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A B S T R A C T

Pose estimation and tracking of an articulated structure based on data from multiple cameras has seen
numerous applications in recent years. In this paper, a marker-based human pose tracking algorithm from
multi view video sequences is proposed. The purpose of the proposed algorithm is to present a low cost
motion capture system that can be used as an alternative to high cost available commercial human motion
capture systems. The problem is defined as the optimization of 45 parameters which define body pose model
and is solved using a modified version of particle swarm optimization (PSO) algorithm. The objective of this
optimization is to maximize a fitness function which formulates how much the body model matches with
2D marker coordinates in video frames. A sampling covariance matrix is used in the first part of the velocity
equation of PSO and is annealed with iterations. The sampling covariance matrix is computed adaptively,
based on variance of parameters in the swarm. One of the concerns in this algorithm is the high number of
parameters to define the model of body pose. To tackle this problem, we partition the optimization state
space into six stages that exploit the hierarchical structure of the skeletal model. The first stage optimizes the
six parameters that define the global orientation and position of the body. Other stages relate to optimization
of right and left hand, right and left leg and head orientation. In the proposed partitioning method previously
optimized parameters are allowed some variation in each step that is called soft partitioning. Experimental
results on Pose Estimation and Action Recognition (PEAR) database indicate that the proposed algorithm
achieves lower estimation error in tracking human motion compared with Annealed Particle Filter (APF)
and Parametric Annealing (PA) methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Capturing and tracking the human motion have found numerous
applications in recent years. Motion capture is the process of record-
ing human motion as a sequence of 3D Cartesian coordinates called
motion data [1]. Human pose tracking is the process of determining
the configuration (orientation and location) of body parts at consec-
utive time instants using motion data. There are three major goals
for human pose tracking [2]: smart surveillance, object control and
research purposes. The purpose of surveillance applications is human
body pose tracking while monitoring for specific actions such as
shop lifting. Animating virtual characters in games and movies can
be considered as control applications. The aim of these applications
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is avatar control within virtual worlds based on human motion in
the real world. Motion data in research applications are used for
diagnostics in orthopedic patients in clinical studies or train athletes
to improve their performance.

General structure of motion analyzing systems consists of four
steps, namely initialization, tracking, body pose estimation and
action recognition. Determining an appropriate model of subject in
model-based systems and camera calibration in image-based sys-
tems are examples of initialization. The aim of the tracking step is to
determine the position of corresponding segments of the body parts
in successive frames. In the pose estimation step relative orientation
and location of body parts related to each other is determined. In
the last step of this process the estimated pose in consecutive frames
is analyzed to recognize the action performed by the subject. There
are different sensor types to capture human motion, which are cat-
egorized as active and passive sensors [3]. Active sensors transmit
or receive signals from the other sensors while passive sensors have
no effects on the other sensors. Accelerometers, mechanical, elec-
tromagnetic [4] and acoustic sensors are examples of active sensors
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already used for human motion capture. The methods based on
these sensors usually require devices to be attached to the body
parts such as skeletal-like structures in mechanical approaches and
magnetic or acoustic sensors in other approaches [5]. The major
problem about the above methods is that the subject need to wear
special suit which prevents free movement. In the methods based
on passive sensors which are mainly image-based, a passive device
(camera) is used to capture human motion. The objective of image-
based pose estimation methods is estimating body pose which is
most consistent with the image information. Image-based meth-
ods are also classified into two categories, namely marker-based
and marker-less methods. Marker-less methods take video frames
as input data, whereas marker-based methods rely on a number
of markers placed on different parts of the human body while the
scene is simultaneously captured by a number of calibrated cam-
eras [6]. The major difficulty about marker-less methods is due to
3D to 2D projection and the huge amount of information contained
in an image. Therefore marker-based methods are presented, to alle-
viate this problem [7]. This paper focuses on marker-based human
pose tracking in multi view scenario to present a low cost multi
camera algorithm for human motion. The problem with high cost
commercial human motion capture systems is that they usually need
sophisticated software and expensive hardware to work with a high
number of markers which make use of these systems not afford-
able for small research labs. Therefore, the proposed algorithm tries
to reproduce similar results with much cheaper setups using only a
fraction of available input data. This algorithm relies on optimization
methods for body pose tracking and uses 2D coordinates of mark-
ers in camera views as the input parameter. Since the likelihood
function in human motion tracking can get very complex form with
multiple local maxima, we suggest a Mont-Carlo-based stochastic
optimization algorithm for human pose estimation.

