Non-linear Thermo-mechanical Bending Behavior of Thin and Moderately Thick Functionally Graded Sector Plates Using Dynamic Relaxation Method

M.E. Golmakani\(^*\), M. Kadkhodayan\(^b\)

\(^{a}\) Department of Mechanical Engineering, College of Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
\(^{b}\) Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

PAPER INFO

Paper history:
Received 31 May 2015
Received in revised form 23 May 2016
Accepted 02 June 2016

Keywords:
Non-linear Bending
Functionally Graded Materials
Sector Plate
Thermo-mechanical Behavior
Dynamic Relaxation Method

ABSTRACT

In this study, nonlinear bending of solid and annular functionally graded (FG) sector plates subjected to transverse mechanical loading and thermal gradient along the thickness direction is investigated. Material properties are varied continuously along the plate thickness according to power-law distribution of the volume fraction of the constituents. According to von-Karman relation for large deflections, the two set of highly coupled nonlinear equilibrium equations are derived based on both first order shear deformation theory (FSDT) and classical plate theory (CPT). The dynamic relaxation (DR) method in conjunction with the finite difference discretization technique is used to solve the nonlinear equilibrium equations. To demonstrate the efficiency and accuracy of the present solution, some comparison studies are carried out. Effects of material grading index, boundary conditions, sector angles, thickness-to-radius ratio and thermal gradient are studied in detail. Also, to consider the effect of shear deformation and nonlinearity on the results, some linear and nonlinear analyses are carried out based on both CPT and FSDT for different thickness-to-radius ratios and boundary conditions.

\[doi:10.5829/idosi.ije.2016.29.06c.00\]

1. INTRODUCTION

The sector plates combine light weight and high load-carrying capacity, economy and technological effectiveness, so they get extensive applications in all fields of engineering such as airplane, nuclear, aerospace and marine structures [1]. Because of the both theoretical interest and practical importance for the design purposes, some researchers have carried out linear analysis of isotropic and orthotropic sector plates [2-8]. The governing equations of sector plates undergoing moderately large deflections are more complicated than the governing equations of the rectangular plates and are not amenable to closed form or exact solutions and, finite element, finite difference etc., are used as a necessity [9]. In spite of being well established numerical methods, non-linear studies pertaining to isotropic sector plates are quite limited in extent [10-12]. Recently, the development of a new class of materials known as “functionally graded materials” (FGMs) in which the material properties change continuously in one or more directions consistent with a specific profile became significant. These non-homogeneous composite materials were first established by some researchers in Japan in 1984 [13]. FGMs are mainly manufactured by depositing ceramic layers on a metallic substrate or by high speed centrifugal casting [14]. Some studies have been considered static small deflection analysis of functionally graded circular and sector plates. Nosier and Fallah [15] reformulated the governing equations of the first-order shear deformation plate theory for FG circular plates into those describing the interior and edge-zone problems. They presented analytical solutions for axisymmetric and asymmetric bending behavior of functionally graded circular plates under mechanical and thermal loadings. Using a perturbation technique in conjunction with Fourier series method, Nosier and Fallah [16, 17] investigated the non-linear axisymmetric and asymmetric bending behavior of FG circular plates with various boundary conditions under...
mechanical and thermal loadings. By reformulating the governing equations of the first-order theory into those describing the interior and edge-zone problems of the plate, Nosier and Fallah [18] presented closed-form solutions for bending analysis of thermo-mechanical loaded FG circular sector plates with simply supported radial edges and various types of constraints for circular edges. Jomehzadeh et al. [19], Sahraee [20], Aghdam et al. [21] studied small deflection behavior of FG sector plate based on first order shear deformation theory (FSDT). Saidi et al. [22] decoupled the five highly coupled partial differential equations of FG solid sector plate under static loading using the boundary layer function and obtained analytical solutions for linear analysis of FG sector plates with various boundary conditions. This method is previously used by Nosier and coworkers [23, 24] for decoupling the highly coupled partial differential equations governing the small deflection of circular and sectoral plates. Using multi-term extended Kantorovich method, Mousavi and Tahani [25] analysed small deflection behavior of radially functionally graded (RFG) sector plates based on FSDT. Similar linear analysis is also conducted by Fereidoon et al. [26] for isotropic and RFG sector plates using the EKM and CPT. Until now, the various types of analytical solution methods have been applied for considering the linear bending and buckling analyses of FG plate [27-29]. Recently, authors [30-32] using the dynamic relaxation (DR) method together with the finite difference discretization technique investigated axisymmetric large deflection analysis of circular and annular FG plates/disks under thermo-mechanical loadings. But, according to the best knowledge of the authors, no work has been reported concerned with the large deflection thermoelasticity of moderately thick solid/annular functionally graded sector plates based on both CPT and FSDT. In the present paper, in order to fill this gap the linear and nonlinear bending formulation of moderately thick solid and annular FG sector plates under thermal and mechanical loadings are derived and solved based on both CPT and FSDT. Along this way, to consider the shear deformation effects, large deflection of FG sector plate has been analyzed for different thickness-to-radius ratios based on CPT and FSDT. The plate with various boundary conditions (simply supported and clamped) was subjected to uniform pressure loading and thermal gradient through the thickness. The DR method along with the finite difference discretization technique is employed to solve the equilibrium equations. Finally, in the parametric study the effects of material composition, thickness-to-radius ratio, shear deformation, boundary conditions and thermal gradient as well as the plate geometry parameters on the nonlinear thermoelastic response of the FGM plate are considered in detail. Furthermore, some studies are carried out to consider the effect of various parameters on the differences between the linear and nonlinear bending behaviors of FG sector plates based on CPT and FSDT.

