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Abstract— over the last few years, manifold clustering has 

attracted considerable interest in high-dimensional data 

clustering. However achieving accurate clustering results that 

match user desires and data structure is still an open problem. One 

way to do so is incorporating additional information that indicate 

relation between data objects. In this paper we propose a method 

for constrained clustering that take advantage of pairwise 

constraints. It first solves an optimization program to construct an 

affinity matrix according to pairwise constraints and manifold 

structure of data, then applies spectral clustering to find data 

clusters. Experiments demonstrated that our algorithm 

outperforms other related algorithms in face image datasets and 

has comparable results on hand-written digit datasets.    
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I.  INTRODUCTION 

In many areas high-dimensional data is arising and 
traditional clustering approaches have substantial problems in 
term of efficiency and effectiveness [1] when working with 
these data. Quality of density estimates around each data point 
which are utilized to characterizing cluster structure are reduced 
because of sparseness of high-dimensional data [2]. On the other 
hand, several distance measures fail to show data distances 
correctly when dimensionality increases [3, 4]. Therefore, 
identifying close and distant data and recognizing suitable 
cluster boundaries becomes more difficult. So it is needed to use 
another approach for high-dimensional clustering, due to 
difficulties with using density-based and distance-based 
methods. The idea is to assume data are on lower dimensional 
manifolds and find a good projection of data [5]. Recently some 
studies have shown that we can improve clustering performance 
by using underlying manifold structure of the data [6-8]. 
Manifold learning [9, 10] aims to find low-dimensional non-
linear manifolds from high dimensional data. Manifold methods 
is among methods that are used frequently for high-dimensional 
data clustering. 

There is another method in addition to manifold clustering to 
cluster high-dimensional data. With the assumption that each 
cluster is combined of multiple components, Expectation 

Maximization (EM) can be adjusted to learn the clusters as a 
mixture model. In this approach, the probabilities in Gaussian 
Mixture Model (GMM) are estimated. 

Spectral clustering has shown good performance as a tool for 
clustering high-dimensional data. Spectral clustering [11] which 
originates from spectral graph theory, is stable for high-
dimensional data clustering [12] and outperformed traditional 
clustering algorithms because of its polynomial-time and 
deterministic solution [11]. Nevertheless, spectral clustering 
performance is heavily related to the affinity matrix it works on. 
Thus, it is necessary to construct an affinity matrix that reflects 
similarity information among each pair of data. Traditional 
weighting methods like ϵ-ball  neighborhood, k-nearest 
neighbors, inverse Euclidean distance [13, 14] and Gaussian 
RBF[12], depend on Euclidean distance in the ambient data 
space, so it does not work properly on high-dimensional data. To 
overcome this difficulties, it is proposed to use sparse 
representation. 

Sparse representation, originating from compressed sensing 
[15], is shown to be an effective tool for representing and 
compressing high-dimensional data. It represent each data object 
based on a sparse linear weight vector of other data objects. 
Sparse representation convert ambient space to a sparse space. 
[16] used individual sparse coefficients to construct an affinity 
matrix for spectral clustering. 

In many real world problems that is tied with high-
dimensional data, there is some side information in form of 
labels or constraints, which can help the process of clustering. 
So it is straightforward to apply Semi-Supervised Learning 
(SSL) that exploits both unlabeled and labeled data objects, on 
this problems [17-19] 

Our concentration is on clustering with side information of 
type pairwise constraints (i.e. constrained clustering) that have 
two different typical form, named Must-links (ML) and cannot-
links (CL). ML constraints show the pairs of data objects that 
must be specified into the same clusters and CL constraints show 
the pairs of data objects that cannot be specified into the same 
clusters. It has been shown that side information can improve 
clustering performance substantially [20, 21]. 



 

One approach to integrate constraints to spectral clustering 
is to modify affinity matrix so that the must-links and cannot-
links be enforced and then applying typical spectral clustering 
on this affinity matrix [22]. 