2. Related work

The objective of pose estimation algorithms is estimating the con-
figuration of underlying skeletal structure of human body. For this
purpose some algorithms use a predefined model which represents
kinematic structure of human body, while others do not utilize an
explicit model of human body. According to this, pose estimation
algorithms are divided into model-based and model-free methods.
Some of these algorithms first find possible positions of different
body parts in images and then estimate the most probable body con-
figuration based on these locations while others directly employ a
classifier to find the best matched pose in database with images [8].
The majority of image-based pose estimation methods use a kine-
matic structure, with specified joints and degree of freedom, as
the prior model. Most model-based algorithms rely on optimization
methods for body pose tracking. These methods consist of para-
metric, non-parametric [9] and local optimization algorithms [10].
Given an initial state, local optimization moves with local changes
among possible states in the space of solutions until an acceptable
state is found. Performance of these methods is strongly depen-
dent on the initial state and one of the major problems of them is
local optima convergence. In local optimization methods, only one
hypothesis propagates over time. Likelihood function in human pose
estimation problem has multiple peaks and local maxima. There-
fore, methods that rely on one hypothesis may not be able to find
all these local maxima. Another major drawback of these methods
is error accumulation. For example, estimated pose may be far from
correct body pose due to complex body motion or imperfect obser-
vation in some frames. Correct body pose in next frames cannot
be always recovered in such situations [9]. Stochastic optimization
techniques are then introduced, to overcome these problems. These
methods are based on multiple hypothesis propagation that would

make the tracking process more robust [11]. In human pose esti-
mation each hypothesis represent a possible pose of human body.
Genetic Algorithm (GA) is an example of stochastic methods that is
based on a population of candidate solutions. It starts with randomly
generated individuals. Fitness of every individual is evaluated and
best ones are selected in an iterative process. Then a combination of
crossover and mutation operations are performed on these individu-
als and the next population are generated. In [12] GA algorithm was
proposed to estimate upper-body pose and Zhao and Liu presented
an Annealed Genetic Algorithm (AGA) for 3D human motion analy-
sis [13]. Particle Filter (PF) or Condensation algorithm [14] is one of
the useful methods for pose tracking purpose. In this method poste-
rior probability is approximated using a set of weighted particles. In
each iteration the likelihood of particles is computed followed by a
resampling operation to remove particles with low weights and con-
centrate particles to more likely pose. In [15] particle filter is used to
pose estimation of human body. Two common problems about par-
ticle filter are sample impoverishment and needs for high number
of particles in high dimensional state space. In resampling oper-
ation, particles are selected with probability proportional to their
weights to remove particles with low weights and concentrate par-
ticles to more likely state. Therefore, particles with large weights
are likely to be selected multiple times, whereas the other particles
with small weights, are not likely to be drawn at all. This causes
a problem called “sample impoverishment” in which the number
of distinct samples are reduced and negatively impacts on distribu-
tion representation. One way to solve this problem is enlarging the
sample set to cover state space completely, which increases the com-
putational load. Another challenge about particle filter is that for
successful tracking, the required particles’ count increases exponen-
tially with the dimension of the state space. More than 20 parameters
are required to describe a realistic articulated model of human body.
As a result, particle filter algorithm needs huge number of parti-
cles to approximate the underlying probability distribution in the
body space. One way to alleviate this problem is to use simulated
annealing idea in particle filter algorithm. In 2000, Deutscher [16]
introduced a modified particle filter, named Annealed Particle Fil-
ter (APF), that required fewer particles and could get better results
compared with standard particle filter. To better explore the search
space, instead of using single weighting function in PF, APF uses a
series of weighting functions (W0 to WM) in which each Wm differs
slightly from Wm−1.The first function Wm is designed so smooth to
represent the overall trend of search space while W0 emphasizes its
local features. Thus the initial searching area is global at first and
gradually becomes local within layers. In 2005, an improved ver-
sion of APF was proposed that used crossover operation and search
space partitioning [17]. This version of APF was used as the baseline
algorithm in Human Eva framework [18]. APF is one of the most used
algorithms in pose estimation area [7]. Pose estimation algorithms
presented in [16] and [19] used APF algorithm to marker-less human
pose estimation. In [7] and [20], APF is used for marker-based pose
estimation and pose estimation-based on 3D point cloud of human
body, respectively. As mentioned in [21], probability distribution in
particle filter-based methods can not be explored efficiently since
particles have no relationship to each other and do not move accord-
ing to their former experience, which reduce capability of samples
to escape local minima. This paper also reports that although the
performance of annealed particle filter in images with frame rate
of 60 fps is acceptable, but the performance is reduced in frame
rate below 30. Particle Swarm Optimization(PSO) is another useful
method for body pose tracking.PSO is an evolutionary optimization
algorithm that was used in 2006 to solve upper-body pose estima-
tion [22] and has recently attracted more attention for full-body pose
estimation [11–14]. The communications of particles in PSO has led
to more efficient search than particle filter-based methods and the
crossover operation in GA [17]. One of the major challenges in this
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problem is the high number of DOF (degree of freedom) that has to be
recovered. An effective method to reduce search complexity in such
problems is the search space partitioning. In this method one section
of search space is optimized independently and its result is used as
a constraint to limit the rest of the search space [23]. The objective
of all optimization methods is to determine model state which is
most consistent with observations. Therefore, these methods often
use a likelihood function to determine how well a body pose fit to
current observation. Likelihood computation in most of marker-less
pose tracking algorithms is based on edge, silhouette or combination
of them in images [24]. In these algorithms, likelihood of body pose
is computed based on the amount of overlap between observed sil-
houette and projected pose on image [25]. The objective of method
introduced in [20] is to estimate pose of human body in 3D point
clouds recorded with a 3D sensor. In this method each body part
is modeled using a truncated cylinder and likelihood is computed
based on matching of skeleton points and cylinder edges against the
point cloud, and reverse-matching the point cloud against the skele-
ton points. In this paper a modified version of PSO algorithm for
marker-based human pose tracking is presented. in order to reduce
search complexity in such a problem we use search space partition-
ing. We have presented the initial version of this algorithm in [26]
previously. In this paper, in addition to providing further exper-
iments compared with [26] an improved version of algorithm is
presented. In the proposed algorithm, we adaptively compute veloc-
ity of particles based on variance of the parameters that leads to
better tracking result. This method is discussed in Section 3.4 in
detail. In Section 4.9 we compare the proposed algorithm with the
initial version of algorithm, presented in [26]. As can be seen in
the results section (Section 4), the proposed algorithm can achieve
good performance for human pose tracking in low frame rate (25 fps)
regardless of the complexity of the selected human body model (41
parameters).

