velocity profile of \(u \) cannot be a function of \(z \); thus, \(u = u(r, \phi) \) in addition, due to an axial symmetry, \(\partial u / \partial \phi = 0 \Rightarrow u(r) \) for the shear stress on the surface of the cylinder is obtained from

\[
\sigma = \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \right)_{r=a}
\]

but

\[
\frac{\partial w}{\partial r} = \frac{\partial w}{\partial \eta} \frac{\partial \eta}{\partial r} = \left[2k f''(r) + \frac{H'(r)}{c(\eta)} - \frac{H(\eta)}{c(\eta)^2} \right] \frac{2r c(\eta)}{a \mu \eta}
\]

Since \(\eta = 0 \) at \(r = a \), then we have

\[
\sigma = \mu \left[2k f''(0) z + \frac{H'(0)}{c(0)} - \frac{H(0)}{c'(0)} \right] \frac{2 r c(0)}{a}
\]

(21)

(22)

As the governing equations show, considering compressibility effect causes the momentum equations and the energy equation to be coupled together which helps the designer to control the velocity gradient on the surface by varying this compressibility factor which eventually affects the shear stress.

Results of \(\sigma a / 2 \mu \) for different values of \(\text{Re} \) with \(\text{Pr} \) held constant and for different values of \(\text{Pr} \) with \(\text{Re} \) held constant are presented in Sec. 5.

4 Numerical Procedures

Equations (12)–(14), and (18) along with boundary conditions (15) and (19) are solved by using the fourth-order Runge–Kutta method along with shooting technique [42]. Using this method, the initial values are guessed and the integration is repeated until convergence is obtained. In these computations, the step size in \(\eta \)-direction is optimized and \(\Delta \eta = 0.001 \) and \(\eta_{\text{max}} = 15 \) are used throughout computations. The truncation error was set at \(1 \times 10^{-9} \). The obtained results \((H/V) \) are compared with reliable source [28] to examine the accuracy of numerical solution method. Comparison of dimensionless axial movement function \((H/V) \) and the normalized stream function \(\psi \) with the results from Ref. [28] has been done. All of the results have been extracted for the case of incompressible fluid \((\beta = 0) \). The results have been calculated for \((\tau = V/k a = 3) \) and in the case of stationary cylinder \((\tau = 0) \). In each case there is a good conformity between the presented results and the results from Ref. [28]. As expected when the cylinder moves axially, the symmetric stream lines are converted into skewed shape and the stagnation point of the fluid is moved down to negative values of \(\tau / a \).

5 Results and Discussion

In this section, the solution of the self-similar Eqs. (12), (13), and (18) along with the surface shear stresses for prescribed values of surface temperature and heat flux and at selected values of Reynolds and Prandtl numbers are presented. It should be noted the flow filed as drawn in Fig. 2 only pertains to regions beyond the boundary layer. Equations (12), (14), and (18) are the same as in Ref. [41] which is for a stationary cylinder. Meaning that the axial movement of the cylinder represented by \(H \) appears neither in the equation for the radial velocity \(f \) nor in the energy equation. Radial component of velocity will change with the modification of the radial momentum, but cylindrical axial velocity only causes the increase of the axial momentum and has no effect on the radial momentum. Therefore, cylindrical axial movement has no effect on the radial velocity component and also heat transfer.

As mentioned previously, stagnation-point flow can be used in cleaning of drills and different cutting tools, for example. In this application, the effect of surface shear stress plays a great role since removing the unwanted materials from tools surface has a direct relationship with its increase. Presented results show how the increase of compressibility of fluid produces a greater surface shear stress and also how with increase of surface temperature or heat flux the removal of the excess materials can take place easier.

5.1 Influence of Prandtl Number. Sample profiles of variation of dimensionless axial movement function \((H/V) \) against \(\eta \) for compressibility factor \(\beta = 0.0033 \) and for selected values of Prandtl numbers are presented in Fig. 4 as Dirichlet boundary condition and Fig. 5 as Neumann boundary condition. Constant wall temperature \(T_w = 500 \text{K} \), freestream temperature \(T_e = 300 \text{K} \),...
Reynolds number $Re = 1$ and constant wall heat flux index $\gamma = 100$, Reynolds number $Re = 10$ are used to extract these profiles, respectively. In each case as Prandtl number increases the depth of diffusion of defined function (H/V) increases which means that the axial component of the fluid velocity field for a specified axial velocity of the cylinder increases as Pr number increases and also this increase is larger when cylinder moves faster.

Effect of Prandtl number variation on dimensionless temperature θ for the case of constant wall temperature for compressibility factor $b = 0.0033$, $Re = 10$, $T_w = 500 K$, $T_1 = 300 K$, and $Tw = 500 K$ or $c = 10$ is shown in Fig. 6. As expected by increasing the Prandtl number, the depth of energy diffusion leads to reduction in the thermal boundary layer thickness and therefore the temperature gradient on the wall and local heat transfer coefficient increase. Same type of information can be extracted for the case of constant wall heat flux.

5.2 Influence of Compressibility Factor. The effects of changing compressibility factor on dimensionless axial movement function (H/V) against η for $T_w = 500 K$, $Pr = 1$ and Reynolds number $Re = 100$ are depicted in Fig. 7. For each value of

Reynolds number as the compressibility factor increases the fluid density decreases and this reduction in fluid density leads to reduction in the axial momentum which means that the axial component of the fluid velocity field for a specified axial velocity of the cylinder decreases as the compressibility factor increases and also this decrease is larger when the cylinder moves faster.

