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This work assesses conservative level set method (LSM) and Cahn–Hilliard phase field method (PFM) in
modeling 2D two-phase flow through porous media, based on their ability to capture different phenom-
ena associated with the medium permeability and fluid viscosity contrasts. The assessment includes their
accuracy and running time. For this purpose, a robust finite element solver (COMSOL Multiphysics™) is
used here to do the computations. To start with, the main parameters of the methods including the inter-
face thickness, mesh size and diffusion coefficient are studied. Rectangular bubble relaxation is simulated
to compare the two methods in capturing the physics of the bubble evolution. The comparison is also
made for a stratified two-phase flow and flow in different single pore elements. Two models are then con-
structed to simulate two-phase flow with viscosity contrast through complex porous media, including
homogenous medium with obstacle and dual-permeability medium. Both methods are able to capture
the basic phenomena; however PFM is more successful in capturing the physical details especially in
complicated porous media, compared to LSM. PFM results such as pressure gradients and fluid profiles
in the media are more realistic. While LSM is unsuccessful in volume conservation and modeling no-slip
boundary conditions. In addition, the running times are considerably less for PFM in simulation of differ-
ent scenarios.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding transport phenomena in porous media is of great
importance in many fields such as petroleum engineering (Valvatne
and Blunt, 2004). To better comprehend such phenomena, it is use-
ful to model two phase flow problems at pore-scales. Pore-scale
models can be used to derive macro-scale constitutive relations
(e.g. capillary pressure and relative permeabilities) and to provide
flow properties for simulation in larger scales (Valvatne and Blunt,
2004; Ramstad et al., 2009). Initial studies on the behavior of two-
phase flow are dated back to the beginning of 19th century, when
Young (1805) and other investigators developed the qualitative
theory of surface tension. In recent years, a variety of two-phase
flow simulation methods have been suggested that can be imple-
mented at pore-scales, e.g., pore network modeling (Blunt, 2001),
Lattice Boltzman method (Succi, 2001), front tracking method
(Unverdi and Tryggvason, 1992), volume of fluid (VOF) method
(Hirt and Nichols, 1981), level set method (Osher and Sethian,
1988; Smereka and Sethian, 2003), phase field method (Jacqmin,
1999; Badalassi et al., 2003) and so on. Pore-scale simulation of
fluid flow through porous media demands a method that can han-
ll rights reserved.
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dle complex pore geometries and topological changes. Among other
methods, level set method (LSM) and phase field method (PFM),
which are categorized as interface capturing approaches, are
becoming increasingly popular because of their ability to accurately
model flow problems involving sophisticated moving interfaces
and complex topologies (Sussman et al., 1999; Yue et al., 2004).
The main goal of present work is to compare these methods and
find the more efficient one in solving pore-scale two phase flow
problems, from accuracy and running time points of view.

LSM was first developed by Osher and Sethian (1988). It is a
class of numerical techniques in which the interface evolution in
space and time is modeled by an advection equation (Smereka
and Sethian, 2003). The standard LSM is not volume conservative;
so different combinations of the LSM with other conservative
schemes have been proposed to solve this problem (e.g. LSM cou-
pled with variable density projection method (Sussman et al.,
1999) and VOF method (Sussman and Puckett, 2000)). Although
these approaches improve the volume conservation of the LSM,
they are not as simple as LSM itself (Olsson and Kreiss, 2005). Ols-
son et al. (2007) suggested a two-step LSM, which is able to con-
serve the volume and keep the main structure of the standard LSM.

The first idea of PFM (also known as diffuse-interface method)
goes back to a century ago when van der Waals (1979) modeled
a liquid–gas system using a density function that varies
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continuously at the interface. Convective Cahn–Hilliard equation
(proposed by Cahn and Hilliard (1958)) is the best known example
of PFM that can conserve the volume and is relatively easy to
implement in two and three dimensions (Jacqmin, 1999). During
the last decade, different applications of Cahn–Hilliard PFM in sim-
ulation of two-phase Navier–Stokes flows have been suggested (Liu
and Shen, 2003; Chiu and Lin, 2011; Bogdanov et al., 2010).