3. Proposed algorithm

As mentioned before, Bayesian tracking formulation is one
of the major methods to represent pose tracking. The objective
of this formulation is to predict posterior probability distribution
(p(xt−1 | y1:t−1)).Where xt is current state, in this application current
body pose whose motion is to be captured, and y1:t is the obser-
vation up to current time. Based on Bayesian formulation posterior
probability distribution is represented as a hidden Markov model:

p(xt | y1:t) ∝ p(yt | xt)
∫

p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1 (1)

This recursive formula is based on Markov assumption that cur-
rent pose of body at time t depends only on previous pose at time
t − 1 (Eq. (2)) and current observation only depends on the current
body pose (Eq. (3)):

p(xt | x1:t−1) = p(xt | xt−1) (2)

p(yt | x1:t , y1:t−1) = p(yt | xt) (3)

Using this formula, human body pose tracking is explained as a
two-step process that consists of prediction and update steps. Previ-
ous pose of body is used to predict current pose in prediction step.
Depending on how well this prediction fit to current image informa-
tion, likelihood is evaluated in update step. The proposed method for
these steps is described as below.

3.1. Human body model

As mentioned before, model-based algorithms use a predefined
model which represents kinematic structure of human body. The
kinematic structure of human body is usually represented as a 3D
kinematic tree in which each node corresponds to a joint in the
human body. Torso joint of the human body is usually assumed as
the root node in kinematic tree. Every node has up to three rota-
tional DOF, while the root node also has three translational DOF that
determines the global position of the body. Joint positions are cen-
ters of rotation in each part’s coordinate frame. Relative position and
orientation of each part is represented using a local homogeneous
transformation matrix:

T =
(

RxRyRz t
0 1

)
(4)

where Rx, Ry, and Rz are local rotation matrices with three Euler
angles about x, y, and z coordinate axes and t is translation vector to
specify relative position of a joint and its parent. So each part in body
model has a local transformation matrix. Kinematic tree specifies the
order of transformations between body parts. To create global trans-
formation matrix related to the root node of the tree, we multiply
transformation matrix of each part to its parent matrix and continue
until we reach the root of the hierarchy [27].

Tg = Tchild ∗ Tparent ∗ Tgrandparent · · · ∗ Troot (5)

Each point in local coordinate system can be transformed to
global coordinate system, using global transformation matrix of each
joint. In the tracking process joint angles are variable parameters
during the tracking while length of body limbs is assumed to be con-
stant. In this paper, we use 45 parameters including global position
and joint angles to represent the full body model.

3.2. Propagation model

Pose tracking process is performed by maximizing a fitness func-
tion in image sequences. Population in each frame is generated from
the estimated pose in previous frame. A motion model is employed
to propagate particles to the new frame, to initialize optimization
in each frame. Zero motion with additional gaussian noise is almost
used as motion model in tracking algorithms [17,20,24,28].

xt
i ← N(x̂t−1,S),S =

⎛⎜⎜⎝
s2

1 . . . 0
...

. . .
...

0 . . . s2
45

⎞⎟⎟⎠ ,s =

⎛⎜⎜⎝
s1
...

s45

⎞⎟⎟⎠ (6)

where standard deviation sd in the S matrix is equal to the max-
imum absolute inter-frame differences of the joint angles that
are almost determined in a training process. Experiments on the
motion model conducted in [18] show that tracking accuracy largely
depends on the amount of standard deviation values in the S

matrix. These experiments show that the most accurate results were
obtained when style-specific motion model was used. For example to
track walking motion only data related to walking motion is used to
learn the sampling covariance matrix (S). In the proposed algorithm,
we use a generic motion model in which the amount of standard
deviation for all joints and for all motions is set to a low value
(0.1 radian in this paper). This motion model eliminated the need
for training process. As we show in the Experimental results section,
our algorithm can track different motions with no prior knowledge
of motions type using this motion model.
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3.3. Likelihood evaluation