All the method mentioned above have one or several 
limitation listed below: 

(1) Most of semi-supervised methods cannot handle high-
dimensional data and capture their geometrical 
structure to have good clustering performance. 

(2) GMM-based and manifold learning methods 
mentioned, don’t consider how to use prior knowledge 
given by experts in the form of pairwise constraints 

(3) Subspace clustering methods work only on high-
dimensional data with linear structure. 

(4) Some methods of constrained clustering are sensitive 
to ordering of constraints feed.    

In order to address these limitations, we investigate the 
problem of semi-supervised multi-manifold clustering which is 
an appearing pattern recognition and machine learning topic and 
has variety of applications including face detection, document 
and image ranking [23], image and video annotation [24] web-
scale image search [25, 26], protein classification [27], etc. We 
propose Weighted Semi-Supervised Manifold Clustering 
(WSSMC) which main goal is to achieve an affinity matrix that 
reflect the intrinsic manifold structure underlying data objects. 
To do so, we inherited one recent work [28] on sparse manifold 
clustering which is proven to be very efficient in finding clusters 
in high-dimension space and the ability to use side information 
given by user has been added to it. They suggested to rebuild 
each data object 𝑥𝑖 using another objects in 𝑋 in a least square 
manner. Their goal is to fit a subspace to point 𝑥𝑖 that has 
shortest distance to point 𝑥𝑖 and is spanned by as few as possible 
points in 𝑋. It causes the subspace to have the dimension as 
lowest as possible. They used a proximity inducing matrix that 
is based on Euclidean distance and solved an optimization 
program to achieve a matrix for applying spectral clustering on 
it. We have changed the method to create proximity matrix so 
that pairwise constraint information can be utilized. 

The remaining of this paper is organized as follows: Section 
II briefly reviews some methods that are closely related to our 
method. Section III introduces the overall framework of 
WSSMC and some related discussions. Extensive experiments 
are conducted in Section IV. Finally, we conclude the paper in 
section V. 

II. RELATED WORKS 

Constrained clustering algorithms can be divided into two 
main categories: (1) search-based and (2) similarity-based.             
1) Search-based methods adjust the solution space to be 
searched according to the constrained via modifying the 
objective function of clustering algorithms. One common 
modification is adding penalty terms to objective function for 
unsatisfied constraints. Another search-based approach is to use 
prior knowledge to initialize clusters. Seminal work on search-
based constrained clustering is COP-k-means. It follows similar 
clustering process as k-means while respecting constraints not to 

be violated in the clustering process. This strict approach causes 
great performance degradation when constraints are noisy. In the 
case of adding penalization terms to objective function, the 
papers [29-33] work based on k-means and nonnegative matrix 
factorization clustering. COnstrained 1-Spectral Clustering 
(CO1SC) [34] is an extension of spectral clustering to the semi-
supervised setting and iteratively attempts to solve exactly an 
NP-hard discrete optimization problem that captures 2-way 
constrained clustering. K-way partitions are computed via 
recursive calls to the 2-way partitioner. It aims to partition a 
similarity graph such that edges within clusters have high 
weights and edges between clusters have low weights. Naturally, 
iterative algorithms are expected to be somewhat slower. 
CO1SC adapt the optimization objective of spectral clustering to 
incorporate constraints and propose an alternative optimization 
procedure. CO1SC handles constraints in the Eigen space 
construction stage and tries to fulfill all of them by adding terms 
in spectral clustering to penalize the violation of constraints. 
Recently, [35] proposed a robust semi-supervised subspace 
clustering method based on Non-Negative Low Rank 
Representation (NNLRR). It combines low-rank representation 
framework and Gaussian Fields and Harmonic Function (GFHF) 
method in a unified optimization problem. Affinity matrix 
construction and subspace clustering are done simultaneously in 
NNLRR. As one of the latest work in constrained clustering 
domain, Related DP-means (RDP-means) [36] extend k-means 
for incorporating side information while it doesn’t need number 
of clusters. It works based on DP-means algorithm [37] and uses 
relational side information.  