Both LSM and PFM compute two phase flow on a fixed Eulerian
grid. In both methods the state of the entire domain is represented
continuously by an indicator function (i.e., level set function in LSM
and order parameter in PFM) that assumes distinct constant values
in each bulk phase and undergoes rapid but smooth variation in
the interfacial region (Smereka and Sethian, 2003; Yue et al.,
2006). The physical fluid properties (e.g. density and viscosity)
are modified in order to be constant in bulk phases and vary
smoothly across the interface. The incompressible Navier–Stokes
equation with variable viscosity and density is coupled with the
convective equation of interface to implicitly describe the fluid
dynamics in the domain (Olsson et al., 2007; Badalassi et al., 2003).

From a methodological standpoint, LSM is a computational ap-
proach in which the interface motion is numerically approximated
using artificial smoothing function. While PFM is based on a phys-
ical approach which incorporates the phases and interface between
them into the free energy function of the system. It means that
PFM not only transports the interface with the flow but ensures
that the total energy of the system is minimized correctly. The evo-
lution of the interface therefore is self-consistent in PFM and does
not need ad hoc intervention such as the re-initialization in LSM
(Zhou et al., 2010). Another difference between LSM and PFM is
that the choice of level set function is somewhat arbitrary, but
for PFM, the exact profile of the order parameter is important in
obtaining the correct interface motion (Smereka and Sethian,
2003). The advantages and limitations of PFM and LSM have been
discussed more by Feng et al. (2005) and Smereka and Sethian
(2003).

In present work, 2D flow problems are modeled using conserva-
tive LSM and Cahn–Hilliard PFM solved by finite-element scheme,
which can accommodate complex flow geometries.

2. Theory and numerical methods

2.1. Interface equations

The level set function (/LS) is a numerical smoothing parameter,
while the phase field orders parameter (/PF) is a physical quantity
which represents the concentration fractions of the two phases.
However, both are used to model fluid interface as having finite
thickness. In this work they are defined in a way that go rapidly
from zero to one across the interface, hence sharp interface is at
their 0.5 contour. The main equations of the conservative LSM
and Cahn–Hilliard PFM are presented in this section. More details
can be obtained from works done by Olsson et al. (2005, 2007) for
conservative LSM and Wheeler et al. (1995) and Yue et al. (2006)
for Cahn–Hilliard PFM.

The interface evolution in the standard LSM is given by a simple
numerical convection (Osher and Sethian, 1988); however it fails
to conserve the volume due to the absence of diffusion term in
the equation. Therefore, using numerical techniques, an artificial
compression and diffusion are added in order to maintain the
interface thickness (Olsson et al., 2007). The compression–diffu-
sion equation is obtained as:

@/LS

@t
þ u � r/LS ¼ xr � ðelsr/LS � /LSð1� /LSÞnÞ ð1Þ

where u is the fluid velocity field, x is a numerical parameter (re-
initialization parameter) with the dimension of velocity, eLS is a
measure for the interfacial thickness in LSM and n is the interface
normal vector that is easily calculated as n =r/LS/|r/LS|. According
to Olsson et al. (2007), conservative LSM is a two step method,
advective step and re-initialization step. In advective step simple
convection equation is solved. The resulting /LS is then used as ini-
tial condition for Eq. (1) in re-initialization step.