In order to evaluate likelihood of a body pose based on observa-
tion data, we use the method presented in [7] which is explained
in this section. Likelihood computation in this method is performed
based on generalized epipolar geometry in four cameras [29]. When
two pinhole cameras see a 3D scene from two different positions,
a geometric relation called epipolar geometry is occurred between
projections of each 3D points onto 2D images. Based on the epipo-
lar geometry, correspondence of a 2D point in an image is located on
specific line in the second image that is called epipolar line. Epipo-
lar geometry can be extended for more cameras and more views. If
l(xi, j) be the epipolar line generated by the point x in a given view i
onto another view j and d(l(xi, j), xj) is defined as Euclidean distance
between the epipolar line l(xi, j) and the point xj, symmetric epipolar
distance in two views can be defined as (Eq. (7)):

ds4(pi, pj) �
√

d2(l(xi, j), xj) + d2(l(xj, i), xi) (7)

Based on this definition, extension of the symmetric epipolar dis-
tance for k ≥ 2 points in k different views (ds4(x1, . . . , xk)) can be
computed as (Eq. (8)):

ds4(x1, . . . , xk) =

√√√√√k−2∑
i=1

k−1∑
j=i+1

d2
s4(xi, xj) (8)

where ds4(xj, xj) is symmetric epipolar distance between two points
xi and xj in the two views i and j. Using these formulas likelihood
is computed as follows. The 2D coordinate of markers attached to
the body of the performer onto NC camera views (four views in
this paper) provide observation data (zt). If Dn = d1, d2, . . . , dQn is
the set of Qn, 2D coordinate of markers in the n-th view and X =
{x1, . . . , xM} ∈ R3 is the 3D position of the body joints and the end
of the limbs using forward kinematics. The computed fitness func-
tion should measure how well these 2D coordinates fit as projections
of 3D coordinate of the set X. For every element xm in the set X, it’s
projection onto every camera view is computed in (Eq. (9))

Pm,n = Pn(xm), 1 ≤ m ≤ M, 1 ≤ n ≤ Nc (9)

where Pn is the perspective projection operator from 3D to 2D on
the nth view. Next the set Tm = t1, . . . , tNC containing the closest
measurement in every camera view associated to every element xm

is constructed according to (Eq. (10)):

tn = mindq ‖ pm,n − dq ‖, dq ∈ Dn, ∀n (10)

Not all 3D points may have projection on images because of occlu-
sion. To detect such cases, we applied a thresholding with a value
equal to 5 pixels (q = 5) on elements of tn. So if ‖ pm,n −dq ‖> q, tn =
∅ is considered. In these cases we use a penalty value equal to 200
as symmetric epipolar distance. Then the extension of the symmet-
ric epipolar distance for k ≥ 2 points in k different views (Eq. (8))
is used to compute fitness value. When the 2D points are projected
from the same 3D point, this distance decreases. With this definition,
the score sm and weighting function W over the M position of body
joints is formulated in ( Eqs. (11)–(12)):

sm(zt , xm) ≡ sm(zt , Tm) ∝ ds4(Tm) (11)

w(zt , y) = exp

(
− 1

M

M∑
m=1

(sm(zt , xm)

)
(12)

3.4. Optimization method

We use a modified version of PSO algorithm for full body pose
estimation. As mentioned before, PSO is a computational method
that is used to solve optimization problems. This algorithm is based
on a population of candidate solutions. One of the most important
properties of PSO is that unlike the other particle-based methods,
such as particle filter and its variants, particles share their infor-
mation with each other and with the best particle in the whole
population. Therefore the search is more efficient than the crossover
operation in GA. PSO is based on a swarm consisting of N particles.
Let xi be the i-th particle, vi be the velocity of it, pi be the best posi-
tion of i-th particle that encountered so far and pg be the best known
position of the entire swarm. With these assumptions, the classic PSO
algorithm can be explained as follows:

• Randomly initialize the population’s position and velocity in
the search space.

• Set pi for each particle and identify best particle in the swarm
and set as pg.

• Repeat the two following steps until stopping criterion is
satisfied:

1. Compute velocity of particles according to Eq. (13)
and update the position of every particle xi based on
Eq. (14):

vi
t+1 = vi

t + v1(pi
t − xi

t) + v2(pg
t − xi

t) (13)

xi
t+1 = xi

t + vi
t+1 (14)

2. Update pi, pg for each particle

where subscript t denotes the time step (iteration). Parameters v1
and v2 are random numbers drawn from [0;1]. Criterion for termi-
nation is usually the maximum number of iterations.

Velocity equation of PSO algorithm (Eq. (13)) consists of three
components [30].

1. The first component is known as “habit” or “history” and
makes particles continue moving in the same direction they
have been traveling so far.

2. The second component is called memory or self-knowledge
which attracts particles to the best position ever reached by
each particle.

3. Third part of this equation is known as “shared information” or
“social knowledge” and attracts particles to the best position
that ever found by all particles.

