Supplement of:
the 1st International and
3rd National Congress of
Wound and Tissue Repair
October 26-28th
2016 Tehran-Iran
www.wtrcongress.com

Clinical Contents:
- Dermatology, Internal Medicine and Surgery
- Wound following Environmental Factors,
 Disasters, War and Job Accident
- Rehabilitation, Nursing, Prevention and
 Psychosocial Issues
- New Technologies
 (PRF, Lasers, Negative Pressure, ...

Basic Sciences Contents:
- Tissue Engineering and Regenerative
 Medicine in Wound Repair
- Biotechnology in Wound Repair
- Physiopathology, Pharmacology and
 Microbiology in Wounds
- Biochemistry and Biophysics in Wounds
- Bioinformatics in Wounds

The Congress Organizer
Medical Laser Research Center,
ACECR, TUMS Branch

The Organizer Companies

Scientific Secretary Office
Tel: +98 21 66494649
Fax: +98 21 66494648

Executive Secretary Office
Tel: +98 21 44412437
Fax: +98 21 44415233
Histological Study of Skin Wound Healing with Fish Swim Bladder Matrix

Sajedeh Jalali 1, Masoud Fereidoni, Naser Mahdavi Shahri, Roya Lari

1. MS Student at Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.

Corresponding Author: Sajedeh Jalali, E-mail: sajedeh.jalaly93@gmail.com

ABSTRACT

Today, because of the variety of wounds, a wide range of wound dressings produce with different objectives. One of the wound dressing, that skin tissue engineering scientists were concerned, is the use of animal tissue models as biological dressing for wound healing. Since the collagen scaffold has many applications in skin tissue engineering, for the first time in this experiment, rutilus fish swimming bladder matrix (FSBM) was used as a model of collagen-containing tissue for wound healing in rats. In this study, first the FSBM was decellularized by using ionic materials. Then 6 randomly selected rats were wounded on the back with 2 wounds 4 mm length. Wounds were divided into two groups: the first group as control and the second group using FSBM wound dressing. Wound dressings were changed daily. On days 3, 5 and 7 of the start of the experiment, tissue samples were taken from ulcers’ sections and wound assessment indicator were evaluated by specific staining criteria. Wound histology image analysis showed that the FSBM increased migration of skin fibroblast cells and the process of forming the epidermis layer and angiogenesis and finally improved wound healing in compare with the control. It is assumed that FSBM is an appropriate model for wound healing and can be used as a new clinical biological dressing.

Keywords: Biological dressing, Fish swim bladder, Rat, Wound. Restoration skin