Cahn–Hilliard convection equation is a time dependent form of
the energy minimization concept. It is obtained by approximating
interfacial diffusion fluxes as being proportional to chemical po-
tential gradients, enforcing conservation of the field (Badalassi
et al., 2003). This equation models creation, evolution and dissolu-
tion of the interface:

@/PF

@t
þ u � r/PF ¼ r � ðMrGÞ ð2Þ

where M is the diffusion coefficient called mobility and G is the
chemical potential of the system. Mobility can be expressed as
M ¼ Mce2

PF , where Mc is the characteristic mobility that governs
the temporal stability of diffusive transport and ePF is a capillary
width that scales with the interface thickness in PFM. The chemical
potential is derived from total energy equation as

G ¼ k 1=e2
PF/PF /PF � 1

2

� �
ð/PF � 1Þ �r2/PF

h i
, where k is the mixing en-

ergy density. Eq. (2) implies that the temporal evolution of /PF de-
pends on convective transport due to the divergence free velocity
and diffusive transport due to gradients in the chemical potential
(Donaldson et al., 2011).

One dimensional equilibrium interface profile for conservative
LSM is obtained as a steady solution of Eq. (1) which can be ex-
pressed as /0LS(x) = 1/[1 + exp(�x/eLS)]. In the case of PFM, this
equilibrium interface profile is derived by minimizing the total en-
ergy functional with respect to the variations of /PF (i.e., G = 0),
which can be given by /0PFðxÞ ¼ 0:5 1þ tanhðx=

ffiffiffi
2
p

ePFÞ
h i

(Wheeler
et al., 1995). If one takes 0.05 < /LS (or /PF) < 0.95 to be the extent
of the interface, the equilibrium profiles of LSM and PFM give inter-
facial thicknesses of 5.889eLS and 4.164ePF, respectively. So interfa-
cial thicknesses of the two methods are equal if ePF ¼

ffiffiffi
2
p

eLS. It is
worth to note that the LSM and PFM interface equilibrium equa-
tions are also analytically identical when ePF ¼

ffiffiffi
2
p

eLS:
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2.2. Momentum equation

To simulate immiscible two phase flow problems, the interface
equations are coupled with the following incompressible Navier–
Stokes and continuity equations:

qð/Þ @u
@t
þ qð/Þu � ru ¼ �rpþr � ½lð/ÞðruþruTÞ� þ qð/Þg

þ Fst ð4Þ

r � u ¼ 0 ð5Þ

where p is pressure, q is density, l is viscosity, g is gravitational
acceleration, Fst is surface tension that is introduced as a body force
in the momentum equation and / can be /LS or /PF. The density and
viscosity are defined as q(/) = q1 + (q2 � q1)/ and l(/) = l1 + (l2 �
l1)/, respectively, where subscripts 1 and 2 denote two different
phases.

In the case of LSM, the interfacial force can be calculated solving
the following relation (Shepel and Smith, 2006):
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Fst;LS ¼ rjndð/LSÞ ð6Þ

where r is the surface tension coefficient, j = �r � (r/LS/|r/LS|) is
the local curvature of the interface and d is a smoothed delta func-
tion which can be scaled with r/LS. In PFM, surface body force is
calculated by derivation of the total free energy due to the spatial
coordinate which is obtained as follows (Yue et al., 2006):

Fst;PF ¼ Gr/PF ð7Þ

PFM considers surface tension as an intrinsic property corre-
sponding to the excess free energy density of the interfacial region
(Qin and Bhadeshia, 2010). Surface tension coefficient for PFM is
equal to the integral of the free energy density across the interface,
which is r ¼ 2

ffiffiffi
2
p

k=3ePF in the case of a planar interface.

2.3. Numerical schemes

Numerical simulations are carried out using the commercial soft-
ware of COMSOL Multiphysics™, an interactive environment for
modeling different scientific and engineering problems. It uses finite
element method (FEM) for solving the equations. The software runs
finite element analysis together with error control using a variety of
numerical solvers (COMSOL Multiphysics user’s guide, 2011).