2. GOVERNING EQUATIONS

Elastic solid and annular FG sector plates with the thickness, sector angle, inner and outer radiuses of h, α, r_i and r_o, respectively, subjected to a transverse uniform loading q and thermal gradient ΔT through the thickness are considered here. The geometry, loading and coordinate system of the solid and annular FG sector plates are shown in Figure 1(a, b), respectively. Based on the FSDT assumptions, displacement field in polar coordinates can be defined as:

$$U(r,\theta,z) = u(r,\theta) + z\phi(r,\theta),$$
$$V(r,\theta,z) = v(r,\theta) + z\psi(r,\theta),$$
$$W(r,\theta,z) = w(r,\theta),$$

where U, V and W are displacement fields while u, v and w are displacement components of the mid-surface in the r, θ and z directions, respectively. Moreover, ϕ and ψ are rotations of tangents with respect to the middle surface. Substituting Equation (1) into the von-Karman strain-displacement relations gives the following expressions [12]:

$$(\varepsilon_r^0,\varepsilon_{\theta r}^0,\varepsilon_{rr}^0,\varepsilon_{\theta\theta}^0,\varepsilon_{rz}^0,\varepsilon_{zr}^0,\varepsilon_{z\theta}^0,\varepsilon_{r\theta}^0)$$

are the membrane strains, and $(K_r,K_\theta,K_{r\theta})$ are the flexural (bending) strains, known as the curvatures [33]. The equations are obtained from a consideration of translational equilibrium in r, θ and z directions and rotational equilibrium about the r and θ axes.

$$\frac{\partial N_r}{\partial r} + \frac{1}{r}\frac{\partial N_{r\theta}}{\partial \theta} + N_r \frac{1}{r} (N_r - N_\theta) = 0,$$
$$\frac{\partial N_{r\theta}}{\partial r} + \frac{1}{r}\frac{\partial N_{\theta\theta}}{\partial \theta} + N_{r\theta} \frac{1}{r} (N_r - N_\theta) = 0,$$
$$\frac{\partial Q_r}{\partial r} + \frac{1}{r}\frac{\partial Q_{r\theta}}{\partial \theta} + Q_r \frac{1}{r} (N_r - N_\theta) = 0,$$
$$+ N_r \frac{\partial q}{\partial \theta} + 2 N_{r\theta} \frac{1}{r} \left(\frac{\partial q}{\partial r} + \frac{1}{r} \frac{\partial q}{\partial \theta}\right) + q = 0,$$
$$\frac{\partial M_r}{\partial r} + \frac{1}{r}\frac{\partial M_{r\theta}}{\partial \theta} + (M_r - M_{r\theta}) \frac{1}{r} (N_r - N_\theta) = 0,$$
$$\frac{\partial M_{r\theta}}{\partial r} + \frac{1}{r}\frac{\partial M_{\theta\theta}}{\partial \theta} + 2 M_{r\theta} \frac{1}{r} (N_r - N_\theta) = 0,$$
defined by integrating corresponding stresses along the thickness as:

\[
\begin{align*}
(N_r, N_\theta, N_n) & = \int_{-h/2}^{h/2} (\sigma_r, \sigma_\theta, \sigma_n) dx, \\
(Q_r, Q_\theta) & = k_s^2 \int_{-h/2}^{h/2} (\sigma_r, \sigma_\theta, \sigma_n) dx,
\end{align*}
\]

(4)

In this work, according to [34-36], the shear correction factor \(k_s^2 \) is taken as 5/6. Figure 2 shows the ‘force’ system used to derive the following equilibrium equations (for more detail see [12]). Moreover, similar to Equation (4), the resultant moments \(M_r, M_\theta \) and \(M_{r\theta} \) are:

\[
(M_r, M_\theta, M_{r\theta}) = \int_{-h/2}^{h/2} (\tau_{r\theta}, \tau_{\theta r}, \tau_{rr}) dx.
\]

(5)

Furthermore, stress- strain relationship for FG sector plates can be written as:

\[
\begin{align*}
\sigma_r &= \frac{E(z)}{1-v^2} \left[e_r + v \epsilon_\theta - \alpha \Delta T \right], \\
\sigma_\theta &= \frac{E(z)}{2(1+v)} \epsilon_\theta, \\
\sigma_n &= \frac{E(z)}{2(1+v)} \epsilon_n.
\end{align*}
\]

(6)

where subscripts \(c \) and \(m \) denote ceramic and metal, respectively, \(z \) is distance from mid-surface of the plate along \(z \) axis \((-h/2 \leq z \leq h/2 \)) and \(n \) is the volume fraction exponent of a FGM. According to this distribution, the bottom surface (\(z = -h/2 \)) of the functionally graded plate is pure metal, and the top surface (\(z = h/2 \)) is pure ceramic. Using (2), (4), (5) and (6) gives the following constitutive relations:

\[
\begin{bmatrix}
A_1 & A_2 & 0 & B_1 & B_2 \\
A_2 & A_2 & 0 & B_2 & B_2 \\
0 & 0 & A_2 & 0 & B_2 \\
B_1 & B_2 & 0 & D_1 & D_2 \\
0 & 0 & B_2 & 0 & D_2
\end{bmatrix}
= \frac{1}{2(1-v)} \begin{bmatrix}
\epsilon_r & 0 & 0 & -\epsilon_\theta \\
0 & \epsilon_\theta & 0 & -\epsilon_r \\
0 & 0 & \epsilon_n & 0 \\
\kappa_r & 0 & 0 & \kappa_\theta \\
0 & \kappa_\theta & 0 & \kappa_n
\end{bmatrix}
\]

\[
\begin{bmatrix}
N_r \\
N_\theta \\
N_n \\
M_r \\
M_\theta \\
M_{r\theta}
\end{bmatrix}
= \begin{bmatrix}
A_1 & A_2 & 0 & B_1 & B_2 \\
A_2 & A_2 & 0 & B_2 & B_2 \\
0 & 0 & A_2 & 0 & B_2 \\
B_1 & B_2 & 0 & D_1 & D_2 \\
0 & 0 & B_2 & 0 & D_2
\end{bmatrix}
\begin{bmatrix}
\epsilon_r \\
\epsilon_\theta \\
\epsilon_n \\
\kappa_r \\
\kappa_\theta \\
\kappa_n
\end{bmatrix}
\]

(8)

where the stiffness coefficients are defined as:

\[
\begin{align*}
(A_1, B_{11}, D_{11}) & = \frac{1}{2(1-v)} \int_{-h/2}^{h/2} E(z)(1,1,z)dz, \\
(A_2, B_{12}, D_{12}) & = \frac{1}{2(1-v)} \int_{-h/2}^{h/2} E(z)(1,1,x)dz, \\
(A_{1w}, B_{1w}, D_{1w}) & = \frac{1}{2(1-v)} \int_{-h/2}^{h/2} E(z)(1,1,\Delta T)dz.
\end{align*}
\]