The history component in classical PSO is initialized randomly.
Due to the complex motion of body parts, history of particles may not
be much reliable. So random initialization of this part leads to pro-
duce many impossible body poses. To solve this problem, we use the
method presented in [31]. In this method, the sampling covariance
matrix is used to initialize the first part of the equation (Eq. (13)) that
annealed during iterations. Thus the initial searching area is global at
first and gradually becomes local during the iterations. The velocity
equation (Eq. (13)) is updated as (Eq. (15)):

vi,n+1 = Pn + v1(pi − xi,n) + v2(g − xi,n) (15)

Given the sampling factor an < 1, the covariance matrix Pn is
evolved as follows:

Pn = an ∗ P0 (16)
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where P0 is the covariance matrix described in Propagation model
section. In the proposed algorithm, sampling factor an is formulated
in (Eq. (17))

an = −0.8 ∗
(

n
M

)
+ 1 (17)

In this equation n is the current number and M is the maximal
number of iterations. As can be seen in Eq. (16), for all parameters
of body model and in each iteration, Pn matrix is computed similarly
using the same coefficient (a). Variance of some parameters may
be greatly reduced in specific iteration. As can be seen in Eq. (16),
values of Pn matrix is calculated regardless of the variance of param-
eters. In this situation, adding Pn matrix to particles causes them to
be dispersed after convergence. We have presented this version of
algorithm in [26] previously.

To alleviate this problem, we determine Pn matrix proportional to
the variance of the parameters in swarm (Eq. (18)). Using this idea,
the tracking results can be improved especially in low frame rates.

Pn = an ∗ Var(Xn−1) (18)

where Xn−1 is the set of particles in iteration n−1 and var is the vari-
ance operation. One of the major challenges in this problem is the
high number of DOF that has to be recovered. An effective method to
reduce search complexity in such problem is the search space par-
titioning. In this method, one section of search space is optimized
independently and its result is used as a constraint to limit the rest
of search space. In this work, we propose to split the 45-dimensional
search space into six stages that each one is optimized using opti-
mization algorithm described above. In the first stage, six parameters
related to global position and orientation of torso are optimized.
Other five stages are related to optimization of left and right hand,
left and right leg and head orientation. In [24] search space partition-
ing is separated into hard and soft partitioning categories. In hard
partitioning each step is optimized while the other steps are kept
constant. So if some errors occur in the first step, the optimizer can
not correct these errors in the following steps. In this situation errors
spread and accumulate during the hierarchical steps. Whereas in soft
portioning, previously optimized parameters are allowed some vari-
ations in each step. In this work the standard deviations for first six
optimized parameters are reduced to one tenth in the five stages and
a trivial search about the result of stage one is performed in the other
stages to avoid error accumulation.

4. Experimental results

To test the proposed algorithm, we use PEAR database [32].
This database contains synchronized motion capture and 16 visual
streams from different views at resolution of 704 ∗ 576 pixels and
frame-rate of 25 fps. As the other papers in the field of human pose
tracking, performance of the proposed algorithm is evaluated based
on ground truth data prepared in database which is obtained by a
commercial motion capture system from MotionAnalysis1. In this
system thirty markers are attached onto the key joint positions of
body and 12 cameras with over 1-M-pixel resolution with frame
rate of 50 fps are used to estimate the 3D articulated pose of the
body. While in proposed algorithm four camera images with resolu-
tion of 704 ∗ 576 pixels and frame rate of 25 fps are used to produce
ground truth data, which is half of the frame rate of motion capture
system.

1 http://www.motionanalysis.com.

Fig. 1. Synthetic data generation — auto occlusion modeling among different body
parts.

PEAR database contains 5 subjects performing 6 predefined
actions. The predefined actions include walking, jumping, skipping,
waving, stretching and jogging motion and ground-truth data is
available. To carry out the test of performance, the metrics presented
in [18] were used which included mean and standard deviation (s)
of the estimation error and two metrics (MMTA2 and MMTP3) pro-
posed in [33]. Let x̂ be the landmark position associated to estimated
pose and x be the ground truth position. With these assumptions,
above evaluation metrics can be defined as follows. In these met-
rics, euclidean distance between the estimated landmark and ground
truth is considered as estimation error. Based on this definition,
mean and standard deviation of estimation error are computed as
follows:

l =
1
M

M∑
i=1

‖ xi − x̂i ‖,s =

√√√√ 1
M

∗
M∑

i=1

(xi − l)2 (19)

MMTA is percentage of x̂ positions that are closer than d (10 cm
in this paper) to the ground truth positions (Eq. (20)):

4 =‖ xm − x̂m ‖< d (20)

MMTP is the average of distance between x̂m and xm for all these
pairs. Finally, the average of these metrics for all frames is com-
puted. To analyze various experiments, first the effect of algorithm
parameters such as number of particles and iterations are exam-
ined. Then performance of the algorithm in low frame rate and
computation time for each stage of optimization is reported. Finally,
performance of the algorithm is compared with the initial version
of the algorithm presented in [26], the annealed particle filter and
parametric annealing algorithm.

4.1. Synthetic data generation on PEAR database

Proposed algorithm relies on fifteen 2D marker coordinates over
NC camera views as the input data. We implement a synthetic
data generation method to compute 2D marker coordinates. In this

2 Multiple marker tracking accuracy.
3 Multiple marker tracking precision.

http://www.motionanalysis.com
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Table 1
Result of proposed tracking algorithm at 25fps with base configuration.

