k-Combinations of an unlabelled graph

M. R. EBRAHIMI VISHKI, K. MIRZAVAZIRI and M. MIRZAVAZIRI

ABSTRACT. In this paper we extend the notion of the binomial coefficient (n_k) into a new notion ($^{|G|}_k$), where $[G]$ is an unlabelled graph with n vertices and $0 \leq k \leq n$. We call ($^{|G|}_k$) as the graph binomial coefficient and a version of the graph binomial expansion is also studied. As an application of this notion, we enumerate the number of ways to color vertices of a path and beads of a necklace.

1. INTRODUCTION AND PRELIMINARIES

Let n be a positive integer and $0 \leq k \leq n$. The binomial coefficient (n_k) is the number of k-combinations of a set with n elements. This is equal to $\frac{n!}{k!(n-k)!}$ and satisfies the recursive relation (n_k) = ($^{n-1}_{k-1}$) + ($^{n-1}_k$). The summation $\sum_{k=0}^{n} (\begin{pmatrix} n \cr k \end{pmatrix})$ is then equal to the number of ways to choose a subset of a fixed set with n elements which is obviously equal to 2^n.

The mentioned fixed set with n elements can be vertices of a given labelled graph. But if we omit the labels then the number of k-combinations is not necessarily equal to (n_k). For a simple example, if we have an unlabelled path with 3 vertices, then the number of 2-combinations is not 3. In fact the two ends of the path play the same role.

Let G be a graph with n vertices labelled by $1, 2, \ldots, n$. If we ignore the labels we have an unlabelled graph, denoted by $[G]$, with n vertices. We can formally say that $[G]$ is the class of all graphs G' which are isomorphic to G. Whence, as a good question we can enumerate the number of k-combinations of an unlabelled graph $[G]$. We denote this number by ($^{|G|}_k$) and we aim to find some formulas for this. We can also evaluate $\sum_{k=0}^{n} (\begin{pmatrix} |G| \cr k \end{pmatrix})$ for a given graph G. The number can be interpreted as the number of ways to color the vertices of $[G]$ with two different colors. We apply this for some special cases such as paths, directed cycles and indirected cycles.

In the following, we use Burnside’s Lemma, [4], [2] and [6], which asserts that if a group G acts on a set X, then the number of orbits of G is equal to $\frac{1}{|G|} \sum_{g \in G} |X_g|$, where X_g is the set of all $x \in X$ with $(g, x) = x$. To see a simple proof of Burnside’s Lemma the reader is referred to [1]. A discussion about Polya Enumeration Theorem, [7], which uses Burnside’s Lemma, can be found in [8].

Recall that the complement of a graph G is a graph \overline{G} on the same vertices such that two distinct vertices of \overline{G} are adjacent if and only if they are not adjacent in G. An automorphism of a graph $G = (V, E)$ is a permutation σ of the vertex set V, such that the pair of vertices (u, v) form an edge if and only if the pair $(\sigma(u), \sigma(v))$ also form an edge. The set of all automorphisms of a graph G, with the operation of composition of permutations, is a permutation group which is denoted by $\text{Aut}(G)$. See [3] for the terminology and main
results of permutation group theory. A graph and its complement have the same automorphism group. Frucht [5] proved that every group is the automorphism group of a graph. Moreover, if the group is finite, the graph can be taken to be finite.

Furthermore, recall that a graph \(G\) is called \textit{vertex transitive} if for each two vertices \(u\) and \(v\) of \(G\) there is an automorphism \(\sigma \in \text{Aut}(G)\) such that \(\sigma(u) = v\).

2. AN EXPLICIT FORMULA

In the following, for a labelled graph \(G\) we denote the class of all graphs \(G'\) which are isomorphic to \(G\) by \([G]\). This is called the \textit{unlabelled graph induced by} \(G\).

Definition 2.1. Let \([G]\) be an unlabelled graph with \(n\) vertices, where \(n\) is a positive integer. For \(0 \leq k \leq n\), a \(k\)-\textit{combination} of \([G]\) is a way of selecting members from \([G]\), such that the order of members in the selection does not matter. The number of \(k\)-combinations of \([G]\) is denoted by \((|G|)_k\) (read as \([G]\) choose \(k\)) and is called the \textit{graph binomial coefficient}.