(10)

It is noticed that because of gradually varying the composition of the constituent materials in the thickness direction only and in-plane isotropic properties of the
FG plate, the states $A_1 = A_2, B_{11} = B_{22}, D_1 = D_2$ are taken to be account for the extensional, extensional-bending coupling, and bending stiffness matrices A, B, D, respectively. The membrane forces and bending moments induced by thermal loading per unit edge length in Equation (8) can be computed as:

$$
N^T_r = N^T_z = \frac{1}{2\pi} \int_a^b E(z) \alpha(z) T(z) \, dz,
$$

$$
M^T_r = M^T_z = \frac{1}{2\pi} \int_a^b E(z) \alpha(z) T(z) \, dz, \quad (11)
$$

It is notable that expressions $K^T_r = N^T_r$ and $M^T_r = M^T_z$ are considered owing to the in-plane isotropic material properties of the FG plate. For thermal loading problems, it is assumed that the temperature variation is only along the thickness direction. The one-dimensional heat transfer equation for the z-direction is given by:

$$
\frac{d}{dz} \left(K(z) \frac{dT(z)}{dz} \right) = 0,
$$

where the thermal conductivity coefficient $K(z)$ in Equation (12) obeys the simple rule of mixture as follows:

$$
K(z) = (K_r - K_o) \left(\frac{2z + h}{2h} \right)^2 + K_o. \quad (13)
$$

Hence, it is easy to obtain the temperature function $T(z)$ from Equation (12) as follows [39]:

$$
T(z) = T_0 + (T_r - T_0) \int_{z/2}^{h/2} \frac{dz}{\zeta K(z)} / \int_{z/2}^{h/2} \zeta K(z) \quad (14)
$$

where $T = T_c$ at $z = h/2$ and $T = T_m$ at $z = -h/2$. It must be noted that $T(z)$ is measured from the stress free state $T_0 = 0^\circ C$. Substituting the resultant forces and moments obtained from Equations (8) and (9) into Equation (3), the five equilibrium equations are obtained in terms of the displacement field. For the sake of brevity, only the first equation is given as below:

$$
\begin{align*}
& A_z \begin{bmatrix} u \nu_{,z} \nu_{,zz} \\
\nu_{,z} & 1 & 0 \\
\nu_{,zz} & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} + B_z \begin{bmatrix} \nu_{,z} \\
\nu_{,zz} \\
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{bmatrix} + C_z \begin{bmatrix} \nu_{,zz} \\
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{bmatrix} + D_z \begin{bmatrix} \nu_{,zz} \\
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{bmatrix} + E_z \begin{bmatrix} \nu_{,zz} \\
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{bmatrix} + F_z \begin{bmatrix} \nu_{,zz} \\
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{bmatrix} = 0,
\end{align*}
$$

In this paper, in order to consider the effect of shear deformations on the results, the computed results based on FSDT are compared with the ones obtained based on CPT. Thus, the large deflection analysis of the FG sector plate are carried out based on both FSDT and CPT. The three equations which describe the state of equilibrium in the presence of both in- and out-of-plane deformations within CPT are given in [11, 33]:

$$
\begin{align*}
\phi_r &= -\frac{\partial T}{\partial r}, \\
\phi_{\theta} &= -\frac{\partial T}{\partial \theta},
\end{align*}
$$

Therefore, the radial, tangential and curvatures of Equations (8) are

$$
-\frac{\partial^2 T}{\partial r^2}, -\frac{1}{r} \frac{\partial^2 T}{\partial \theta^2}, -(1/r) \frac{\partial T}{\partial r}, \quad \text{and} \quad -(2/r^2) \frac{\partial T}{\partial \theta},
$$

respectively, based on CPT. Now, according to the described rotations and curvatures based on CPT, by replacing the displacement and strain fields of CPT in Equation (8) and the stiffness coefficients expressed in Equation (10) which is identical for both FSDT and CPT, the statement of the constitutive equations

$$
\begin{align*}
N_1 & N_{11} N_{12} M_{11} M_{12} M_{13},
\end{align*}
$$

can be written based on the displacement field of CPT.

