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ABSTRACT

With the rapid size and complexity growth of computer networks, network supervisors are now facing a new problem,
which is to analyze and manage the large amounts of security alerts that can be generated by security devices. Alert corre-
lation systems attempt to solve this problem by finding the similarity and causality relationships between raw alerts and
providing high-level view of the network under surveillance. Several alert correlation methods have been proposed recently
to detect known attack scenarios. This paper focuses on how to develop an intrusion-alert correlation system according to
the information existed in the raw alerts without using any predefined knowledge. For this purpose, first, we define the
concept of alert partial entropy to find the alert clusters with the same information. Then, we represent the alert clusters
by an intelligible notation called hyper-alerts. The network supervisor can reduce the number of hyper-alerts based on the
principle of maximum entropy or by using the concept of hyper-alerts partial entropy. For more visualization, we define
the hyper-alerts graph, which provides a global view of intrusion alerts. Our results show that the proposed entropy-based
alert correlation system (E-correlator) can simplify the analysis of large number of alerts. We achieved the promising reduc-
tion ratio of 99.98% in LLS_DDOS_1.0 attack scenario in DARPA2000 dataset while the constructed hyper-alerts have
enough information to discover the attacker, the victim, and the attack scenario. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Intrusion detection systems (IDSs) are usually considered
as a second line of defense for computer and network
systems to protect them against malicious activities along
with the prevention-based systems such as firewalls and
access controls [1]. If an intrusion is detected, the IDS
generates a warning known as alert or alarm [2]. Traditional
IDSs focus on low-level attacks and generate overwhelming
number of alerts per day. Analysis and management of these
intrusion alerts is a troublesome and time-consuming task for
network supervisors or intrusion response systems. In addi-
tion, the logical connections between alerts or attacking
strategies behind the number of alerts cannot be discovered
by IDSs. Hence, to improve the representation of security
threats, alert correlation is a necessary and critical process
in intrusion detection and response [3].

Alert correlation is defined as a process that contains
multiple components with the purpose of analyzing alert
and providing a high-level insight on the security state
of the network under surveillance. Recent research on
alert correlation can be classified into the following
techniques [4]:
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• Alert correlation based on feature similarity.
• Alert correlation based on known scenarios.
• Alert correlation based on prerequisite and conse-
quence relationship.

Similarity-based correlation methods correlate alerts
according to the similarities of some selected features, such
as source IP addresses, destination IP addresses, protocols,
and port numbers. Alerts with higher degree of overall
feature similarity will be considered as correlated. The com-
mon weakness of these approaches is that they cannot fully
discover the causal relationships between related alerts [4].

Scenario-based correlation methods correlate alerts
according to the known attack scenarios. The attack
scenario is either specified by an attack language such as
STATL [5] or LAMDBA [6] or learned from training data
sets using data mining approach [7]. Whenever a new alert
is received, it is compared with the existing scenarios and
then added to the most likely candidate scenario [8]. A
common weakness of the scenario-based correlation tech-
niques is that they are all restricted to known situation. In
other words, the scenarios have to be predefined by an
expert or be learned from labeled training examples [4].
Copyright © 2014 John Wiley & Sons, Ltd.
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The last type of alert correlation technique is based on the
assumption that most alerts are not isolated, but related to
different stages of attacks, with the early stages preparing
for the later ones. Intuitively, the prerequisite of an attack is
the necessary condition to launch an attack successfully,
and the consequence of an attack is the possible outcome if
an attack succeeds [9]. This kind of approach requires spe-
cific knowledge about the attacks in order to identify their
prerequisites and consequences. On the basis of this informa-
tion, alerts are considered to be correlated by matching the
consequences of some previous alerts and the prerequisites
of later ones [10]. However, the major limitation of this class
of approaches is that they cannot correlate unknown attacks
because its prerequisites and consequences are not defined.
Even for known attacks, it is difficult to define all prerequi-
sites and all of their possible consequences [4].

This paper proposes a new similarity correlation system
based on entropy called E-correlator. The main idea of this
paper is that the huge number of raw alerts contains some
information that can be displayed by fewer hyper-alerts.
At first, we defined the concept of alert partial entropy to
find the alert clusters with the same information. Then,
we represent the alert clusters by intelligible notation called
hyper-alerts. The obtained hyper-alerts can be reduced by
using the principle of maximum entropy or applying the
concept of hyper-alerts partial entropy (APE). Finally, we
generate the hyper-alerts graph (HG), which provides high-
level view of intrusion alerts.