Gaussian Mixture Model (GMM) is another tool that has 
been applied to cluster data. It estimates the parameters of 
multiple Gaussian components using Expectation-Maximization 
(EM). Locally Consistent GMM (LCGMM) [6] has been 
proposed to improve clustering performance via exploiting the 
local manifold structure of data. Gan et al [38] introduced a 
Semi-supervised LCGMM (Semi-LCGMM) to incorporate 
prior knowledge into maximum likelihood function of 
LCGMM. As another GMM-based method, Xing et al [39] 
proposed a multi-manifold regularized, semi supervised 
Gaussian mixture model (M2SGMM) to classify multiple 
manifolds. They use a similarity graph that preserve local and 
geometrical consistency. Geometrical similarity is measured by 
applying local tangent space. 

2) Similarity-based methods try to learn a distance metric 
or modify similarity matrix of data objects in accordance with 
the constraints so that data objects with similar cluster labels 
become closer and data objects with different cluster labels 
become farther from each other. Relevant Components Analysis 
(RCA) [40] is an efficient algorithm to learn a Mahalanobis 
distance metric as a linear transformation of data features. 
Although RCA is unable to take advantage of cannot link 
constraints. So [41] proposed Discriminative Component 
Analysis (DCA) algorithm to address this drawback. It is shown 
that Mahalanobis distance metric cannot handle data with multi-
modal distribution because it learns a fixed metric for entire 
input space [42]. 

Modifying similarity matrix is usually done in spectral based 
algorithms. Constrained Clustering via Spectral Regularization 
(CCSR) [43] is proposed to incorporate the constraints in 



 

clustering multi-class data using SDP. Flexible constrained 
spectral clustering (CSP) [44] solves an eigenvalue problem to 
reduce the space of feasible solutions in order to satisfy certain 
amount of constraints. However, it require to compute a full-
eigenvalue decomposition. 

III. THE PROPOSED METOD 

As mentioned above, the most important step in spectral 

clustering is to build the similarity matrix especially in case of 

having many intersecting or non-intersecting manifolds. To 

construct a good affinity matrix for clustering, main challenge is 

to find a formulation to connect data points of the same 

manifolds to each other. Based on the method proposed in [28], 

Given a set of 𝑁 data points {𝑥𝑖 ∈ 𝑅
𝐷}𝑖=1

𝑁 lying in low-

dimensional manifolds {ℳ𝑙}𝑙=1
𝑐 with intrinsic dimensions 

{𝑑𝑙}𝑙=1
𝑐 , we construct the affinity matrix. For each data point 𝑥𝑖, 

first we use a formulation to find the data points which are in the 

same manifold with 𝑥𝑖, then choose a few nearest point between 

them to represent 𝑥𝑖. Let ℬ𝑖 ∈ 𝑅
𝐷be the smallest ball for each 

𝑥𝑖 ∈ ℳ𝑙, that contains 𝑑𝑙 + 1 nearest neighbors of 𝑥𝑖 from ℳ𝑙 

and 𝒩𝑖 ∈ 𝑅
𝐷 be the set of all data points in ℬ𝑖  excluding 𝑥𝑖 that 

contains data points from different manifolds. Suppose for all 𝑖 
there exist an 𝜖 ≥ 0 such that the nonzero entries of the sparsest 

solution of 

‖Σ𝑗∈𝒩𝑖
𝑐𝑖𝑗(𝑥𝑗 − 𝑥𝑖)‖

2
≤ 𝜖      𝑎𝑛𝑑      Σ𝑗∈𝒩𝑖

𝑐𝑖𝑗 = 1          (1) 