The equilibrium equations have to be accompanied by a set of boundary conditions which are here all-round clamped and simply supported. The constraints on the displacements and stress resultants/couples at the circumferential and radial plate edges imposed in each case are given as follows:

(a) On the radial edges ($\theta = 0^\circ$ and $\theta = \alpha$) for simply supported edges:

$$
\begin{align*}
u &= w = \varphi_r = M_{13} = 0,
\end{align*}
$$

for clamped edges:

$$
\begin{align*}
u &= w = \varphi_r = \varphi_{\theta} = 0,
\end{align*}
$$

(b) On the circumferential edges ($r = r_c$ and $r = r_m$) for simply supported edges:

$$
\begin{align*}
u &= w = \varphi_r = 0,
\end{align*}
$$

for clamped edges:

$$
\begin{align*}
u &= w = \varphi_r = \varphi_{\theta} = 0,
\end{align*}
$$

For the sake of brevity, the boundary conditions of FG sector plate based on CPT are omitted, see [33].

3. NUMERICAL SOLUTION OF THE SECTOR PLATE EQUATIONS

The five non-linear equilibrium equations which show the large deflection response of a FG sector plate under
combined thermal and mechanical load is very complex and is not amenable to a closed form solution. Among the numerical solution methods like finite element, finite difference, finite strip, relaxation, etc., the dynamic relaxation (DR) technique [40] in conjunction with a central finite difference discretization scheme has been used here to solve the nonlinear differential equations of the solid and annular FG sector plates. The DR algorithm has been selected for solving the governing equations of plate because of two reasons: (1) the equations of large deflection FG sector plate have not previously been solved by this method and also by any other technique and (2) the authors [30-32, 41, 42] and others [43-45] have demonstrated its effectiveness for elastic and elasto-plastic large deflection plate analysis. To solve the plate equations using DR method they are transformed from a boundary value problem to an initial value format to facilitate the integration of the governing equations via a simple time-stepping iterative procedure. The first stage of the transformation process is to render the equilibrium equations ‘quasi-dynamic’ by adding damping and inertia terms to their right-hand sides. Hence, the Equation (3) based on FSDT takes the following form:

\[
\frac{\partial N_i}{\partial r} + \frac{1}{r} \frac{\partial N_m}{\partial \theta} + \frac{1}{r} (N_i - N_0) = m_r \frac{dl_u}{dt} + c_r \frac{du}{dt} \tag{20}
\]

Similarly, Equation (20) can be transformed to a quasi-dynamic equation based on CPT. The second stage of the process is to replace the velocity and acceleration terms introduced in Equation (20) by the following approximate relations:

\[
\dot{X}^n = \left(X^n - X^{n-1} \right) / \tau^n, \tag{21}
\]

\[
\ddot{X}^n = \left(\dot{X}^{n-1} - \dot{X}^{n-2} \right) / \tau^{n-1}, \tag{22}
\]

where \(X = u, v, w, \psi_r, \psi_\theta\) is the approximate solution vector at the \(n^{th}\) iteration and \(\tau\) is the increment of fictitious time. By substituting Equations (21) and (22) into the right-hand side of Equations (20), the velocity equations are obtained. For instance, the first velocity equations of FSDT are given as follows:

\[
u^{n+1/2} = \frac{2 \tau^n}{2 + \tau^n c_r} \left(m_r^{(u)} \right) \left(\frac{\partial N_i}{\partial r} + \frac{1}{r} (N_i - N_0) + \frac{1}{r} \frac{\partial N_m}{\partial \theta} \right) + \frac{2 - \tau^n c_r}{2 + \tau^n c_r} u_i
\]

where \(m_r^{(u)} \left[u, v, w, \psi_r, \psi_\theta\right] \) are elements of the diagonal fictitious mass matrices \(M\). Here, to guarantee the numerical stability, the element of matrix \(M\) is determined by the Gerschgorin theorem as (for more detail see [46, 47]):

\[
m_r^{(u)} \geq 25 (\tau^n)^2 \sum_{j=1}^{N} |k_{ij}| \tag{24}
\]

where \(k_{ij}\) is the element of the stiffness matrix \(K\) and is obtained by:

\[
K = \frac{\partial P}{\partial X} \tag{25}
\]