Example 2.1. Let \(n\) be a positive integer. For the complete graph \(K_n\) and the star graph \(K_{1,n-1}\) we have \((|K_n|)_k = 1\) and \((|K_{1,n-1}|)_k = 2\) for each \(1 \leq k \leq n\).

Though for a vertex transitive graph \([G]\) the graph binomial coefficient \((|G|)_1\) is 1, but \((|G|)_2\) can be a number other than 1.

Example 2.2. Let \(Q_3\) be the 3-dimensional cube with vertices labelled as

\[a = 000, b = 001, c = 010, d = 011, e = 100, f = 101, g = 110, h = 111,\]

where two vertices are adjacent if and only if they differ in just one position. If we ignore the labels then there are three 2-combinations of \(|Q_3|\) which are \(ab, ad\) and \(ah\). Note that any other 2-combination is isomorphic to these.

We have the following two obvious results.

Proposition 2.1. Let \(G\) be a labelled graph with \(n\) vertices and let \(0 \leq k \leq n\). Then

\[
\left(\frac{|G|}{k}\right) = \left(\frac{|G|}{n-k}\right) = \left(\frac{|\overline{G}|}{k}\right),
\]

where \(\overline{G}\) is the complement of \(G\).

Proposition 2.2. Let \(G\) and \(G'\) be two labelled graphs with \(n\) vertices and let \(0 \leq k \leq n\). If \(\text{Aut}(G) \simeq \text{Aut}(G')\) then

\[
\left(\frac{|G|}{k}\right) = \left(\frac{|G'|}{k}\right).
\]

Theorem 2.1. Let \(G = (V, E)\) be a labelled graph with \(n\) vertices and let \(1 \leq k \leq n\). Then

\[
\left(\frac{|G|}{k}\right) = \frac{1}{|\text{Aut}(G)|} \sum_{\sigma \in \text{Aut}(G)} |V^k_\sigma|,
\]

where \(V^k_\sigma = \{v_1, \ldots, v_k\} \subseteq V : \sigma(\{v_1, \ldots, v_k\}) = \{v_1, \ldots, v_k\}\).

Proof. Let \(X\) be the set of \(k\)-subsets of \(V\). Then \(\text{Aut}(G)\) acts on \(X\) by the rule \((\sigma, A) = \sigma(A)\) for each \(A \in X\). Now, by the Burnside’s Lemma, the number of orbits of \(X\) under \(\text{Aut}(G)\), which is equal to \((|G|)/k\), is

\[
\frac{1}{|\text{Aut}(G)|} \sum_{\sigma \in \text{Aut}(G)} |V^k_\sigma|,
\]

where \(V^k_\sigma\) is the set of all members of \(X\) which are fixed under \(\sigma\). \(\Box\)
Corollary 2.1. Let P_n be the labelled path with n vertices and let $1 \leq k \leq n$. Then

$$\binom{|[P_n]|}{k} = \begin{cases} \frac{1}{2} \binom{n}{k} + \frac{1}{2} \binom{n}{k} & \text{if } n \text{ is even and } k \text{ is odd} \\ \frac{1}{2} \binom{n}{k} + \binom{\lfloor \frac{n}{2} \rfloor}{\lfloor \frac{k}{2} \rfloor} & \text{otherwise} \end{cases}$$

Proof. There are two automorphisms for P_n: the identity automorphism ι and the automorphism α defined by $\alpha(i) = n + 1 - i$ for $1 \leq i \leq n$. For ι we obviously have $|V_\iota^k| = \binom{n}{k}$ and for α we see that a subset $\{v_1, \ldots, v_k\}$ of V is in V_α^k if and only if $i \in \{v_1, \ldots, v_k\}$ implies $n + 1 - i \in \{v_1, \ldots, v_k\}$. If n is even and k is odd, the latter is impossible and for the other cases we should choose $\lfloor \frac{k}{2} \rfloor$ of the members of $\{v_1, \ldots, v_k\}$ from $\{1, 2, \ldots, \lfloor \frac{n}{2} \rfloor\}$ and the remainder should be chosen by symmetry. Now we can apply Theorem 2.1 to see the result.