Motion MMTA (%) MMTP (mm) l (mm) s (mm)

Stretch 99.11 7.85 8.97 4.30
Wave 99.96 6.91 6.95 1.91
Walk 99.88 5.94 6.05 3.04
Jog 99.41 6.76 6.84 2.04
Jump 93.97 14.01 21.14 16.54
Skip 97.95 15.61 18.07 6.27
Mean 98.38 9.51 11.33 5.68

method, 3D ground truth data are used to compute 2D projection of
the markers onto all camera views that is presented as follows. first
we apply inverse kinematic to ground truth data in order to compute
correct body pose in each frame. Then 3D coordinate of body joints
(Xt) are projected onto every camera view in order to generate the
sets Dn, 1 ≤ n ≤ NC.

We use following method to model auto occlusions among body
parts to check visibility of markers in each camera view. In this
method each body part is modeled as a cylindrical mesh with spe-
cific color. Given the internal parameters of each NC cameras, depth
of each 3D point of these cylindrical meshes for each camera view
can be computed. In the next step, we sort 3D points of cylindri-
cal mesh by their ascending depth values in that camera in order
to generate set Sn, 1 ≤ n ≤ NC, for each camera view n. Then we
project 3D locations of Sn set respectively onto view n (Fig. 1). As
can be seen in this figure, auto occlusion among different body parts
and therefore visibility of markers can be determined by color ana-
lyzing. Some of this marker positions are removed to simulate real
marker detection algorithm. Finally, a number of false detections

are generated and the amount of Gaussian noise is added to some
positions randomly.

4.2. Experimental setup

The base configuration of the proposed algorithm for six stages is
defined as follows:

• Stages 1–5: 80 particles, 10 iterations
• Stage 6: 30 particles, 10 iterations

This setup is used for all experiments in this section unless
otherwise specified. Stages 1 to 6 are related to torso position and
orientation, left and right hand, left and right leg and head orienta-
tion. Since the proposed method is a sample of stochastic algorithms,
tracking results slightly differs in each run. Therefore, each experi-
ment is carried out 5 times and mean of errors is reported to test
repetitively of the proposed algorithm. In some frames, none of the
estimated landmark positions are closer than 10 cm to ground truth
positions (s in Eq. (20)). In these situations, we use a penalty value
equal to 10 cm as distance of landmark positions to ground truth to
compute MMTA metric.

4.3. Results in base configuration

Table 1 and Figs. 2 and 3 show the results of proposed algorithm
with base configuration. Result of this table indicates that in 98.38%
of evaluated frames, difference between ground truth and estimated
pose is below 10 cm and mean of the error is 11.33 mm. The little

(a) Frame=2,Error=3.54 (b) Frame=11,Error=5.02 (c) Frame=36,Error=13.63 (d) Frame=54,Error=12.60

(e)
Frame=111,Error=17.75

(f)
Frame=118,Error=20.23

(g)
Frame=127,Error=30.08

(h)
Frame=138,Error=22.15

Fig. 2. Mean tracking error (mm) for sample frames from walking motion: projection of the ground truth skeleton onto the image is shown in white and projection of estimated
skeleton is colored red at depicted frame. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(d)
Frame=130,Error=17.04

(e) Projection of (a) (f) Projection of (b) (g) Projection of (c) (h) Projection of (d)

Fig. 3. Tracking result for jump motion, E denotes mean tracking error (mm) at depicted frame (first row) 3D result: ground truth skeleton is shown in black and estimated
skeleton is colored red (second row) projection of ground truth skeleton on image is shown in red and estimated skeleton is colored blue. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

value of s (5.68) means that estimation errors in total experi-
ments are closer together which reflects the stability of the proposed
algorithm. As can be seen in this table, the algorithm is less effi-
cient for complex motions such as jump and skip, compared with
motions such as wave and walk. The reason is these motions have
more challenges like complex motion of hands and legs and change
the direction of subject.

Error graphs of proposed approach for stretch and skip motions
are shown in Fig. 4. Error graph is a graphical representation of mean
tracking error that represent mean error values during a specific
action tracking and is more informative than total error reported
in Table 1. Maximum error in skip motion on this error graph is
related to frames which contain direction change of subject and
maximum error for stretch motion is occurred in frames that hand
motion of subject is more complex. As mentioned in the previous
sections, the proposed method is based on the soft partitioning of
the search space. In this method the previously optimized parame-
ters are allowed some variation in each optimization step. Therefore,
if some errors occur in each step the optimizer can correct these
errors in the following steps. This prevents error accumulation dur-
ing the hierarchical steps. As the graph illustrates, tracking error in a
few frames after these maximum errors is reduced which indicates
the ability of the proposed method to recover the correct pose after
a wrong estimation.

