بررسی تغییرات دبی جریانهای زیر سطحی در دامنه های مركب (غير یکنواخت)

علي طالبی، محمد تقی دستورالی

1. استادیار دانشکده منابع طبیعی دانشگاه برد

چکیده:

برای مدل کردن فرآیندهای هیدرولوژیکی به دلیل اقلیمی از مدل‌های استفاده می‌شود که بر مبنای معادله سه بعدی ریجاردل هستند. معادله سه بعدی ریجاردل مدل‌هاي غیر خطي است و برای حل این دستگاه معادلات کوچکی بايد تبدیل زیادی از معادلات حل شوند. باعث شده که مدل‌ها بیش از خود داشته باشند و سپس با توجه به حالت طبیعی جریان آب زیر سطحی و فرايندهای ذخیره به صورت سه بعدی در مقاله، دامنه و خصوصا در دامنه‌ها با ویژگی‌های توپوگرافی مختلف، می‌توان از مدل‌های ساده تر (کم بعد شده) اما واقعاً گرا استفاده کرد. ضمن اینکه نتایج این مدل‌ها نیز تا حد زیادی با مدل‌های سه بعدی ریجاردل همخواهی دارد. در این تحقیق، پس از توسعه مدل‌های بوسیله‌ای استفاده از آن در دامنه‌های مختلف، دیده می‌شود که دامنه‌های هایبی که شامل پلان‌ها همگراست، نسبت به دامنه‌ها واقعاً دیتر تختیشن شده و ضمناً حجم ذخیره آب آنها بیشتر است.

واژه‌های کلیدی: جریانهای زیر سطحی، دامنه‌های غیر یکنواخت، هیدرولوژی دامنه

Abstract:

Discharge variations of subsurface flow in complex hillslopes

In attempting to accurately model the three-dimensional hillslope hydrological processes, 3D Richards equation models are often used. The 3D Richards equation is highly non-linear and requires the solution of extremely large systems of equations even for small problems (Paniconi et al., 2003). Moreover, the parameterization and calibration of these models is often cumbersome due to the small amount and low accuracy of the available data (Hilberts, 2006). Therefore, to account for the three-dimensional hillslope shape in which the groundwater flow and storage processes take place, simple (low-dimensional) but physically realistic models that represent hydrological processes at the hillslope scale are needed for reliable simulation of
hillslope stability at the landscape scale. In this research, after developing the bousinesq model, the obtained model is applied in different hillslopes. Based on the obtained results, the hillslopes with convergent plan shape, are evacuated later than divergent hillslopes. Moreover, the convergent and concave hillslopes have more water storage than divergent and convex hillslopes.

Key words: subsurface flow, complex hillslopes, hillslope hydrology

مقضمه:

فرآیند جریان زیر سطحی در یک دامنه، نحوه حرکت آب نفوذ یافته را کنترل می‌کند. این فرآیندها همچنین توزیع زمانی و مکانی فشار آب منتفی را تحت تاثیر قرار می‌دهد. در سال‌های اخیر، عده‌ای از محققین (تروخ و همکاران، 2002 و 2003؛ هربرت و همکاران، 2005؛ طالبی و همکاران، 2008، نشان داده‌اند که فرآیندهای جریان زیر سطحی تحت تاثیر شکل پلان، پرفکت طولی و خصوصیات هیدرولیک مخبوط مخالط در می‌باشند.

تلاش جهت توسعه فرآیندهای هیدرولوژیکی دامنه به صورت ریاضی مطرح شده در فرمول سه بعدی ریجارد (1931) بوده که حل آن به صورت عددی بسیار وقت گیر و دشوار است. به منظور اینکه در این دشواری‌های مربوط به مدل‌های سه بعدی، مجموعه ای از مدل‌های کم بعد شده توسعه یافته (تروخ و همکاران، 2002 و 2003). این مدل‌ها با کارگیری یک راه ساده برای مقایسه توانایی از شکل هندسی منطقه (دامنه) گزینه می‌کنند. این راه ساده که بر مبنای مفهوم ارائه شده توسط فن و ونس (1998) است، با کاهش بعد (سه بعدی به دو بعدی) بیجیدگی مدل‌ها را به نحو قابل ملاحظه‌ای کم می‌کند. این کاهش نتیجه‌ای از طریق معرفی تابع ظرفیت دختری سطحی (SC) حاصل می‌شود. این تابع (فن و ونس، 1998) شکل‌گیری ضایعات منتفی در طول دامنه را تعیین می‌کند و آن را برای شکل پلان از طریق تابع عرضی و یا پروفیل طولی أز طریق تابع عمق خاک محاسبه می‌کند.