Triangular mesh elements are used in all the computations in
present work. To avoid unphysical distortions and to make sure
about the accuracy of the results, the interface should be thin en-
ough to approach a sharp transition. A sharp transition will imply
less smearing of density, viscosity and surface tension. A small
interface thickness can also result in better conservation of the
area bounded by the 0.5 contour (Olsson et al., 2007). On the other
hand, the interface region must be adequately resolved by fine
mesh. These conditions are described in detail by Zhou et al.
(2010) as model convergence and mesh convergence. In PFM,
mobility is another important parameter that affects the accuracy
of the method (Jacqmin, 1999). The choice of the mobility (M) is
one of the subtleties of PFM. M has to be large enough to retain a
more or less constant interfacial thickness and small enough to
keep the convective motion (Yue et al., 2006). According to Olsson
et al. (2007), the choice of re-initialization parameter (x) in LSM
needs attention, which is discussed more in coming sections. The
time steps sizes are controlled by the numerical solver during
the computations, using backward differentiation formulas (BDFs).
Particularly, the initial time step sizes are small enough to avoid
singularity.

As discussed by Yue et al. (2006), to apply finite element dis-
cretization, the fourth order derivative term in Eq. (2) needs to
be divided into two second order equations using an auxiliary
parameter. Therefore, the computations of LSM are done using
three dependant variables of {u, p, /}, while PFM has the men-
tioned additional parameter; i.e., for the same problem, the num-
ber of degrees of freedom that are solved for LSM is less than PFM.

The interface convective equations of LSM and PFM must be ini-
tialized before time dependant solving. In the initialization step,
the interface equation is solved at stationary conditions (u = 0) in
order to / vary smoothly across the initial interface. Normally, a
shorter initialization time is required for LSM, compared to PFM.
The influence of the initialization time on the results of the meth-
ods is more discussed in Section 3.1.

3. Results and discussions

The numerical results of different 2D problems are presented in
this section to validate and compare LSM and PFM. The rectangular
bubble evolution, co-current two-phase flow in the channel, two-
phase flow through single pore elements, homogenous and dual-
permeability porous media are the studied problems.
3.1. Rectangular bubble deformation

The bubble relaxation is driven only by the interfacial tension.
Thus, it can be used to show how accurately the methods compute
the interfacial force. The effects of the diffusion terms (M and x) on
the bubble area conservation are also studied. An initially rectangle
bubble with the side length of lb is simulated at the middle of a
square domain with the dimension of plb. The viscosity ratio is de-
fined as b = l2/l1, with the subscripts 1 and 2 denoting matrix and
bubble, respectively. There is no externally imposed velocity so the
only time scale is the capillary time tc = l1lc/r, where lc is the char-
acteristic length. lb is set as the characteristic length in this prob-
lem. The Cahn number is Cn = e/lc, where e is the interface
thickness parameter. To compare the two methods, we set
e ¼

ffiffiffi
2
p

eLS for LSM and e = ePF for PFM (see Section 2.1). The bulk
maximum mesh element size is fixed at 0.125lb and it is refined
to 0.02lb around the bubble region. Further refinement produces
no visible change in the results. Cn is set to 0.013. Both methods
predict qualitatively identical bubble profiles during the evolution
in a good agreement with the literature results (Liu and Shen,
2003). The bubble oscillates until it approaches the stabilized cir-
cular bubble at tD = 50. After equilibrium, small parasite currents
appear especially in the neighborhood of the interfaces, which is
prevalent in surface tension simulation methods. According to
Renardy and Renardy (2002), the maximum parasite velocity mag-
nitude in the computational domain is scaled with r/l. The para-
site currents simulated by PFM and LSM are in order of 0.001r/l
and 0.002r/l, respectively, i.e., PFM demonstrates smaller parasite
currents, compared to LSM. These error values are approximately
one order of magnitude smaller than the values reported by Lafau-
rie et al. (1994), Renardy and Renardy (2002) and Dupont and
Legendre (2010). This is mainly due to the robust finite element
solver used in this work.