In order to test the effect of the number of particles on the
performance of the pose tracking algorithm, we run the proposed
algorithm with different particle sizes while keeping total number
of fitness evaluations equal to the base configuration. Table 2 shows
the mean result for 5 runs in different configurations. As indicated in
Table 2, the performance of tracking with low particle size (config1)
or low iteration number (config4) is not good enough, while the

algorithm performs well in medium size of particles and iterations
(base configuration and config 3).

4.4. Performance in low frame rate

In this section, the performance of the proposed algorithm is eval-
uated in low frame rate. The values of matrix P0 in Eq. (16) used for
25 fps are doubled and is used as the initial covariance matrix in
Eq. (15) for 12 fps. As mentioned in the previous sections we remove
training process in particle propagation step between frames and
we use a generic motion model for all type of motions. So pro-
posed method is independent of type of the motion. Table 3 shows
the results of the proposed algorithm with base configuration at
12 fps. According to this table, the algorithm achieves good perfor-
mance in all motions except jump action.So the proposed method
is independent of frame rate also, using generic propagation model.
Difference of parameters in two consecutive frames is high in jump-
ing motion. It seems that more sophisticated model is needed for
particle propagation between two consecutive frames, to track this
motion.

4.5. Search space partitioning

In this section we analyze the effect of search space partitioning
on the performance of the algorithm. Table 4 indicates the results of
the proposed method with global optimization. In this experiment,
we use 400 particles and 10 iterations to perform optimization of
45 parameters in one stage. Tracking result of the proposed method
with search space partitioning and global optimization is reported in
Tables 1 and 4, respectively. Comparison of tracking result in these
tables indicates that the performance of algorithm with search space
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Fig. 4. Error graph of tracking result with base configuration.

Table 3
Result of the proposed algorithm with base configuration at 12fps.

Motion MMTA (%) MMTP (mm) l (mm) s (mm)

Stretch 95.89 8.54 24.11 14.84
Wave 99.78 6.91 16.90 7.23
Walk 90.88 8.37 29.72 23.70
Jog 87.54 11.89 35.44 36.78
Jump 47.45 49.58 567.86 319.53
Skip 92.50 17.33 28.58 30.18
Mean 85.67 17.10 117.10 72.04

partitioning is much better compared with global optimization.
Tracking result in Table 4 shows that despise of using high number
of particles (400 particles), global optimization can not achieve any
good performance. The reason is that in this problem high number
of DOF has to be recovered. So searching process is very complex,
therefore we need a method to reduce search space complexity.
As mentioned before we propose to split the 45-dimensional search
space into six stages. The result of previous sections shows that the
proposed algorithm achieves good performance using this method,
despite of small size of particle set for each stages.

4.6. Hard partitioning vs soft partitioning

In these experiments we analyze the impact of the search space
partitioning method on performance of the proposed algorithm. As
mentioned before, we use the soft partitioning method to reduce
the search space complexity. In this method, previously optimized
parameters are allowed some variations in each step of the search.
Whereas in hard partitioning method each step is optimized while
the other steps are kept constant. Tables 1, 4 and 5 show the result
of using soft partitioning, global optimization and hard partitioning
in the proposed algorithm, respectively. The results presented so far
show that hard partitioning leads to the better result of the proposed
algorithm compared with global optimization but the best overall
results occurs when the soft partitioning method is used with the
proposed algorithm. This is may be because of the ability of the soft
partitioning method to prevent error accumulation by correct the
errors that happened in the specific step in the following steps.

Table 2
Effect of the number of particles on the performance of proposed algorithm — result of proposed algorithm with different configurations (p denotes the number of particles and i
denotes iterations).

Config1 (stages 1–5: 10 P, 80 I–stage 6: 30 P, 10 I) Config2 (stages 1–5: 20 P, 40 I–stage 6: 30 P, 10 I)

MMTA (%) MMTP l s MMTA (%) MMTP l s

Stretch 92.42 9.44 315 169 95.07 9.03 17.04 13.31
Wave 90.16 8.74 395 341 96.06 7.47 13.75 10.57
Walk 51.22 22.79 2933 2454 97.18 3.68 10.42 8.47
Jog 49.65 31.56 3841 3021 94.25 5.78 17.51 15.67
Jump 31.27 56.59 4328 3479 36.26 61.99 206.44 96.13
Skip 40.27 48.58 4839 4803 82.99 22.41 49.72 52.86
Mean 59.17 29.61 2775 2378 83.64 18.39 52.48 32.83

Config3 (stages 1–5: 40 P, 20 I–stage 6: 30 P, 10 I) Config4 (stages 1–5: 400 P, 2 I–stage 6: 30 P, 10 I)

MMTA (%) MMTP l s MMTA (%) MMTP l s

Stretch 97.97 8.07 10.94 6.84 99.48 7.68 8.27 3.47
Wave 99.12 6.90 8.07 4.00 100 6.16 6.15 1.54
Walk 99.40 3.11 6.50 4.11 98.96 3.20 7.22 5.39
Jog 98.27 5.97 8.22 4.29 97.52 4.11 7.98 5.87
Jump 87.82 16.62 34.76 47.36 43.12 53.40 254.74 278.75
Skip 92.51 20.19 29.50 14.45 75.19 24.30 80.69 116.43
Mean 95.85 10.14 16.33 13.51 83.71 16.47 60.84 68.57
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Table 4
Global optimization vs local optimization.