مواد و روش‌ها:

ایده اول این تحقیق به این مقاله یک مدل فیزیکی جهت بررسی رابطه بین شکل دامنه شامل عرض دامنه (هگما، واگرا و مواری) و انحنای کف (محترف، مقعر صاف) با عكس عمل جریان‌های زیر سطحی در دامنه های های مرکب (غیرگرفتگی) می‌باشد. این مدل ترکیبی از یک مدل تمثیلی سه بعدی از دامنه های مرکب و یک مدل هیدرولوژی در حالت دینامیکی می‌باشد.

جهت بررسی شکل هندسی دامنه های مرکب که هم پرفکت طولی ناصف (مقعر با محدب) و هم شکل پلان (غیرگرفتگی) است (همگرا با واگرا و دارند)، یک مدل سه بعدی هندسی از دامنه مورد نیاز می‌باشد. هر چرا به عکس العمل
پیداکلیوزیکی دامنه متانژ از پروفیل طولی و شکل پلان دامنه می باشد. در واقع، پروفیل طولی کنترل کننده تغییرات سرعت گرانی و شکل دامنه نیز کنترل کننده ترکیب جریان‌های زیرسطحی مخصوصاً در قسمت خروجی دامنه می باشد.

الف) مدل زنومتری دامنه

کامل ترین مدل سه بعدی جریان پرسری شکل دامنه های مرکب، مدل Evans (1980) می باشد که رابطه ریاضی بین طول، عرض و ارتفاع در این مدل از این قرار است:

\[z(x, y) = E + H(1 - x/L)^a + \omega y^2 \]

(رابطه 1)

که در مبنای رابطه 2 ارتفاع یا فاصله افقی انتقال سطحی به طرف با پایین دست و فاصله افقی از مرکز دامنه در جهت عمود به طول یا ارتفاع اتفاق افتاده خروجی و انتخلای با دست دانه L طول كل دامنه n پارامتر انحنای پروفیل و 0 پارامتر شکل دامنه می باشد. در این معادله 0 توصیف کننده پروفیل طولی دامنه است که مقدار کوچکتر از یک برای دامنه های محدب مقدار یک برای دامنه های صاف و مقدار بزرگتر از یک برای دامنه های مقعر در نظر گرفته می شود. همچنین, 0 توصیف کننده شکل دامنه می باشد که مقدار منفی برای شکل واگرا مقدار صفر برای شکل مرکب و مقدار مثبت برای دامنه های با شکل همگرایی در نظر گرفته می شود. بدین ترتیب، با تغییر این دو پارامتر به شکل جهت دامنه های مختلف بدست می آید که مشخصات آنها در جدول شماره 1 و شکل سه بعدی آنها نیز در شکل شماره 1 نشان داده شده است. با توجه ذکر اینجا که شیب همه دامنه ها یکسان و برای 15 درجه و عمق خاک روز سنگ بستر 2 متر در نظر گرفته شده است.