Corresponds to the 𝑑𝑙 + 1 neighbors of 𝑥𝑖 from ℳ𝑙. In other 

word, the solution 𝐶𝑖 is a sparse vector and non-zero elements in 

it correspond to data points which are neighbors of 𝑥𝑖 and there 

are in the same manifold as 𝑥𝑖. These neighbors span an affine 

subspace that passes near 𝑥𝑖 up to 𝜖 error and has the lowest 

dimension 𝑑𝑙. 
It is possible for solution 𝐶𝑖 to not be unique. For example, in 

Fig. 1, a solution of (1) for two non-zero element can correspond 

to an affine combination of 𝑥2 and 𝑥3 or an affine combination 

of 𝑥2 and 𝑥5. So to select between all possible 𝐶𝑖𝑠, the solution 

𝐶𝑖 that contains nearest neighbors to 𝑥𝑖 as nonzero elements, we 

use the below optimization program that tries to select a few data 

points from neighbors of 𝑥𝑖 subject to constraint in (1) at the 

same time that it tries to satisfy the pairwise constraints that the 

user has provided. 

min‖𝑸𝑖𝑪𝒊‖1      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      ‖𝑿𝑖𝑪𝑖‖2 ≤ 𝜖,     𝟏𝑇𝑪𝑖 = 1     (2) 

This objective function penalize each data point according to 

its proximity to 𝑥𝑖 and existence of must-link or cannot-link 

between the data point and 𝑥𝑖. Data points with smaller distance 

to 𝑥𝑖 and data points for which there are a must-link with 𝑥𝑖, 
have lesser penalty compared with data points with larger 

distance to 𝑥𝑖 and data points for which there are a cannot-link 

with 𝑥𝑖. We name data points those have small distance to 𝑥𝑖 and 

data points that have a must-link with 𝑥𝑖 as target neighbors 

(TNs). 𝑙1-norm increases Sparsity of solution 𝐶𝑖 and proximity 

matrix 𝑄𝑖  which is a positive-definite diagonal matrix tries to 

select TNs. So elements of 𝑄𝑖  should have small values in the 

case of TNs to allow assigning non-zero coefficients to them. 

Conversely, for non-target neighbors (NTNs), it should have 

large values in order to assigning zero coefficient to them. The 

way that we proposed to construct proximity matrix 𝑄𝑖  based on 

pairwise constraints is expressed in next section. The 

optimization program (2) can be rewritten using lagrangian 

method: 

min 𝜆‖𝑸𝑖𝑪𝒊‖1 +
1

2
‖𝑿𝑖𝑪𝒊‖2

2        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝟏𝑇𝑪𝑖 = 1      (3) 

Where the parameter 𝜆 > 0 sets the trade-off between the sparse 

solution and the reconstruction error. 𝑋𝑖 denotes the matrix of 

normalized vectors {𝑥𝑗 − 𝑥𝑖}𝑗≠𝑖 as: 

𝑋𝑖 = [
𝑥1−𝑥𝑖

‖𝑥1−𝑥𝑖‖2
, … ,

𝑥𝑁−𝑥𝑖

‖𝑥𝑁−𝑥𝑖‖2
] ∈ 𝑅𝐷∗(𝑁−1)           (4) 

A. Proximity matrix construction 

We proposed a formulation to manipulate the proximity 

inducing matrix for the sake of taking advantage of pairwise 

constraints. As it is expressed, it is required for TNs of data point 

𝑥𝑖 to have smaller 𝑸𝒊 comparing with non-TN data points. So 

we suggest following assignment for 𝑞𝑖𝑗: 

𝑞𝑖𝑗 =

{
 
 

 
 (

−𝑏𝑖𝑗

2
) + 0.5 ∈ [0,0.5)          𝑥𝑖 , 𝑥𝑗 ∈ 𝑀

(
−𝑏𝑖𝑗

2
) + 0.5 ∈ (0.5,1]           𝑥𝑖 , 𝑥𝑗 ∈ 𝐶

‖𝑥𝑗−𝑥𝑖‖2

Σ𝑡≠𝑖‖𝑥𝑗−𝑥𝑖‖2

∈ (0,1]                      𝑒𝑡𝑐

           (5) 