Corollary 2.2. Let \overrightarrow{C}_n be the labelled cycle with n vertices which is clockwise directed and let $1 \leq k \leq n$. Then

$$\binom{|\overrightarrow{C}_n|}{k} = \frac{1}{n} \sum_{d \mid \gcd(n,k)} \varphi(d) \binom{n}{k} \frac{d}{n}.$$

Proof. We know that $\text{Aut}(\overrightarrow{C}_n)$ is the cyclic group generated by the permutation $\alpha = (12 \ldots n)$. Thus $\text{Aut}(\overrightarrow{C}_n) = \{\alpha, \alpha^2, \ldots, \alpha^n\}$. This group has $\varphi(d)$ elements of order d for each divisor d of n. An element of order d has $\frac{n}{d}$ cycles of length d. For a subset $\{v_1, \ldots, v_k\}$ of V and $\sigma \in \text{Aut}(\overrightarrow{C}_n)$, we have $\sigma(\{v_1, \ldots, v_k\}) = \{v_1, \ldots, v_k\}$ if and only if these k elements consist of full cycles of α. Whence if d does not divide k then V_σ^k is empty and if $d \mid n$ then choosing a subset $\{v_1, \ldots, v_k\}$ with the property $\sigma(\{v_1, \ldots, v_k\}) = \{v_1, \ldots, v_k\}$ is equivalent to choosing $\frac{k}{d}$ cycles of the $\frac{n}{d}$ cycles of σ.

Corollary 2.3. Let C_n be the labelled cycle with n vertices and let $1 \leq k \leq n$. Then

$$\binom{|C_n|}{k} = \begin{cases} \frac{1}{2^n} \sum_{d \mid \gcd(n,k)} \varphi(d) \left(\frac{n}{d}\right)^k + \frac{1}{2} \binom{\lfloor \frac{n}{2} \rfloor}{\lfloor \frac{k}{2} \rfloor} - 1 & \text{if } n \text{ is even and } k \text{ is odd} \\ \frac{1}{2^n} \sum_{d \mid \gcd(n,k)} \varphi(d) \left(\frac{n}{d}\right)^k + \frac{1}{2} \binom{\lfloor \frac{n}{2} \rfloor}{\lfloor \frac{k}{2} \rfloor} & \text{otherwise} \end{cases}$$

Proof. $\text{Aut}(G)$ is the dihedral group consisting of a cyclic subgroup of order n and n reflections. If n is odd then a reflection consists of a cycle with order one and $\frac{n-1}{2}$ cycles of order two. And if n is even then we have $\frac{n}{2}$ reflections with $\frac{n}{2}$ cycles of order two and $\frac{n}{2}$ reflections with two cycles of order one and $\frac{n-2}{2}$ cycles of order two. Now we can do as in the previous corollary.

3. Two Recursive Formulas

A famous recursive relation for the binomial coefficient is $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$. This simply says that a k-combination of the set $[n] = \{1, 2, \ldots, n\}$ can be chosen in two ways: $\{n\}$ union by a $(k-1)$-combination of the set $[n-1]$ or a k-combination of the set $[n-1]$. Using this idea, we aim to give a recursive formula for the graph binomial coefficient. Prior to this, we need some preliminaries.

Definition 3.2. Let $G = (V, E)$ be a labelled graph with n vertices, where n is a positive integer, and let H be a vertex induced subgraph of G. For $0 \leq k \leq n$, a k-combination of H in $[G]$ is a way of selecting members from H, such that the order of members in
the selection does not matter. The number of k-combinations of H in $[G]$ is denoted by \(\binom{|H \subseteq G|}{k} \) and is called the graph binomial coefficient of H with respect to $[G]$.

Example 3.3. Let $G = (V, E)$ be the graph with
$$V = \{1, 2, 3, 4, 5, 6\}, \quad E = \{12, 23, 31, 34, 45, 56, 64\}.$$ If H is the triangle $\{1, 2, 3\}$ then $\binom{|H|}{1}$ is 1, but $\binom{|H \subseteq G|}{1}$ is 2, since we have two different 1-combinations 1 and 3 of H.

Theorem 3.2. Let $G = (V, E)$ be a labelled graph with n vertices, $1 \leq k \leq n$ and let H be a vertex induced subgraph of G. Then
$$\binom{|H \subseteq G|}{k} = \frac{1}{|\text{Aut}(G)|} \sum_{\sigma \in \text{Aut}(G)} |H_\sigma^k|,$$
where $H_\sigma^k = \{\{v_1, \ldots, v_k\} \subseteq H : \sigma(\{v_1, \ldots, v_k\}) = \{v_1, \ldots, v_k\}\}$.