In Section 2, some of the related works in alert correlation
are reviewed. The detail of proposed alert correlation system is
presented in Section 3, while its performance in alert correla-
tion is discussed in Section 4. Finally, the conclusions and
some suggestions for future work are given in Section 5.
2. RELATED WORK

In this section, we review the related work in the literature,
which address alert correlating techniques. In the similarity
correlation methods, alerts are put into a group based on the
similarity of their corresponding features. The most common
attributes of alerts are Source IP, Destination IP, Source Port,
Destination Port, Attack Class, and Timestamp. According to
Valdes and Skinner, a probabilistic approach to alert correla-
tion correlates attacks over time, over multiple attempts, and
from multiple sensors. Their used features are based on alert
content that anticipates evolving Internet Engineering Task
Force standards. Their probabilistic approach provides a
unified mathematical framework for correlating alerts that
match closely but not perfectly, where the minimum degree
of match required to fuse alerts is controlled by a single
configurable parameter. Only features in common are con-
sidered in the fusion algorithm. For each feature, they define
an appropriate similarity function. The overall similarity is
weighted by a specifiable expectation of similarity [11].

Julisch proposed a clustering technique for grouping all
the alerts, which share the same root causes. The clustering
technique proposed by Julisch has hierarchy structures,
Security Comm. Networks 2015; 8:822–836 © 2014 John Wiley & Sons, Ltd.
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which decompose the attributes of the alerts from the most
general values to the most specific ones. These generaliza-
tion hierarchies are later used for measuring the distance
between alerts in a clustering algorithm [12]. We use the
Julisch’s generalization hierarchies to represent the hyper-
alerts in our correlator system. Siraj et al. proposed a
hybrid clustering model based on improved unit range, prin-
cipal component analysis, and unsupervised learning algo-
rithm to aggregate similar alerts and to reduce the number
of alerts [13]. Perdisci et al. proposed a new on-line alarm
clustering system to introduce a concise view about attacks
and to reduce the volume of alarms. Their proposed system
consists of three main modules, namely, an alarm manage-
ment interface (AMI), an alarm classifier, and an alarm clus-
tering module. The AMI receives alarms from multiple IDS
and translates them in a standard format. Then, the alarm
classifier assigns a class label to the received alarms and
sends them to the alarm clustering module, where the alarms
are fused to obtain meta-alarms [14].

In the known scenarios correlation methods, whenever
a new alert is received, it is compared with the current
existing scenarios and then added to the most likely candi-
date scenario. Some of the previous works in this category
have used formal models for specifying attack scenarios,
such as LAMBDA, STATL, and ADeLe [5,6,15]. However,
some correlation research works are based on predefined
attack scenarios. For example, Dain and Cunningham
proposed a real-time alert clustering scheme, which fuses
the alerts produced by multiple IDSs into scenarios. In this
system, they use a probabilistic algorithm in which a new
alert belongs to a given scenario (the scenario constructed
by their algorithm does not necessarily indicate malicious
behavior). Whenever a new alert is received, it is compared
with current existing scenarios and then assigned to the
scenario that yields the highest probability score [16].

In the prerequisite and consequence relationship alert
correlation, we require specific knowledge about the attacks
in order to identify their prerequisites and consequences. On
the basis of this information, alerts are considered to be
correlated by matching the consequences of some previous
alerts and the prerequisites of later ones. Ning and Cui [17]
proposed an alert correlation method to identify the prerequi-
sites (e.g., existence of vulnerable services) and the conse-
quences (e.g., discovery of vulnerable services) of each
type of attacks and correlate the attacks by matching the con-
sequences of some previous attacks and the prerequisites of
some later ones. For example, if a UDP port scan is followed
by a buffer overflow attack against one of the scanned ports,
they can be correlated as the same series of attacks. They in-
troduce the notion of hyper-alert type, which is used to rep-
resent the prerequisite and consequence of each type of
alerts. A hyper-alert type T is a triple (fact, prerequisite,
and consequence) where fact is a set of attribute names, each
with an associated domain of values, prerequisite is a logical
formula whose free variables are all in fact, and consequence
is a set of logical formulas such that all the free variables in
consequence are in fact. For example, consider the buffer
overflow attack against the sadmind remote administration
823
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tool; this can be represented using the following hyper-alert
type:

SadmindBufferOverflow= (fact, prerequisite, and con-
sequence) for such attacks, where

• Fact = (IP, port),
• Prerequisite = ExistHost (IP) and VulnerableSadmind
(IP), and

• Consequence = (GainRootAccess(IP)).