As bubble deforms, small bubble area shrinkages are predicted
by the two methods. The shrinkage ratio (Rs) is defined here as
Rs = (bubble area bounded by / = 0.5)/(original bubble area, l2

b). A
sensitivity analysis is made to compare the ability of PFM and
LSM in conserving the volume. Shrinkage rate is found to be a func-
tion of M in PFM and x in LSM. Mobility term (M) in PFM accounts
for the diffusion-related time scale of the interface (see Eq. (2)). For
LSM, it is possible to assume the re-initialization parameter (x) as
an artificial diffusion parameter (see Eq. (1)). The Péclet number is
defined for PFM and LSM as PePF ¼ rlb=ðl2MckÞ and PeLS = rlb/(l2-

xeLS), respectively. The diffusion-related time scales for PFM and
LSM are hence defined as tdif ;PF ¼ lbePF=ðMckÞ and tdif,LS = lb/x,
respectively. As indicated in Section 2.3, the initialization step
solves the interface equations (Eqs. (1) and (2)) at stationary con-
ditions, i.e., pure diffusion without any convection. For a problem
such as rectangular bubble evolution, this pure diffusion can cause
deformations in the bubble when tin/tdif is large, where tin is initial-
ization time. Fig. 1 shows how a long tin has resulted in diffusion-
controlled shape modification in both methods, especially on the
bubble corners. Since PFM interface equation (Eq. (2)) satisfies
the energy minimization criterion, the bubble deformation simu-
lated by PFM is considerably smoother, compared to that of LSM.
On the other hand, tin affects the area conservation during the time
dependent computations. As shown in Fig. 2, for a given Pe, a small
tin/tdif results in early abrupt bubble shrinkage in both methods due
to the initially unstable /. At a later stage, Rs takes relatively the
same gradient as that for larger tin/tdif. Therefore, at a given diffu-
sion coefficient, initialization step has to have enough time in order
to stabilize / at the initial interface. However, tin must be small en-
ough to avoid any deformation caused by pure diffusion.

The effect of diffusion coefficients (or Pe) on the shrinkage rate
are presented separately for LSM and PFM in Fig. 3. In general, the
area change of bubble is less than 1% up to tD = 150 for the two



Fig. 1. The rectangular bubble profile computed by PFM and LSM at the end of the initialization step (before time dependent solving) when tin/tdif is large. For PFM, Pe = 7.25e5
and tin/tdif = 2.5. For LSM, Pe = 5.3e5 and tin/tdif = 5.

Fig. 2. Shrinkage ratio of the bubble (Rs) as a function of tD for LSM and PFM with different tin/tdif.

Fig. 3. Shrinkage ratio of the bubble (Rs) as a function of tD for LSM and PFM with different Pe.
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methods, however PFM shows smaller rates of shrinkage at
different Pe, in comparison with LSM, i.e., PFM has better perfor-
mance in conserving the bubble area. In general, as Pe increases,
the rate of shrinkage decreases for the two methods. Diffusion
may shift the interface contour and change the volume of the
bubble as the interfacial profile evolves in a flow field (Yue et al.,
2006). The diffusion effect is minimized when Pe increases. As
shown in Fig. 3, as Pe increases in PFM, the rate of shrinkage
converges. However for LSM, at high Pe (>5.3e5) the bubble is ex-
panded (matrix shrinkage). This may be due to the inability of re-
initialization step in keeping /LS across the interface at high Pe
(Olsson et al., 2007).
3.2. One directional stratified two phase flow

The well-known Poiseuille flow in 2D channel is simulated
using LSM and PFM. This study serves to validate and compare
the methods in simulating two-phase flow with viscosity contrast.
The influences of model convergence and mesh convergence on the
accuracy of the results are studied. The wetting phase (phase 1)
flows along the channel wall, while the nonwetting phase (phase
2) flows in the center. Standard no-slip boundary conditions are
used for channel walls and fixed pressure gradient is imposed over
the channel length. After a transition period, the steady state con-
dition is achieved. There is not any considerable deformation in the



Fig. 5. The effect of Ca on symmetry velocity profiles obtained by LSM and PFM for
stratified two-phase flow in 2D channel with equal viscosities in which the wetting
phase volume fraction is 50%.
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interface and the fluid currents are parallel. The following charac-
teristic length and velocity are defined: lc = H and uc =rPH2/l1,
where H is the channel width and rp is the pressure gradient in
the channel. To avoid flow turbulencies, Re number is taken within
the laminar flow regime (<2000), so the values of pressure gradi-
ent, viscosities and channel dimension are critical.