Similar relation between \(M\) and \(m_r^{(u)}\) is used for elements of diagonal fictitious damping matrices \(C\) and \(c_r^{(u)}\). By employing the Rayleigh principle for node \(i\) at the \(n^{th}\) iteration, the instant critical damping factor can be computed as follows [46]:

\[
c_r^{(u)} = \frac{1}{2} \left(\frac{\dot{c}^r_{r} \dot{c}_r^{(u)}}{\left(\dot{c}_r^{(u)} - m_r^{(u)} \right)} \right)^{1/2} \tag{26}
\]

Thus, different \(c\) values are introduced for each node to obtain the form used for DR as follows [46]:

\[
c_r = c_r m_r, \quad i = 1, ..., N \tag{27}
\]

To calculate the displacements, the velocity equations are integrated after each time step as follows:

\[
u^{n+1} = u^n + \tau^n u^{n+1/2} \tag{28}
\]

Similar equations can be employed to obtain the other displacement components. After computing the displacement field and applying the boundary conditions, strains and resultant stresses can be calculated. For the sake of brevity, the DR algorithm which clearly explained in [31, 41] is omitted.

4. NUMERICAL RESULTS AND DISCUSSIONS

4.1. Comparison study

To demonstrate the efficiency and accuracy of the present solution, some illustrative examples were solved for linear/nonlinear bending of solid and annular FGM sector plates with different boundary conditions.

Example 1. In this section as a part of validation of our analysis, the present results for the linear behavior of moderately thick FG sector plates subjected to uniform transverse loading \(q\) are compared with those obtained by Ref. [21] based on FSDT. Comparisons between the results of present work and those obtained by Aghdam et al. [21] are shown in Figure 3 for the dimensionless deflection \(W = 1000\omega E, h^3 / qa^4\). Again, it is clear that present results are in good agreement with the analytical solutions obtained by Aghdam et al. [21].
Figure 3. Comparisons between the present work and the results obtained by Aghdam et al. [21] for the dimensionless deflection (\tilde{W}) along the radial direction ($\theta = \alpha / 2$).

Example 2. In this case, the DR solutions are compared with the ones reported by Fallah and Nosier [18] for the thermal bending response of functionally graded circular sector plates with simply supported boundary conditions. As shown in Figure 4, the obtained dimensionless deflections ($\tilde{w} = w / h$) of the circular sector plate ($\alpha = 60^\circ, h / r_o = 0.1$) are in good consistency with those reported by Fallah and Nosier [18].

4.2. Parametric Study Metal/Aluminum and ceramic/Zirconia system of FGM was considered in which the ceramic rich top surface maintained at $300^\circ C$, unless stated otherwise, and the metal rich bottom surface at $20^\circ C$ while the stress-free temperature is $T_0 = 0^\circ C$ [30]. The results are defined in terms of the following dimensionless quantities:

$$
\tilde{u} = u r_o / h^2, \tilde{N}_r = N_r r_o^2 / E_c h^3, \tilde{w} = w / h, \tilde{q} = q r_o^4 / E_c h^5
$$

which show the dimensionless radial displacement, radial moment, radial membrane force, deflection and load, respectively.

Figure 4. Comparisons between the DR solutions and those reported by Fallah and Nosier [18] for the thermal bending response of FG circular sector plates ($\alpha = \pi / 3$) with simply supported boundary conditions.

In the present work, a 60° sector plate with $r_o = 100 mm$ and a thickness-to-radius ratio of $\lambda = 0.1, 0.15, 0.2$ subjected to uniform transverse loading of $\tilde{q} = 500$ and thermal loading $\Delta T = 300^\circ C$ is considered, unless stated otherwise. The ratio of the outer-to-inner radius for the annular plate was assumed as $r_i / r_o = 0.4$.