Generally, the scenario-based and prerequisite-consequence
methods are limited to a predefined knowledge base,
whereas the similarity techniques are capable of corre-
lating alerts that may contribute to unknown attacks.
On the other hand, the common weakness of the similarity
approaches is that they cannot fully discover the causal
relationships between related alerts.
3. THEPROPOSEDENTROPY-BASED
ALERT CORRELATION SYSTEM

In this section, we proposed a new similarity correla-
tion system based on entropy (E-correlator). The main
idea of this work is that the massive number of alerts
is correlated so that the correlated alerts have the same
quantity of information as the original. Figure 1 shows
the architecture of E-correlator, which has the following
procedure:
Input:
824
Raw alerts

Output:
 Hyper-alerts graph

Step 1:
 Modeling the raw alerts by APE matrix.

Step 2:
 Run the density-based spatial clustering of

applications with noise (DBSCAN) algorithm
on the APE matrix to cluster the raw alerts
based on their obtained partial entropy as the
similarity measure.
Step 3:
 Generate the alert clusters by intelligible notation
called hyper-alerts.
Figure 1. Architectur
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Step 4:
e of E-corre

urity Comm.
The network supervisor can reduce the number of
hyper-alerts based on the principle of maximum
entropy or use the concept of hyper-APE.
Step 5:
 Generate the HG for more visualization.
We will describe the component of proposed correlator
system and its complexity in greater detail in the following
subsections.

3.1. Modeling the raw alerts by alerts partial
entropy matrix

We first introduce the concept of entropy, which is a
measure of the uncertainty of a random variable. Let X be
a discrete random variable with alphabet X and probability
mass function P(X) = Pr(X= xi) and xi ∈X. The entropy of
this random variable with the probability mass function
P(X) is defined by [18]:

H Xð Þ ¼ �
X
xi∈X

P xið Þ log2P xið Þ (1)

According to this equation, each value xi∈X has its
portion in obtained entropy. We named each of these
portions as partial entropy. The formal definition of partial
entropy is given in the succeeding text.

Definition 1 (Partial entropy). Consider a discrete random
variable with alphabet X and probability mass function P(X).
Let H(X) be its entropy. The partial entropy of X is the portion
of each value xi∈X in H(X), it can be written as

HP X ¼ xið Þ ¼ �P xið Þ log2P xið Þ (2)

So we have the following equation:

H Xð Þ ¼
X
xi∈X

HP X ¼ xið Þ (3)
lator.
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Now, suppose that the set of alerts is defined by ψ ={A1,
A2,…,An}, and the set of alert features, such as source
IP address, destination IP address, protocol, source port
number, destination port number, time, and duration, is
shown by F = {F1,F2,…,Fk}. Each feature Fj is a dis-
crete random variable with the set of value { fj} and
the probability mass function of Pj( fj). Hence, we can
calculate the entropy of each feature Fj as the following
equation:

H Fj

� � ¼ �
X
f j∈Fj

Pj f j
� �

log2Pj f j
� �

(4)

According to Equation (2), the partial entropy of fea-
ture Fj for fj ∈Fj is defined by

HP Fj ¼ f j
� � ¼ �Pj f j

� �
log2Pj f j

� �
(5)

Now, we can consider two assumptions to compute
the partial entropy of each alert. First, suppose that
the alert features are independent, so we have the fol-
lowing definition for partial entropy of each alert.

Definition 2 (Alert partial entropy for independent
features). Suppose that we have the set of alerts
ψ = {A1, A2,…, An}, and the set of alert features is
shown by F= {F1, F2,…, Fk}, and the alert features
are independent. For each alert Ai = [ fi1, fi2,…, fik], its
partial entropy is a vector, which is defined by

HP ψ ¼ Aið Þ ¼ HP F1;F2…;Fk½ � ¼ f i1; f i2…; f ik½ �ð Þ
¼ HP F1 ¼ f i1ð Þ;HP F2 ¼ f i2ð Þ;…;HP Fk ¼ f ikð Þ½ � (6)

Whereas fij ∈Fj and

HP Fj ¼ f ij
� � ¼ �Pj f ij

� �
log2Pj f ij

� �

According to Definition 2, we can calculate the partial
entropy of alerts and fill the following APE matrix from the
set of alerts (Each row shows the partial entropy of an alert):

A1

A2

⋮
An

HP F1 ¼ f 11ð Þ HP F2 ¼ f 12ð Þ ⋯ HP Fk ¼ f 1kð Þ
HP F1 ¼ f 21ð Þ HP F2 ¼ f 22ð Þ ⋯ HP Fk ¼ f 2kð Þ