According to the relations $H(0) = V(0) \& c(0) = 1 - \beta(T_w - T_\infty)$, it is determined that by increasing the compressibility factor b, $c(0)$ decreases, and since V is fixed, $H(0)/V$ decrease too. This can be physically justified: by changing the compressibility factor, fluid density changes that it causes the modification of the dynamic viscosity of the fluid, and this variation in the dynamic viscosity leads to variation in the axial momentum diffusion.

It is worth mentioning that in each case the incompressible fluid produces the largest amount of change in axial component of the fluid velocity field. In each case the incompressible fluid ($b = 0$) has been compared with the results of Gorla [9], which shows suitable match. It is also noted that as Reynolds number increases, because of increasing the radial momentum of the fluid, the effect of cylinder movement on axial velocity component of the fluid decreases. Same type of information can be gathered for a specified cylinder surface heat flux.
Influence of compressibility factor on wall shear stress has been shown in Fig. 8. By comparing these profiles, it can be found that, because of increasing in the velocity boundary layer thickness and reduction in the velocity gradient on the surface, the incompressible fluid case produces the least amount of wall shear stress.

Effect of variations of compressibility factor on dimensionless temperature \(\theta (\eta) \) against \(\eta \) for \(T_w = 500 \text{ K}, \) Pr = 1.0, and selected value of Reynolds numbers are presented in Fig. 9. For \(\beta = 0, \) incompressible fluid, the result of Gorda [7] is extracted and it is interesting to note that as \(\beta \) increases the depth of the diffusion of the thermal boundary layer decreases. Same type of information can be gathered from Fig. 10 but for a specified cylinder surface heat flux.

5.3 Influence of Reynolds Number

Changes of wall shear stress versus wall temperature or wall heat flux are shown in Figs. 11 and 12 for different axial cylinder speed and selected values of Reynolds numbers. As can be seen from these figures, the absolute value of shear stress increases with Reynolds number, wall temperature, and wall heat flux or cylinder axial speed. In each case because of increasing the velocity gradient on the cylinder wall the shear stress increases.

Sample profiles of pressure function against \(g \) for the case of \(\text{Pr} = 0.7, T_w = 500 \text{ K}, \) \(\beta = 0.0033, \) and for selected values of Reynolds numbers are shown in Fig. 13. As expected, by increase of Reynolds number the depth of diffusion of fluid pressure increases.

Sample profiles of the \(f (g) \) function against \(g \) for compressibility factor, \(\beta = 0.0033, \) \(\text{Pr} = 0.7, \) constant wall temperature \(T_w = 300 \text{ K} \) and for selected values of Reynolds numbers are presented in Fig. 14 (same type of graph can be produced for the case of constant wall heat flux). Since the increase of Reynolds number causes the dynamic inertia forces to overcome the viscous forces, as expected like the behavior of the incompressible fluid, the depth of diffusion of the momentum increases. So as the Reynolds number increases, the radial velocity field increases, too.

5.4 Influence of Wall Temperature or Wall Heat Flux

Changes of wall shear stress versus Reynolds number for selected values of wall temperature are shown in Fig. 15 (same type graph can be presented for the case of wall heat flux) for defined axial cylinder speed. As it can be seen from this figure the absolute value of wall shear stress increases with the Reynolds number, wall temperature, or wall heat flux, because of increasing in the velocity gradient on the cylinder surface.

Finally, the variations of dimensionless axial movement function and its comparison with Wang’s results and the normalized stream functions have been represented in Figs. 16–18, respectively.
Fig. 12 Variation of shear stress against γ for selected values of Reynolds number at $V = 5$ m/s and $V = 10$ m/s, $Pr = 0.7$, $\beta = 0.0033$, and for selected values of Reynolds number.

Fig. 13 Variation of pressure function in terms of η at, $Pr = 0.7$, $T_w = 500$ K, $T'_c = 300$ K, $\beta = 0.0033$, and for different values of Reynolds numbers.

Fig. 14 Variation of f in terms of η at $T_w = 300$ K, $\beta = 0.0033$, and $Pr = 0.7$ for different values of Reynolds numbers.

Fig. 15 Variation of shear stress against Reynolds number at $V = 5$ m/s, $Pr = 0.7$, $\beta = 0.0033$, and for selected values of wall temperature.

Fig. 16 Variations of dimensionless axial movement function (H/V) in terms of η for $\beta = 0$ and for selected values of Reynolds number.

Fig. 17 The normalized stream function $\hat{\psi} = \psi/0.5k\alpha^2 = 2f(\eta)$ (z/α) with, $Re = 1$, $x = 0$. Fluid is injected from the outer cylinder at $\eta = 2$ toward the inner cylinder.
amount of this shear stress is the least for the case of incompressible fluid. The axial component of the fluid velocity is the largest amount of change in axial component of the fluid as Reynolds number or compressibility factor increases as the speed of this movement increases. The axial component of the fluid velocity field does not have any effect on the cylinder decreases as Reynolds number or compressibility factor increases and this decrease in all cases is larger when cylinder moves faster. It is also heat transfer in the vicinity of an axisymmetric stagnation-point flow on a cylinder, Int. J. Sci., 37(3), pp. 153–164.