جدول شماره 1- پارامترهای هندسی دامنه های مورد مطالعه

<table>
<thead>
<tr>
<th>شماره</th>
<th>پروفیل طولی</th>
<th>شکل دامنه</th>
<th>n [-]</th>
<th>ω [10^-3 m^-1]</th>
<th>سطح دامنه [m^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>مقفر</td>
<td>همگرا</td>
<td>1/5</td>
<td>2/7</td>
<td>2441</td>
</tr>
<tr>
<td>2</td>
<td>مقفر</td>
<td>همگرا</td>
<td>1/5</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>3</td>
<td>مقفر</td>
<td>واگرا</td>
<td>1/5</td>
<td>2/7</td>
<td>1049</td>
</tr>
<tr>
<td>4</td>
<td>صف</td>
<td>همگرا</td>
<td>1</td>
<td>2/7</td>
<td>2163</td>
</tr>
<tr>
<td>5</td>
<td>صف</td>
<td>موایی</td>
<td>0</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>6</td>
<td>واگرا</td>
<td>صف</td>
<td>1</td>
<td>2/7</td>
<td>1042</td>
</tr>
<tr>
<td>7</td>
<td>همگرا</td>
<td>محدب</td>
<td>0/5</td>
<td>2/7</td>
<td>1420</td>
</tr>
<tr>
<td>8</td>
<td>موایی</td>
<td>محدب</td>
<td>0/5</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>9</td>
<td>واگرا</td>
<td>محدب</td>
<td>0/5</td>
<td>2/7</td>
<td>2488</td>
</tr>
</tbody>
</table>
فرایندهای متخلخل خاک می‌باشد. جامع ترین توصیف ریاضی این فرایندهای دانه‌های بندی و بازدارنده می‌باشد که در کل، آن‌ها را در شرایط دینامیک بسیار مشکل است. جهت نقش فیزیکی مشترک این اثرات یک تاریخی خشکه دانه‌های ابعاد یافته‌ها را کاهش داده است. لذا با استفاده از تابع مکانیک و توسعه مدل‌های الگویی، (FAN & BRAS, 1998) می‌توانند مدل‌های تحقیقی هجیز حل مسئله ارائه نموده که به شرح ذیل می‌باشد:

معادله دارویی در طول یک واحد عرض دانه‌ها با سنتی شده، دار به صورت زیر است:

\[q = -kh \left(\frac{\partial h}{\partial x} \cdot \cos \beta + \sin \beta \right) \]

با جایگزینی این معادل پیوستی معادله زیر حاصل می‌شود:
با استفاده از معادله (2) بوسنینسک (1877) معادله خود را برای حرکت آب در خاک ارائه داد:

\[\frac{\partial h}{\partial t} = -\frac{\partial q}{\partial x} + N \] (2)

که عبارت از مقادیر پشتیبانی (در جهت عمود بر خاک) در طول حفرات و نفوذ آب در سطح شیب \(\beta \) است. انتخاب سطح آب زیرزمینی (در جهت عمود بر خاک) توسط نیروی زمینی که در این سطح اعمال می‌شود توسط نیروی زمینی که در این سطح اعمال می‌شود.

\[\frac{\partial h}{\partial t} = k \left[\frac{\partial}{\partial x} \left(h \frac{\partial h}{\partial x} \cos \beta + \frac{\partial h}{\partial x} \sin \beta \right) \right] + \frac{N}{f} \] (3)

جبران موارد سپر فرض شده است.

از آنجایی که کاربرد معادله (3) محوره بوسنینسک (1937) محدود به بوشک خاکی یک بک است، تروخ و همکاران (2002) معادلات دارسی و HSB پیوسته را در اینجا برای پیوند به طول دامنه مجدداً فرموله کرده و در نتیجه معادله ذخیره-دامنه بوسنینسک (2)

\[\frac{f}{S(t)} = k \left[\frac{\partial}{\partial x} \left(S \frac{\partial S}{\partial x} - S \frac{\partial w}{\partial x} \right) \right] + k \sin \beta \frac{\partial S}{\partial x} + fNw \] (4)

برای جریان‌های زیرسطحی در دامنه های مربوط ارائه دادند:

\[\frac{\partial S}{\partial t} = f(t) \] (5)