⋮ ⋮ ⋯ ⋮

HP F1 ¼ f n1ð Þ HP F2 ¼ f n2ð Þ ⋯ HP Fk ¼ f nkð Þ

2
666664

3
777775

Now, suppose that some of the alert features are not
independent, for example, the destination port number
may be dependent on the source port number. Here,
we define the concept of partial conditional entropy to
compute the partial entropy of alerts with more precisely.
Security Comm. Networks 2015; 8:822–836 © 2014 John Wiley & Sons, Ltd.
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For this purpose, first, we should define the partial joint
entropy. The entropy definition (Equation (1)) can be
easily extended to a pair of random variables. Let
(X, Y) be two discrete random variables with a joint dis-
tribution P(X, Y). The joint entropy of these random vari-
ables is defined by [18]

H X;Yð Þ ¼ �
X
xi∈X

X
yi∈Y

p xi; yið Þ log p xi; yið Þ (7)

According to this equation, each value (xi, yi) ∈ (X, Y)
has its portion in obtained joint entropy. We named each
of these portions as partial joint entropy. The formal def-
inition of partial joint entropy is given in the succeeding
text.

Definition 3 (Partial joint entropy). Consider two dis-
crete random variables X and Y, with a joint distribution
P(X, Y). Let H(X, Y) be their joint entropy. The partial
joint entropy of (X, Y) is the portion of each value
(xi, yi) ∈ (X, Y) in H(X, Y), it can be written as

HP X ¼ xi;Y ¼ yið Þ ¼ �p xi; yið Þ log p xi; yið Þ (8)

According to the chain rule for entropy,

H X1;X2⋯;Xnð Þ ¼
Xn
j¼1

H Xj

� ��Xj�1;⋯X1Þ (9)

the entropy of a pair of random variables is the en-
tropy of one plus the conditional entropy of the other
[18]. So we have the following equation for condi-
tional entropy:

H Y XÞ ¼ H X; Yð Þ � H Xð Þjð (10)

Definition 4 (Partial conditional entropy). Consider
two discrete random variables X and Y, with a joint
probability mass function P(X, Y) and marginal
probability mass functions P(X) and P(Y). The partial
conditional entropy of (X, Y) is the portion of each
value (xi, yi) ∈ (X, Y) in H(Y|X), it can be written as

HP Y ¼ yi X ¼ xiÞ ¼ HP X ¼ xi;Y ¼ yið Þ � HP X ¼ xið Þjð
(11)

So if we assume that some of the alert features are
not independent, we can extend the mentioned alert
partial entropy definition as follows:

Definition 5 (Alert partial entropy including some
independent features). Suppose that we have the set
of alerts ψ = {A1, A2,…, An}, and the set of alert fea-
tures is shown by F = {F1, F2,…, Fk}, and some of
the alert features are not independent. Let Fd ∈ F be
the only dependent feature in the set of alert features,
825



Figure 2. A sample generalization hierarchies for IP address.
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and it conditioned on the feature Fj. For each alert
Ai = [fi1, fi2,…, fid,…, fik], its partial entropy is a vector,
which is defined by

HP ψ ¼ Aið Þ ¼ ½HP F1 ¼ f i1ð Þ;HP F2 ¼ f i2ð Þ;…;

HP Fd ¼ f id Fj ¼ f ijÞ;…;HP Fk ¼ f ikð Þ�� �� (12)

So we can modify the APE matrix to support this
dependent feature as follows:

A1

A2

⋮
An

HP F1 ¼ f 11ð Þ⋯HP Fd ¼ f 1djFj ¼ f 1j
� �

⋯ HP Fk ¼ f 1kð Þ
HP F1 ¼ f 21ð Þ ⋯HP Fd ¼ f 2djFj ¼ f 2j

� �
⋯ HP Fk ¼ f 2kð Þ

⋮ ⋮ ⋮

HP F1 ¼ f n1ð Þ ⋯HP Fd ¼ f ndjFj ¼ f nj
� �

⋯HP Fk ¼ f nkð Þ

2
6666664

3
7777775

Similarly, we can add the other dependent features
into the APE matrix. Even there may be more complex
relationships between the features, for example, Fd ∈ F
can be conditioned on two features or more. In these
cases, we can use the chain rule entropy (Equation (9))
to compute the partial conditional entropy of feature.

However, each alert can be represented by a k-dimensional
vector as the alert partial entropy, and the set of alerts can be
shown byAPEmatrix.While the alerts with the same informa-
tion have similar partial entropy, we can reduce the number of
alerts by a simple clustering algorithm on the APE matrix to
find the similar rows.