Where 𝑀 and 𝐶 are the sets of must-links and cannot-links 

respectively. 𝑏𝑖𝑗  is also equal to the importance that user assign 

to each pairwise constraint. The importance value can be 

between a value near 0 (as the lowest importance) and 1 or -1 

(as the highest importance) and is positive for must-links and 

negative for cannot-links: 

𝑏𝑖𝑗 ∈ {
[−1. .0)       𝑥𝑖 , 𝑥𝑗 ∈ 𝐶 

(0. .1]          𝑥𝑖 , 𝑥𝑗 ∈ 𝑀
     (6) 

Most of constraint clustering algorithms represent each 

pairwise constraint as 0 or 1 for cannot-link and must-link 

constraints, respectively. Although in some real world 

applications it is not possible for the user to assign a crisp 

importance value to each constraint. So by applying this 

weighted approach, we expect to improve usability of our 

algorithm. 
According to equations (5) and (6), data points with any side 

information about them, have been assigned a 𝑞𝑖𝑗  according to 

their distance from each other. So data points with short distance 
get small 𝑞𝑖𝑗  and data points those are farther from each other 

get a large 𝑞𝑖𝑗 . On the other hand, data points whose absolute 

importance value is large, have small 𝑞𝑖𝑗 . In the contrary, data 

points with small absolute importance value get a large 𝑞𝑖𝑗 . 
Although our algorithm can be utilized with crisp importance 

𝑥1 𝑥2 𝑥3 

𝑥4 

𝑥5 

𝑥6 𝑥7 

𝑥8 

Fig. 1: It is possible for solution 𝐶𝑖 to not be unique based 

on distance of neighbors of 𝑥𝑖 



 

values in which situation each constraint has been assigned 1(-
1) as importance value, indicating that all constraints has equal 
importance. According to equation (5), in crisp approach, the 
value 𝑞𝑖𝑗  related to each cannot link is 1 and the value 𝑞𝑖𝑗  related 

to each must-link is 0. Following this method, TNs of a data 
point 𝑥𝑖, get a small 𝑞𝑖𝑗  and consequently non-zero 𝑐𝑖𝑗 ,because 

of having short distance to 𝑥𝑖 or having a must-link with 𝑥𝑖 and 
large 𝑞𝑖𝑗  causes to non-TN points get zero 𝑐𝑖𝑗 . 

B. Clustering 

By solving optimization program (3), we can use solution 𝑪𝒊 
to construct similarity graph to obtain clustering of the data. 

Considering each data point as a node of graph, we connect each 

node 𝑥𝑖 to other nodes according to elements of 𝑪𝒊. Since the 

non-zero elements of 𝑪𝒊 are expected to correspond to TNs of 

𝑥𝑖, the constructed graph ideally has several components in 

which nodes from same manifolds are connected to each other 

and are separated from the other nodes. Weights are defined as: 

𝑤𝑖𝑖 = 0 , 𝑤𝑖𝑗 =

𝑐𝑖𝑗
‖𝑥𝑗 − 𝑥𝑖‖

Σ𝑡≠𝑖 (
𝑐𝑖𝑡

‖𝑥𝑡 − 𝑥𝑖‖
)
, 𝑗 ≠ 𝑖 

The similarity matrix of the constructed graph is expected to 

have the ideal form of bellow: 

𝑾 ≜ [|𝑤1|   …   |𝑤𝑁| ] = [

𝑾[1] 0

0 𝑾[2]
⋯

0
0

⋮ ⋱ ⋮
0       0 ⋯ 𝑾[𝑛]

] 𝚪 

Where 𝑾[1] is the similarity matrix of the data lying on 

manifold ℳ𝑙  and 𝚪 ∈ ℝN∗𝑵 is an unknown permutation matrix. 

Clustering the data can be done by applying spectral clustering 

to 𝑾. 