Figures 5 and 6 respectively show the vertical and radial displacements and radial forces and moments ($\tilde{w}, \tilde{u}, \tilde{N}_r$) for clamped (CCCC) annular sector plate with $\lambda = 0.2$ subjected to uniform mechanical loading with different material grading indices n. Figure 5. Effects of material grading index n on the (a) \tilde{w}, (b) \tilde{u}, (c) \tilde{N}_r and (d) \tilde{M}_r along the radial direction ($\theta = \alpha / 2$) of a CCCC annular sector plate.
It is notable that Figures 5 and 6 are specified for \(\theta = \alpha / 2 \) and \(\bar{F} = 0.75 \), respectively. As it is expected, increasing \(n \) and tendency of material properties toward metallic phase cause increasing of \(\bar{w} \) and \(\bar{u} \), while decrease of \(n \) increases \(\bar{R}_r \). Moreover, variations of \(\bar{R}_r \) (Figures 5(d) and 6(d)) imply that the minimum of \(\bar{R}_r \) occurs at the center of homogenous metallic and ceramic plates and the variations of \(\bar{R}_r \) in terms of \(n \) is not monotonic. Obviously, maximum amount of \(\bar{R}_r \) and \(\bar{R}_r \) take place at the inner edge and center of the plate, respectively.

The effect of nonlinearity on the maximum dimensionless deflection \(\bar{w}_{\text{max}} \) of the FG solid sector plate subjected to uniform mechanical loading with \(n=1 \) and \(\lambda =0.2 \) are considered in Figure 7 (a, b) for CCC and SSS boundary conditions, respectively, based on both CPT and FSDT. As observed for both CCC and SSS boundary conditions, there is a huge amount of differences between the linear and nonlinear results predicted by CPT and FSDT.

5. Conclusions

Nonlinear bending behavior of solid and annular FG sector plates subjected to transverse mechanical loading and thermal gradient along the thickness direction is investigated. Material properties are varied continuously along the plate thickness according to power-law distribution of the volume fraction of the constituents. Based on von Karman theory for large deflection, nonlinear equilibrium formulations were obtained based on CPT and FSDT. The DR numerical method combined with the finite difference discretization technique was employed to solve the highly coupled nonlinear equilibrium equations. Effects of material gradient constant, thermal loading, boundary conditions and different ratios of thickness-to-radius were studied. It was seen that unlike the linear analysis, the deflections obtained based on CPT had the larger values compared to FSDT for nonlinear behavior. While, with increase of thickness-to-radius ratios and shear deformation effects the larger amount of \(\bar{w} \) was predicted by FSDT compared to CPT for nonlinear bending analysis of CCC FG sector plate.
6. REFERENCES

Non-linear Thermo-mechanical Bending Behavior of Thin and Moderately Thick Functionally Graded Sector Plates Using Dynamic Relaxation Method

M.E. Golmakani a, M. Kadkhodayan b

a Department of Mechanical Engineering, College of Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
b Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Keywords: Non-linear Bending, Functionally Graded Materials, Sector Plate, Thermo-mechanical Behavior, Dynamic Relaxation Method

چکیده

در این مقاله خمش غیر خطی قطعات صفحات نابع توپر و حلقوی که در معرض یک بار مکاتبی عرضی و گرادیان دمایی در راستای ضخامت قرار دارند، بررسی شده است. خواص مواد بطور پیوسته در راستای ضخامت صفحه بر اساس قانون تونن توزیع کشته‌شده. با استفاده از رابطه ون کارمن برای غیر خطی قطعات بیان شده. برای حالت این دسته، معادلات از ترکیب روش‌های پایا و اختلاف محدود مربوطی استفاده شده است. با توجه به اینکه مقاله مختصات ارائه شده است اثرات شاخه‌ای ازدده، شرایط مرزی، ساختارهای واقعی، نسبت حداکثر و اختلاف دمایی مورد مطالعه قرار گرفته است. نتایج اخیر نشان داده که نسبت ضخامت به شعاع و اختلاف دمایی مورد مطالعه قرار گرفته است. همچنین نشان داده شده که برای پیش‌بینی نسبت تنش دیسک‌های غیر خطی و غیر خطی بر اساس هوی طوری برای شفافیت می‌تواند استفاده کند. نتایج های مختلف صفحات به شعاع و شرایط مرزی انجام شده است.

doi: 10.5829/idosi.ije.2016.29.06c.00