3.2. Review of density-based spatial
clustering of applicationswith noise algorithm

After calculating the APE matrix, we need a method to
cluster the alerts based on their partial entropy. Here,
we use DBSCAN [19] as a well-known density-based
clustering algorithm to aggregate the similar alerts into
specific clusters. It offers several advantages compared
with the other clustering methods. DBSCAN does not
require one to specify the number of clusters in the data
a priori. Also, it is better at finding arbitrarily shaped
clusters and detecting the noise or outliers. DBSCAN
requires two parameters: density threshold (eps) and
minimum size (MinPts). It starts with an arbitrary
starting point that has not been visited yet. Then, it finds
all the neighbor points within distance eps of the starting
point. If the number of neighbors is less than MinPts, the
point is marked as noise. But when the number of neigh-
bors is greater than or equal to MinPts, a cluster is
formed. The starting point and its neighbors are added
to this cluster, and the starting point is marked as visited.
The algorithm then repeats the evaluation process for all
the neighbors recursively. This process continues until
the density-connected cluster is completely found. Then,
a new unvisited point is retrieved and processed to dis-
cover a further cluster or noise. In the following, we
present the pseudocode of DBSCAN:
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3.3. Generate hyper-alerts by generalization
hierarchies

In this section, we want to display the alerts located in a
cluster by intelligible notation. For this purpose, first, we
define a meaningful hierarchy for each alert feature. A
hierarchy defines a sequence of mappings from a set of
concepts to their higher-level correspondences [20]. A
good example of this technique proposed by Pietraszek
[21] as generalization hierarchies. He labeled the IP
addresses according to their role (Workstation, Firewall,
HTTPServer, etc.) and then grouped according to their
network location (Intranet, DMZ, Internet, etc.) with a final
top-level generalized address AnyIP (Figure 2). When
these classification hierarchies are not known, the IP
addresses can be generalized according to the hierarchies
in the addressing structure; For example, an IP address
195.176.20.45 can be generalized to the corresponding
class C network: 195.176.20.0/24, followed by the class-B
generalization 195.176.0.0/16, class-A generalization
195.0.0.0/8, and, finally, AnyIP.

Furthermore, the other attributes will have different
generalization hierarchies, depending on the type and our
interests. For example, the source and destination ports of
port-oriented IP connections can be generalized into
privileged (0–1023) and non-privileged (1024–65 535),
with a top-level category of AnyPort. In addition, the
urity Comm. Networks 2015; 8:822–836 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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well-known destination ports (0–1023) can comprise a
number of hierarchies describing their function, for
example, httpPorts (80, 443, 8080, and 9090), mailPorts
(25, 110, 143, 993, and 995), and chatPorts (194, 258, 531,
and 994). By this generalization hierarchy, the hyper-alerts
can be constructed from the set of alert clusters.

Here, we use the following 14 features to construct
the hyper-alerts:

• Source address
• Frequency of source address
• Destination address
• Frequency of destination address
• Protocol
• Frequency of protocol
• Source port number
• Frequency of source port number
• Destination port number
• Frequency of destination port number
• Time interval (lower bound of time)
• Time interval (upper bound of time)
• Duration
• Contained number of alerts

3.4. Reduce the number of hyper-alerts

This is an optional step to reduce the number of hyper-
alerts when we have many of them. Here, we can select
the specified number of hyper-alerts that contain the
most of information about the set of alerts. In this
section, two methods for this purpose are discussed.
The first method is based on the principle of maximum
entropy, and the second one uses the concept of hyper-
APE.

According to the principle of maximum entropy, when
estimating the probability distribution, you should select
that distribution which leaves you the largest remaining
uncertainty consistent with your constraints. Here, we want
to estimate the hyper-alerts probability distribution. So we
should select a subset of hyper-alerts with the maximum
entropy subject to the constraint that the number of desired
hyper-alerts is specified by the network supervisor. In other
words, we have the following optimization problem:

max Entropy hyperalertsð Þ
s:t:

number of desired hyperalerts ¼ x

(13)

We can use the genetic algorithm to solve the aforemen-
tioned optimization problem. But before that, the entropy
of hyper-alerts should be defined.

Definition 6 (Hyper-alerts entropy). Suppose that the set
of hyper-alerts is defined by ℏ= {h1, h2,…, hl}, and the set
of hyper-alert features, such as source address, destination
address, protocol, source port number, destination port
number, time interval, duration, and contained number of
Security Comm. Networks 2015; 8:822–836 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
alerts, is shown by Γ= {Γ1,Γ2,…,Γm}. So each hyper-
alert hi is displayed by a vector with m different features
(hi = [γi1, γi2,…, γim]). Now, suppose that each feature Γj
is a discrete random variable on the set {v1j, v2j,…, vpj} ∪
{g1j, g2j,…, gqj} so that {v1j, v2j,…, vpj} is the non-
generalized value set and {g1j, g2j,…, gqj} is the general-
ized one for feature Γj. Let {g(v1j), g(v2j),…, g(vpj)} be
the generalized value for {v1j, v2j,…, vpj}, where g(vlj) is
the generalized value for vlj. So we can calculate the
entropy of Γj as the following equation:

H Γ j

� � ¼ �
XR
i¼1

P vij
� �

log2P vij
� �

�
XR
i¼1

P g vij
� �� �

log2P g vij
� �� �

�
Xq

i¼1

P gij
� �

log2P gij
� �

(14)

and the hyper-alerts entropy can be defined by

H ℏð Þ ¼ H Γ1ð Þ;H Γ2ð Þ;…;H Γmð Þ½ � (15)

Similar to alert partial entropy definition, we can de-
fine the hyper-APE as follows.

Definition 7 (Hyper-APE). For each hyper-alert hi = [γi1,
i2,…, γim], its partial entropy is a vector, which is defined by

HP ℏ ¼ hið Þ ¼ HPð½Γ1;Γ2;…;Γm� ¼ ½γi1; γi2;…; γim�Þ
¼ ½HP Γ1 ¼ γi1ð Þ;HPðΓ2 ¼ γi2Þ;…;HPðΓm ¼ γimÞ�

(16)

Whereas γij ∈Γj, HP(Γj = γij) is the partial entropy, which
is computed by one of the following two equations. If γij is a
non-generalized value, we use

HP Γj ¼ γij
� �

¼ �Pj vij
� �

log2Pj vij
� �

�Pj g vij
� �� �

log2Pj g vij
� �� � (17)

and if γij is a generalized value, we have

HP Γj ¼ γij
� �

¼ �Pj gij
� �

log2Pj gij
� �

(18)

We can use the hyper-APE to determine the importance
of hyper-alerts based on the amount of information
contained. In other words, we can compute the weight of
each hyper-alert hi by the following equation:

Weight hið Þ ¼
Xm
j¼1

HP Γj ¼ γij
� �

(19)

Clearly, a hyper-alert with more weight has more impor-
tance among the others. However, the network supervisor
827



E-correlator: an entropy-based alert correlation system M. GhasemiGol and A. Ghaemi-Bafghi
can sort the hyper-alerts on the basis of their partial entropy
and select the desired number of hyper-alerts from the top
of the ordered list.
3.5. Generate hyper-alerts graph

For more visualization, we define the HG, which displays
the flow of HGs and provides high-level view of the net-
work under surveillance.

Definition 8 (Hyper-alerts graph). Hyper-alerts graph is
a directed graph that its nodes are hyper-addresses
(generalized or non-generalized, source or destination IP
addresses) contained in the set of hyper-alerts and its
directed edges display the flow of alerts between two IP
addresses. The edge label has the following five partitions
to show the detail of hyper-alerts (Figure 3):
(A)
Figur
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(B)
 protocol(s)

(C)
 source port(s)

(D)
 destination port(s)
e 3. Relation between nodes in the hyper-alerts graph.

Figure 4. DARPA 2
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(E)
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number of input alerts for each destination
addresses
3.6. Complexity analysis

Here, we analyze the time complexity of the proposed alert
correlation system. Suppose that n is the number of alerts
and k is the alert dimension. In the first step, the probability
mass function can be computed with time complexity
O(n. log n). Then, we represent the partial entropy of
each alert with a k-dimensional vector, which takes
O(nk). Because in real systems n>> k, the computa-
tional complexity of this step is approximately O
(n. log n).

In the second step, we use DBSCAN algorithm, which
is the most time-consuming part in our framework. In
DBSCAN algorithm, each alert is visited possibly multiple
times. The computational complexity of DBSCAN without
any special structure is O(n2). Moreover, if a spatial index
such as R*-tree or KD-tree is used, the complexity can be
reduced to O(n. log n) [19].

In the third step, we generate the hyper-alerts by gener-
alization hierarchies. For this purpose, we need to visit
each alert only once. So the computational complexity of
this step is O(n ).

Now, let m be the number of generated hyper-alerts. In
the fourth step, which is an optional process, the number of
hyper-alerts can be reduced in two ways. One way is based
on the principle of maximum entropy in which we use the
genetic algorithm to solve Equation (13), and it takes
pology.
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O(gpi ) time to be solved where g is the number of gener-
ations, p is the population size, and i is the size of the
individuals, which is equal to the number of hyper-alerts.
So it can be rewritten as O(gpm). The other way to reduce
the number of hyper-alerts is using hyper-APE, which has
O(m. logm) computational cost.