IV. EXPERIMENTS 

Datasets: we have conducted a set of experiments to 

investigate the performance of our algorithm on 2 Synthetic 

dataset and 5 benchmark dataset that are listed in TABLE 1. All 

these datasets have been used in state of art articles and can be 

predicated as high-dimensional data. All of experiments are 

performed on a system configured with 2.13GHz CPU and 2GB 

of RAM memory under MATLAB 2012b. All hand-written 

digits datasets which their number of samples are greater than 

1000, are reduced to datasets with 1000 samples via random 

selections.  

To show impact of side-information, experiments are performed 

with four different side-information rate. Having true labels of 

each data set, we have chosen 0.01, 0.02, 0.03 and 0.04 of 

pairwise relations as constraints in each experiment, 

respectively. 

Compared algorithms: As spectral clustering methods are 

based on graph theory and it is shown that they work properly 

on high-dimensional data, we concentrate on this methods and 

most of algorithms which are compared with our algorithm are 

in this category. On the other hand, prior knowledge in 

constrained clustering has two form of labeled data or pairwise 

constraints. Although achieving pairwise constraints is easier 

than expensive process of obtaining labels of samples, but some 

constrained clustering algorithms only work on data sets with 

labeled samples. 

Two types of algorithms are compared with the proposed 

method. As it is possible to obtain pairwise constraints from 

labels, we can compare our algorithm with algorithms that work 

based on labels. We have compared our algorithm with NNLRR, 

M2SGMM and Semi-LCGMM as algorithms that work based 

on labels. On the other hand RDP-means, CCSR, CSP and 

CO1SC have been compared with WSSMC as algorithms that 

work based on pairwise constraints. CO1SC has been 

implemented in two forms that have different definition of 

laplacian, named ratio cut (CO1SC-RC) and normalized cut 

(CO1SC-NC.)  

Evaluation metrics: We have used BCubed F-measure or 

pairwise F-measure to evaluate clustering results. Based on 

comparison performed between different extrinsic clustering 

evaluation metrics in [45], pairwise F-measure has better 

performance. F-measure definition is based on precision and 

recall metrics: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
# 𝑃𝑎𝑖𝑟𝑠 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐼𝑛 𝑆𝑎𝑚𝑒 𝐶𝑙𝑢𝑠𝑡𝑒𝑟

# 𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑖𝑟𝑠 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐼𝑛 𝑆𝑎𝑚𝑒 𝐶𝑙𝑢𝑠𝑡𝑒𝑟
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
# 𝑃𝑎𝑖𝑟𝑠 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐼𝑛 𝑆𝑎𝑚𝑒 𝐶𝑙𝑠𝑢𝑡𝑒𝑟

# 𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑖𝑟𝑠 𝐼𝑛 𝑆𝑎𝑚𝑒 𝐶𝑙𝑢𝑠𝑡𝑒𝑟
 

 

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
TABLE 1: Datasets 

Name Type # of clusters # samples per cluster # of attributes # of total samples 

2trifoils Synthetic 2 100 100 200 

2semi_trifoils-

plane_with_hole 
Synthetic 3 Different 100 468 

USPS Hand-written digits 10 1100 256 11000 

MNIST Hand-written digits 10 Different 784 70000 

ORL Face 40 10 64*64 400 

UMIST Face 20 20 to 30 92*112 575 

YALE Face 15 11 64*64 165 

 

 

 



 

 
(a) 

 
(b) 

Fig. 2: The impact of changing 𝜆 and 𝐾𝑀𝑎𝑥 on F-measure value for WSSMC algorithm applied on (a) ORL and (b) USPS datasets respectively with side-

information rate of 0.01 

A. Comparing with pairwise constraint-based algorithms 

In this subsection we study the performance of WSSMC … 
The parameters used in WSSMC are empirically set for each 
dataset. For example, in the following figure (Fig. 2 (a)) we can 
see different F-measure values obtained by applying WSSMC 
algorithm on ORL dataset and USPS dataset with 0.01 side 
information for 𝐾𝑀𝑎𝑥 ∈ {10,20,30,40,50,60,70,80,90,100} 
and 𝜆 ∈ [1,30]. Points with a color near dark red has greater F-
measure and points with lighter color has less F-measure value.  
It shows that greater F-measure values occur for 𝐾𝑚𝑎𝑥  values 
more than 60 and the greatest value for F-measure is occurred 
having 𝐾𝑀𝑎𝑥 = 90 and 𝜆 = 15. 