Proof. Let X be the set of k-subsets of H. Then $\text{Aut}(G)$ acts on X by the rule $(\sigma, A) = \sigma(A)$ for each $A \subseteq H$. Now, by the Burnside’s Lemma, the number of orbits of X under $\text{Aut}(G)$, which is equal to $\binom{|H \subseteq G|}{k}$, is $\frac{1}{|\text{Aut}(G)|} \sum_{\sigma \in \text{Aut}(G)} |H_\sigma^k|$, where H_σ^k is the set of all members of X which are fixed under σ. \(\square\)

Definition 3.3. Let $G = (V, E)$ be a graph, v be a vertex of G and let $\sigma \in \text{Aut}(G)$. We denote the set of all $u \in V$ such that u and v are in the same cycle of σ, in the cyclic representation of σ, by $\text{Cycle}(v, \sigma)$. The set $\cup_{\sigma \in \text{Aut}(G)} \text{Cycle}(v, \sigma)$, denoted by $\text{Tran}_G(v)$, is called the v-transitive subset of G. The v-transitive subset $\text{Tran}_G(v)$ of G is called strongly transitive if for each $u_1, u_2 \in \text{Tran}_G(v)$ and $u \in G$, there is a $\sigma \in \text{Aut}(G)$ such that $\sigma(u_1) = u_2$ and $\sigma(u) = u$. For a vertex induced subgraph H of G we say that H is v-transitive if there is a $\sigma \in \text{Aut}(G)$ with $H = V(v, \sigma)$. The set of v-transitive vertex induced subgraphs of G is denoted by $\mathcal{T}_G(v)$.

Example 3.4. Let $G = (V, E)$ be the graph with
$$V = \{1, 2, 3, 4, 5\}, \quad E = \{12, 13, 23, 24, 35, 45\}.$$ Then $\text{Tran}_G(1) = \{1\}, \text{Tran}_G(2) = \{2, 3\}$ and $\text{Tran}_G(4) = \{4, 5\}$. Here, $\text{Tran}_G(1)$ is strongly transitive but $\text{Tran}_G(2)$ and $\text{Tran}_G(4)$ are not. To see this note that for $2, 3 \in \text{Tran}_G(2)$ and $4 \in G$ there is no $\sigma \in \text{Aut}(G)$ with $\sigma(2) = 3$ and $\sigma(4) = 4$.

The following result is something similar to the recursive relation $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

Theorem 3.3. Let $G = (V, E)$ be a graph with n vertices, v be a fixed vertex of G and let $1 \leq k \leq n$. Then
$$\binom{|G|}{k} = \sum_{H \in \mathcal{T}_G(v)} \left(\binom{|H^c \subseteq G|}{k} \right),$$
where H^c is the vertex induced subgraph of G whose vertex set is the complement of the vertex set of H.

Proof. Let $\sigma \in \text{Aut}(G)$ and $H = V(v, \sigma)$. Then
$$V_\sigma^k = \{\{v_1, \ldots, v_k\} : H \subseteq \{v_1, \ldots, v_k\}, \sigma(\{v_1, \ldots, v_k\}) = \{v_1, \ldots, v_k\}\} \cup \{\{v_1, \ldots, v_k\} : H \cap \{v_1, \ldots, v_k\} = \emptyset, \sigma(\{v_1, \ldots, v_k\}) = \{v_1, \ldots, v_k\}\} = \{\{v_1, \ldots, v_k\} : \{v_1, \ldots, v_k\} \subseteq H^c, \sigma(\{v_1, \ldots, v_k\}) = \{v_1, \ldots, v_k\}\} \cup \{\{v_1, \ldots, v_k\} : \{v_1, \ldots, v_k\} \subseteq H^c, \sigma(\{v_1, \ldots, v_k\}) = \{v_1, \ldots, v_k\}\}.$$
The above equality is true since for a subset \(\{v_1, \ldots, v_k\} \) of \(V \) with \(\sigma(\{v_1, \ldots, v_k\}) = \{v_1, \ldots, v_k\} \), the set should contain a full cycle of \(\sigma \) or none of the members of a cycle.