در مقایسه با شیب سازی های بر مبنای معادله سه بعدی پانیکویو و همکاران (2002) نشان دادند که مدل HSB در مقایسه با شیب سازی های بر مبنای معادله سه بعدی ریچاردز تولد و یا پیامدهای عدم ذخیره و عکس عمل جریان خروجی دامنه های مربوط از ترتیب بگیرد. این محققان به کمک معادله 4 تو و سنت رفتار هیدروژنیک معادله بوسنینسک اولیه را روی دامنه های با شکل هندسی مختلف بررسی کردند. هیلبرت و همکاران (2004) به منظور آنالیز اثر پرورش طولی غیر ثابت مدل HSB را به صورت زیر ارائه دادند:

\[\frac{\partial S}{\partial t} = k \left[\frac{\partial}{\partial x} \left(B \frac{\partial S}{\partial x} + S \frac{\partial B}{\partial x} \right) \right] + fN (5) \]
اجرای سطحی مراحل اشباع را محاسبه کند. همچنین از طریق تبعین ذکره اشباع S (در هر گام زمانی (روزهای شمسی) متوسط $\frac{\sigma}{S}$ (محاسبه می‌شود.

جهت بررسی رطوبت خاک در منطقه غیر اشباع، باید از (θ) متوسط محتوای رطوبت خاک در منطقه غیر اشباع (θ) می‌توان براساس مدل کمپل (1974) یعنی:

$$\theta = \mu \left(\frac{N}{k_i} \right)^{\frac{1}{b+3}}$$

در این معادله N متوسط محتوای رطوبت حجمی خاک در طول یک قدم $(D-h)$ و b ضریب هیدرولیکی در حالت اشباع و h بارامتر نوسان اندکار خاک و فرج است. از آنجایی که عموماً $b=1$ است، b را با r و μ را با k_i ارتباط می‌گیرد. این دو عدد در تابع $b=0.545$ و $\mu=0.0147 \ln(k_i) + 15.3$ است (تولینگ، 2005). بنابراین در هر گام زمانی (روزهای شمسی) متوسط محتوای رطوبت خاک در منطقه غیر اشباع می‌توان براساس نرخ ورودی (بارانگی) تغییر کند.

نتایج:

مدل ارائه شده در این مقاله هر سه بعد دامنه با در نظر گرفتن و برای کلیه اشکال توپوگرافی در طبیعت قابل اجرایی است. به‌دلیل مرتب، کلیه پارامترهای در نه شکل ارائه شده (شکل شماره 1) که در بر گیرنده سه حالت پروفل طولی و سه حالت پلان سطح می‌باشد، مورد بررسی قرار گرفته است. شایان ذکر است در این تحصیل طول هر دامنه برای 100 متر، هدایت هیدرولیکی اشباع برای 5 متر بر روز، بارانگی روزهای برای 30 میلی متر در روز و طول هر dx برای 0/5 متر در نظر گرفته شده است. در واقع پس از تکمیل پارامترهای توپوگرافی در هر دامنه، مقدار ذکره کل، تغییرات سطح آب زیر زمینی و نهایتاً دیگر جریان (زیر سطحی) در هر دامنه (با استفاده از نرم‌افزار MATLAB) محاسبه گردید که نتایج آن در شکل شماره 2 ثبت شده است.
همانطوره درده می‌شود با اینکه کلیه پارامترهای هیدرولوژیکی دامنه‌ها K_s, f, N, L, dx کیسک می‌باشد ولی به علت تغییر شکل هندسی دامنه، تمام دامنه‌ها رفتار هیدرولوژیکی متفاوتی از خود نشان می‌دهند (شکل 2). بررسی اولیه شکل 2 نشان می‌دهد در حالت طبیعی استحکام شماره 1 (پروفیل مقمر و شکل همگرا) پس از 15 روز به مقدار ثابت 13 میلی متر در روز می‌رسد ولی در دامنه شماره 9 (پروفیل محدب و شکل واگرا) بعد از 15 روز دیگر به 20 میلی متر در روز (برابر کل بارندگی) رسیده است. نتیجه اینکه دامنه‌های محدب و همگرا خیلی سریع‌تر از انواع دیگر تخیلی می‌شود و بنا به حجم کمتری از منابع آب را حفظ می‌کنند. همانطور که دیده می‌شود، دامنه‌های ستون اول (شکل شماره 1) که همه پروفیل مقمر دارند، به نهایت دیرتر تخیل شده بکه بخشی از بارندگی را نیز در خود حفظ می‌کنند.