The resulting parameter assignments for all datasets for 
WSSMC algorithm are shown in TABLE 2. The parameters for 
other algorithms are set as the value that their authors 
configured. Each experiment has been run 5 times and the 
average F-measure calculated. 

Figure 3 shows the F-measure value versus different side-
information rates for different algorithms on some datasets listed 
in TABLE 1: Datasets. As it is clear, our proposed algorithm, 
WSSMC, outperforms in all datasets except USPS. Also it has 
comparable results on USPS dataset. Generally, adding more 
side information, improve clustering result in most of datasets 

TABLE 2: WSSMC parameter assignment 

Datasets 𝜆 𝐾𝑀𝑎𝑥  

2trifoils 17 10 

2semi_trifoils-plane_with_hole 1 10 

USPS 29 90 

MNIST 30 100 

ORL 15 90 

UMIST 27 30 

YALE 10 80 

and algorithms. Increasing side-information rate causes great 
growth in F-measure value for CO1SC-RC, CO1SC-NC and 
CSP. It can be seen that WSSMC is more robust. 

Considering manifold structure information is one reason of this 

robustness. WSSMC has the best performance on two synthetic 

datasets with having F-measure equal to 1. Also, on the face 

image datasets, it is WSSMC that has the best F-measure value. 

B. Comparing with label-based algorithms 

In this subsection we compare clustering result of WSSMC 
with Semi-LCGMM, M2SGMM and NNLRR algorithms. This 
algorithms have good precision, but very weak recall causes to 
low F-measure value for this algorithms. As it is shown in TABLE 

3, WSSMC algorithm has the rank 1,2 and 3 in precision value 
of clustering results on 2trifoils, MNIST and ORL respectively, 
but having the best recall value on all datasets, causes to 
WSSMC has the best F-measure value among all algorithms. 
The best values in each column become bolded. NNLRR and 
Semi-LCGMM don’t respond on MNIST and ORL respectively. 
Figure 4 shows clustering performance of label-based algorithms 
for different side-information rates. WSSMC outperform other 
algorithms on 2trifoils and ORL dataset and has comparable 
result on MNIST. Again we can see robustness of WSSMC on 
all datasets. 

V. CONCLUSION 

In this paper, we have introduced a novel semi-supervised 
method for clustering high-dimensional data based on sparse 
representation. It first construct an affinity matrix by solving an 
optimization program that considers side-information and 
manifold structure information, simultaneously. Then, it apply 
spectral clustering on constructed affinity matrix to cluster data. 
Extensive experiments show that our algorithm outperformed on 
face image datasets and has comparable results on hand-written 
digits datasets. 
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TABLE 3: Clustering evaluation on different datasets for label-based algorithms 

 

 

 

Method 2trifoils MNIST ORL 

metric Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure 

Semi-

LCGMM 
0.705993 0.598019 0.644841 0.55666 0.417249 0.47557 0 0 0 

WSSMC 1 1 1 0.59033 0.527644 0.556997 0.725926 0.64734 0.684154 

M2SGMM 0.95202 0.498018 0.653946 0.908669 0.099936 0.180068 0.805 0.022299 0.043396 

NNLRR 0.950808 0.497384 0.653114 0 0 0 0.818519 0.022674 0.044125 

Figure 3: Clustering results of pairwise constraint based algorithms on six datasets 

Figure 4: Clustering results of label-based algorithms on three datasets 
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