Since the union is disjoint, we have

\[
|V^k_\sigma| = |(H^c)^{k-|H|}_\sigma| + |(H^c)^k_\sigma|.
\]

We now can apply Theorem 3.2. \(\square \)

For the binomial coefficient \(\binom{n}{k} \) we have also the recursive relation

\[
\binom{n}{k} = \sum_{t=0}^{k} \binom{k}{t} \binom{n-t}{k-t},
\]

where \(t \) can be any fixed integer with \(0 \leq t \leq n \). This simply says that choosing a \(k \)-combination from a group of \(t \) boys and \(n-t \) girls is equivalent to choosing \(\ell \) boys and \(k-\ell \) girls, where \(\ell \) can be 0 or 1 or \ldots or \(t \).

Theorem 3.4. Let \(G = (V, E) \) be a graph with \(n \) vertices, \(v \) be a fixed vertex of \(G \) and let \(1 \leq k \leq n \). If \(\text{Tran}_G(v) \) is strongly transitive then

\[
\left(\left\lceil \frac{|\text{Tran}_G(v)|}{k} \right\rceil \right) = \sum_{\ell=0}^{\left\lceil \frac{|\text{Tran}_G(v)|}{k} \right\rceil} \left(\left\lceil \frac{|\text{Tran}_G(v) \subseteq G|}{\ell} \right\rceil \right) \left(\left\lceil \frac{|(\text{Tran}_G(v))^c \subseteq G|}{k-\ell} \right\rceil \right).
\]

Proof. Let \(\{v_1, \ldots, v_k\} \) be a subset of \(V \). Moreover, suppose that \(\{v_1, \ldots, v_k\} \cap \text{Tran}_G(v) = \{v_1, \ldots, v_\ell\} \), where \(0 \leq \ell \leq |\text{Tran}_G(v)| \). Then \(\sigma(\{v_1, \ldots, v_k\}) = \{v_1, \ldots, v_\ell\} \) if and only if \(\sigma(\{v_1, \ldots, v_\ell\}) = \{v_1, \ldots, v_\ell\} \), \(\sigma(\{v_{\ell+1}, \ldots, v_k\}) = \{v_{\ell+1}, \ldots, v_k\} \).

This shows that

\[
|V^k_\sigma| = \sum_{\ell=0}^{\left\lceil \frac{|\text{Tran}_G(v)|}{k} \right\rceil} |(\text{Tran}_G(v))^{\ell}_\sigma| \times |((\text{Tran}_G(v))^c)^{k-\ell}_\sigma|.
\]

Theorem 2.1 and Theorem 3.2 now give the result. \(\square \)

4. Graph Binomial Expansion

Recall that the binomial expansion says \(\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} = (a + b)^n \). In this section we want to find a graph version of the binomial expansion.

Definition 4.4. Let \(G = (V, E) \) be a labelled graph with \(n \) vertices, where \(n \) is a positive integer, and let \(H \) be a vertex induced subgraph of \(G \). We denote the summation \(\sum_{k=0}^{n} \binom{H \subseteq G}{k} a^k b^{n-k} \) by \(P_{[H \subseteq G]}(a, b) \). The expansion is called the **graph binomial expansion of** \(H \) with respect to \([G] \). For the case \(H = G \) we simply write \(P_{[G]}(a, b) \) instead of \(P_{[G \subseteq G]}(a, b) \).

Proposition 4.3. Let \(G \) be a graph with \(n \) vertices. The number of ways to color vertices of \([G] \) with two colors is \(P_{[G]}(1, 1) \).

As a corollary, using Corollaries 2.1, 2.2 and 2.3, we can compute the number of ways to color \(P_n, C_n \) (a necklace with rotations but without reflections) or \(C_n \) (a necklace with rotations and reflections) with two colors. For example, we have the following.

Corollary 4.4. Let \(C_n \) be the labelled cycle with \(n \) vertices which is clockwise directed. Then the number of ways to color vertices of \(C_n \) with two colors is

\[
1 + \sum_{k=1}^{n} \frac{1}{n} \sum_{d \mid \gcd(n, k)} \varphi(d) \binom{n}{\frac{n}{d}} \binom{\frac{n}{d}}{k}.
\]

Furthermore, as a corollary of Theorem 3.4, we can easily prove the following result.
Theorem 4.5. Let G be a graph with n vertices and v be a fixed vertex of G. If $\text{Tran}_G(v)$ is strongly transitive then

$$P_{[G]}(a, b) = P_{[\text{Tran}_G(v) \subseteq G]}(a, b)P_{[(\text{Tran}_G(v))^c \subseteq G]}(a, b).$$