Finally, in the last step, we can create the HG with time
complexityO(m). Therefore, the total computational complexity
of our framework is 2O(n. logn)+O(kn) +{O(m. logm) | O
(gpm)}+O(m). According to the fact that n>>m and n>> k,
the total computational complexity can be approximately
summarized as O(n. logn).
Table II. The result of E-correlator for LLS_DDOS_1.0 attack
scenario (MinPts = 5 and eps=0.0001 in density-based spatial

clustering of applications with noise algorithm).

Number of
raw alerts

Number of generated
hyper-alerts (without

running step 4)
Reduction
ratio (%)

Phase 1 785 Two 99.74
Phase 2 25 Two (one of them

is shared between
Phases 2 and 3)

92.00

Phase 3 80 Two (one of them
is shared between
Phases 2 and 3)
(one of them is
shared between
Phases 3 and 4)

97.50

Phase 4 19 One (shared between
Phases 3 and 4)

94.74

Phase 5 33 910 Two 99.99
The total of
raw alerts

34 819 Seven 99.98
4. EXPERIMENTS

In this section, we test the proposed entropy-based corre-
lator by using DARPA2000 [22] dataset to demonstrate
how it works. Even after 13 years of its generation, it
has been used in many papers because it was introduced
and it is the only choice to compare alert correlation
methods [4,23–26].

4.1. DARPA2000 dataset

DARPA 2000 is a well-known IDS evaluation dataset
created by MIT Lincoln Laboratory over the topology
shown in Figure 4. There are two attack scenarios in
DARPA2000 dataset, LLS_DDOS_1.0, and LLDOS2.0.2.
In both scenarios, the attacker tries to install components
necessary to run a distributed denial-of-service (DDoS)
and then launch a DDoS at a US government site. The
main difference between them is that the attacker uses
IPSweep and Sadmind Ping to find out the vulnerable hosts
in LLS_DDOS_1.0 while DNS HInfo is used in
LLDOS2.0.2; second, the attacker attacks each host
individually in LLS_DDOS_1.0, while in LLDOS2.0.2,
the attacker breaks into one host first and then fans out
from it.

In this paper, we only show the results of evaluation on
LLS_DDOS_1.0. In this scenario, the attacker first sends
Internet control message protocol (ICMP) echo-requests
to many IP addresses and listens for ICMP echo-replies
to determine which hosts are “up” and then uses the “ping”
option of the sadmind exploit program to determine which
of the discovered hosts are running the sadmind service. In
the next phase, the attacker tries to break into the hosts
found to be running the sadmind service in the previous
phase and launches the sadmind remote-to-root exploit
several times against each host, each time with different
parameters. After gaining root access in each host, the
Figure 7. Generated hyper-alerts graph for LLS_DDOS_1.0 attack sce
tering of applications wi

830 Sec
attacker uses telnet, rcp, and rsh to install a DDoS program
in the compromised machines. However, the five phases of
the attack scenario are as follows:
Phase 1:
nario (MinPt
th noise algo

urity Comm. N
Perform IPsweep to look for live hosts from a
remote site.
Phase 2:
 Probe live hosts to look for vulnerable ones
running sadmind service.
Phase 3:
 Break in these hosts via sadmind vulnerability,
both successful and unsuccessful.
Phase 4:
 Install Trojan mstream DDoS software on
three hosts.
Phase 5:
 Launch DDoS.
Here, we have performed the experiments, with the DMZ
network traffic of LLS_DDOS_1.0 that contains 34819 alerts,
which indicated the five steps of DDoS attack on the target IP
address 131.84.1.31. The mentioned E-correlator system is
applied to this set of alerts. According to the network topology
used to capture the DARPA dataset (Figure 4), we suppose the
following generalization hierarchies:

• The IP addresses can be generalized into Zone1,
Zone2, Zone3, Zone4, and outside.

• The source and destination ports of port-oriented
IP connections can be generalized into privileged
(1–1024), registered (1025–49 151), and dynamic
(49152–65 535).
s=5 and eps=0.0001 in density-based spatial clus-
rithm).
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The generated hyper-alerts are shown in Table I while
we assume that MinPts = 5 and eps = 0.0001 in the
DBSCAN algorithm. With a brief review on these hyper-
alerts, we can reach the following results (Table II):

• Getting the promising reduction ratio of (34819� 7)/
34819 ≅ 99.98% in LLS_DDOS_1.0 attack sce-
nariowithout running step 4.Wemeasured the reduction
ratio similar to [27] by dividing the difference between
the number of raw alerts and generated hyper-alerts into
the total number of raw alerts.

• The obtained seven hyper-alerts cover the general
information existed in each of the five phases of attack
senario and provides a more global view of what is
happening in the network.