Motion MMTA (%) MMTP (mm) l (mm) s (mm)

Stretch 78.18 36.39 101.65 27.29
Wave 81.20 32.22 86.65 40.87
Walk 78.55 43.27 91.68 25.11
Jog 70.23 47.12 100.14 30.88
Jump 62.31 49.52 150.77 53.10
Skip 74.78 49.75 102.59 46.61
Mean 74.21 43.04 105.58 37.31

Table 5
The result of the proposed algorithm with hard partitioning state space.

Motion MMTA (%) MMTP (mm) l (mm) s (mm)

Stretch 98.05 7.63 10.42 9.78
Wave 99.75 6.42 6.79 2.50
Walk 99.42 4.99 5.67 3.82
Jog 89.57 13.58 31.84 15.08
Jump 87.24 16.57 37.12 27.35
Skip 97.63 16.61 20.21 11.44
Mean 95.27 10.97 18.68 11.66

4.7. Swarm convergence

Visual representation of the stages of the proposed method is
shown in Fig. 5. In this figure the swarm convergence is represented
at stage four. As mentioned before, stages 1 to 6 are related to torso
position and orientation, left and right hand, left and right leg and
head orientation.

4.8. Computational time

The experiments have been tested on a 2.67 GHz Intel core2 CPU
with 8 GB RAM, using MATLAB2013. Computation time for each stage
is represented in Table 6.

4.9. Adaptive computation of particle’s velocity

In this experiment we analyze the impact of adaptive compu-
tation of velocity of particles on the performance of the proposed
algorithm. As mentioned in Section 3.4, proposed algorithm adap-
tively computes velocity of the particles based on variance of the
parameters in each iteration. Adaptive computation of velocity pre-
vents the dispersion of the particles after the convergence in spe-
cific iteration. The results of this experiment are represented in

Table 6
Time consumption for each stage of the proposed algorithm.

Stage Time for each frame (s)

Torso position and orientation 0.4
Left and right hand 0.7
Left and right leg 0.55
Head 0.3
Total 3.2

Table 7
Non-adaptive computation of particle velocity.

Motion MMTA (%) MMTP (mm) l (mm) s (mm)

Stretch 96.78 7.61 12.69 1.00
Wave 99.69 6.14 6.51 4.52
Walk 99.22 5.22 3.38 4.65
Jog 92.49 16.62 20.72 17.17
Jump 94.85 13.53 19.90 16.14
Skip 96.43 16.02 21.40 14.72
Mean 96.57 10.86 14.1 9.7

Table 7. Comparison of these results with result presented in Table 1
shows that in adaptive version of algorithm, estimated human pose
converges better to correct human pose and performance of the
algorithm has improved.

4.10. Comparison with PA and APF

In this section the proposed algorithm is compared with APF [17]
and PA algorithm [34]. Experiments of APF were performed with
700 particles and 5 annealing layers and for PA algorithm with “vh”
setup mentioned in [34]. Results of this experiment are represented
in Table 8. As it can be seen, performance of the proposed algorithm
is significantly better compared to APF and PA algorithms.

5. Conclusions

In this paper a combination of annealed PSO algorithm with
search space partitioning is presented for marker-based pose esti-
mation. The proposed algorithm uses a generic motion model that
eliminated the need for training process. According to the experi-
mental results, this algorithm is capable of tracking different motions
with no prior knowledge about motion type. Utilizing a gradient-
based method as a local refinement stage after optimization with
the proposed algorithm, can be one area of future work which is
expected to improve the efficiency of the pose estimation algorithm.
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Fig. 5. Illustration of particle convergence in the proposed method.
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Table 8
Comparison of mean tracking error (mm) of proposed tracking algorithm to APF and PA.

MMTA (%) MMTP

Motion Proposed method PA APF Proposed method PA APF

Stretch 99.11 92.47 90.91 7.85 30.75 37.86
Wave 99.96 86.84 53.15 6.91 27.10 20.88
Walk 99.88 96.00 83.37 5.94 35.51 24.59
Jog 99.41 70.25 36.50 6.76 38.29 70.57
Jump 93.97 67.72 26.47 14.01 44.32 75.40
Skip 97.95 86.57 68.52 15.61 40.60 52.62
Mean 98.38 83.30 59.82 9.51 36.09 46.98

l (mm) s (mm)

Motion Proposed method PA APF Proposed method PA APF

Stretch 8.97 56.63 69.08 4.30 25.80 30.33
Wave 6.95 75.85 81.94 1.91 30.49 38.54
Walk 6.05 42.68 79.67 3.04 11.20 22.55
Jog 6.84 115.50 247.56 2.04 41.05 75.36
Jump 21.14 138.45 311.05 16.54 59.42 138.36
Skip 18.07 69.11 118.01 6.27 27.87 46.70
Mean 11.33 83.03 151.21 5.68 32.63 58.64
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