Example 4.5. Let $G = (V, E)$ be the graph with

$$V = \{1, 2, 3, 4, 5, 6, 7\}, \quad E = \{12, 23, 31, 34, 45, 56, 67, 74\}.$$

Then

$$P_{[G]}(a, b) = a^7 + 5a^6b + 12a^5b^2 + 18a^4b^3 + 18a^3b^4 + 12a^2b^5 + 5ab^6 + b^7.$$

Considering $u = 1$ we have $\text{Tran}_G(u) = \{1, 2\}$ which is strongly transitive. We have

$$P_{[\text{Tran}_G(u) \subseteq G]}(a, b)(a, b) = a^2 + ab + b^2$$

and

$$P_{[(\text{Tran}_G(u))^c \subseteq G]}(a, b) = a^5 + 4a^4b + 7a^3b^2 + 7a^2b^3 + 4ab^4 + b^5.$$

Note that

$$a^7 + 5a^6b + 12a^5b^2 + 18a^4b^3 + 18a^3b^4 + 12a^2b^5 + 5ab^6 + b^7 = (a^2 + ab + b^2)(a^5 + 4a^4b + 7a^3b^2 + 7a^2b^3 + 4ab^4 + b^5).$$

On the other hand, considering $v = 6$ we have $\text{Tran}_G(v) = \{6\}$ which is strongly transitive. We have

$$P_{[\text{Tran}_G(v) \subseteq G]}(a, b)(a, b) = a + b$$

and

$$P_{[(\text{Tran}_G(v))^c \subseteq G]}(a, b) = a^6 + 4a^5b + 8a^4b^2 + 10a^3b^3 + 8a^2b^4 + 4ab^5 + b^6.$$

Note that

$$a^7 + 5a^6b + 12a^5b^2 + 18a^4b^3 + 18a^3b^4 + 12a^2b^5 + 5ab^6 + b^7 = (a + b)(a^6 + 4a^5b + 8a^4b^2 + 10a^3b^3 + 8a^2b^4 + 4ab^5 + b^6).$$

Example 4.6. Let G be the graph introduced in Example 3.4. Then

$$P_{[G]}(a, b) = a^5 + 3a^4b + 6a^3b^2 + 6a^2b^3 + 3ab^4 + b^5.$$

Considering $v = 4$ we have $\text{Tran}_G(v) = \{4, 5\}$ which is not strongly transitive. We have

$$P_{[\text{Tran}_G(v) \subseteq G]}(a, b)(a, b) = a^2 + ab + b^2$$

and

$$P_{[(\text{Tran}_G(v))^c \subseteq G]}(a, b) = a^3 + 2a^2b + 2ab^2 + b^3.$$

Note that

$$a^5 + 3a^4b + 6a^3b^2 + 6a^2b^3 + 3ab^4 + b^5 \neq (a^2 + ab + b^2)(a^3 + 2a^2b + 2ab^2 + b^3).$$

Remark 4.1. Let G be a graph with vertices $1, 2, \ldots, n$. We add i loop to vertex i of G to make a new graph G'. Then $\text{Aut}(G')$ is the identity group, since no two vertices of G' are transitive to each other. This guarantees that $\binom{[G']}{k} = \binom{n}{k}$ for each $0 \leq k \leq n$. Thus

$$P_{[G']}(a, b) = \sum_{k=0}^{n} \binom{n}{k}a^k b^{n-k}.$$

On the other hand, for each $v \in G'$ we have $\text{Tran}_{G'}(v) = \{v\}$ which is strongly transitive and so $P_{[\text{Tran}_{G'}(v) \subseteq G']} (a, b) = a + b$. Thus $P_{[G']}(a, b) = (a + b)^n$. This agrees to the famous binomial expansion.

Acknowledgements. This research was supported by a grant from Ferdowsi University of Mashhad; No. MP94324MIZ. The authors would like to thank the referee for reading the paper carefully and giving valuable suggestions and remarks.
REFERENCES

NATIONAL ORGANIZATION FOR DEVELOPMENT OF EXCEPTIONAL TALENTS (NODET) II AND I
MASHHAD, IRAN
DEPARTMENT OF PURE MATHEMATICS
FERDOWSI UNIVERSITY OF MASHHAD
P.O. BOX 1159, MASHHAD 91775, IRAN
E-mail address: mrebrahimiv@gmail.com
E-mail address: mirzavaziri@gmail.com
E-mail address: mirzavaziri@um.ac.ir