If the number of produced hyper-alerts exceeds a certain
threshold, the network supervisor can reduce the number
of reported hyper-alerts by running step 4. We have
repeated the experiment with two different values of
MinPts and report the results in Appendix. If we select
a large value for MinPts parameter, the alerts reduction
ratio will be increased. But in this state, we will lose
many details, and the generated HG cannot be useful to
guess the attack scenario (Tables III and IV and Figure 5).
On the other hand, decreasing the value of MinPts may
lead to increase the number of produced hyper-alerts
(Tables V and VI and Figure 6). So we have to make a
trade-off between the number of hyper-alerts and the
amount of detail lost.

For more visualization, we can generate the HG from the
list of produced hyper-alerts. Figure 7 shows the HG of
LLS_DDOS_1.0 attack scenario, which is generated from
the hyper-alerts listed in Table I. By this representation of
hyper-alerts, the network supervisor can easily find the flow
of alerts and detect the suspicious nodes, victim nodes, and
the attack strategy from HG. In addition, the given HG can
help us in selecting a suitable response strategy.

5. CONCLUSION

This paper presents a new alert correlation system based on
entropy called E-correlator. The main idea of the proposed
system is to correlate the raw alerts without any predefined
knowledge. In addition, the correlated alerts have the same
quantity of information as the original. For this purpose,
we defined the concept of alert partial entropy. The alerts
with the similar partial entropy indicate the same informa-
tion; hence, we can correlate them into a specific cluster
and report them by an intelligible hyper-alert. If the num-
ber of produced hyper-alerts exceeds a certain threshold,
the network supervisor can reduce them by the principle
of maximum entropy or usage of the concept of hyper-
APE. Finally, for more visualization, we create the HG
from the list of hyper-alerts. We validated E-correlator sys-
tem on attack scenario LLS_DDOS_1.0 in DARPA 2000
dataset. The reduction ratio with the experiments was
99.98% while the generated hyper-alerts have the enough
Security Comm. Networks 2015; 8:822–836 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
information to discover the attack scenario. In addition,
the HG provides high-level view of intrusion alerts. In
our future research, we plan to investigate additional infor-
mation sources other than the raw alerts (such as attack
graph and vulnerabilities existed in application, services,
and protocols of hosts) to use in E-correlator system.
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APPENDIX

In this section, we have repeated the experiment with two
different values of MinPts and report the results in the
following. If we select a large value for MinPts parameter,
the alerts reduction ratio will be increased. But in this state,
we will lose many details and the generated HG cannot be
useful to guess the attack scenario. On the other hand,
decreasing the value of MinPts may lead to increase the
number of produced hyper-alerts.
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Table IV. The result of E-correlator For LLS_DDOS_1.0 attack scenario (MinPts = 10 and eps=0.0001 in density-based spatial
clustering of applications with noise algorithm).

Number of raw alerts Number of generated hyper-alerts (without running step 4) Reduction ratio (%)

Phase 1 785 Two 99.74
Phase 2 25 Two (one of them is shared between Phases 2 and 3 and

Phases 4 and 5)
92.00

Phase 3 80 One (shared between Phases 2 and 3 and Phases 4 and 5) 98.75
Phase 4 19 One (shared between Phases 2 and 3 and Phases 4 and 5) 94.73
Phase 5 33 910 Two (one of them is shared between Phases 2 and 3 and

Phases 4 and 5)
99.99

The total
of raw alerts

34 819 Five 99.99

Figure 5. Generated hyper-alerts Graph for LLS_DDOS_1.0 attack scenario (MinPts = 10 and eps=0.0001 in density-based spatial
clustering of applications with noise algorithm).
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Table VI. The result of E-correlator for LLS_DDOS_1.0 attack scenario (MinPts = 2 and eps=0.0001 in density-based spatial
clustering of applications with noise algorithm).

Number of
raw alerts Number of generated hyper-alerts(without running step 4) Reduction ratio (%)

Phase 1 785 Two 99.74
Phase 2 25 Two (one of them is shared between Phases 2 and 3) 92.00
Phase 3 80 Four (one of them is shared between Phases 2 and 3)

(three of them are shared between Phases 3, 4, and 5)
95.00

Phase 4 19 Five (three of them are shared between Phases 3, 4, and 5) 73.68
Phase 5 33 910 Five (three of them are shared between Phases 3, 4, and 5) 99.99
The total of
raw alerts

34 819 11 99.97

Figure 6. Generated hyper-alerts graph for LLS_DDOS_1.0 attack scenario (MinPts = 2 and eps=0.0001 in density-based spatial clus-
tering of applications with noise algorithm).
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