Simulations for a wide range of pressure gradients, bulk viscos-
ities and channel widths are performed and the results are normal-
ized with the characteristic length and velocity. Fig. 4 depicts the
numerical results for b = 10 and b = 0.1. As discussed in Section 2.3,
a precise diffuse-interface solution requires that the interface to be
thin enough to approximate the sharp-interface limit (model con-
vergence), and that the thin interface to be resolved by a sufficient
number of grid points (mesh convergence). For the mesh conver-
gence tests, as an initial guess, Cahn number is fixed at Cn = 0.01
and the mesh size (h) is varied as a function of e. The numerical re-
sults are compared with the obtained analytical velocities from
simplified Navier–Stokes equation. As shown in Fig. 4a, the pre-
dicted velocities by LSM are more sensitive to mesh size, compared
to PFM for this particular case. The results for LSM at h = 5e and
b = 0.1 are not shown in Fig. 4a since the velocity did not reach
steady state. Mesh convergence is achieved for PFM when
h 6 2:5e; while for LSM convergence is reached at smaller mesh
size of h 6 e. Fig. 4a demonstrates that when Cn = 0.01, the veloci-
ties are not accurate enough compared to analytical solution, so
the interface thickness has not yet approached to the sharp limit.
In order to confirm model convergence, Cn was reduced to 0.001.
As shown in Fig. 4b, as Cn decreases, the predicted velocities by
both methods approach the exact solutions at different viscosity
ratios and they are in a good agreement with the analytical solu-
tion at Cn = 0.001 and h = e. From Fig. 4a and b it may be concluded
that the accuracy of the results for LSM and PFM is more dependent
on the interface thickness, than the mesh size for this particular
case. This may be due to the interdependency of the interfacial
thickness and the widths of the fluids in the parallel flow. As the
interface approaches sharp limit, the fluid thicknesses retain their
real size and the velocity profiles approach the exact values.

In the analytical solution of the parallel two-phase flow in 2D
channel, which is obtained from Navier–Stokes equation, the
velocities are independent of surface tension coefficient. A sensitiv-
ity study is done to investigate the accuracy of the two methods in
modeling surface tension in this two-phase flow problem. The
effect of capillary number, Ca = l1uc/r on two-phase velocity pro-
files with b = 1 in half symmetry of the channel is presented in
Fig. 5. At high Ca (i.e. negligible surface tension), both methods
predict the exact velocities. By decreasing Ca, PFM results remain
in a good agreement with the analytical solution; however LSM
results deviate from the analytical solution by predicting higher
velocities. This may be due to the fundamental differences
between the governing equations of LSM and PFM. In LSM, the
Fig. 4. Comparison of analytical and simulated profiles of dimensionless velocity versus
phase 1 volume fraction of 50%. The numerical results are shown as functions of (a) me
effect of surface tension is included in the definition of the interfa-
cial body force (Eq. (6)) in Navier–Stokes equation (Eq. (4)); while
in the case of PFM, surface tension coefficient does not only affect
the momentum equation through interfacial force term (Eq. (7)),
but also influences the evolution of the interface through chemical
potential term (Eq. (2)).
3.3. Simulation of fluid flow through porous media

In this section, several 2D numerical experiments are presented
to demonstrate the capabilities and limitations of the two methods
in simulation of complex two-phase flow with viscosity contrast
through different types of porous media.
3.3.1. Single pore model
Due to the complexity of the fluid flow through porous media,

when the interface is not sharp enough or it is not resolved by en-
ough mesh grids (i.e., the model and mesh are not converged), the
results are unreliable due to the numerical distortions. In this step,
a single pore is therefore selected to address the model conver-
gence and mesh convergence. As shown in Fig. 6, the pore element
consists of the circular grains with diameter of Dg, the pore throats
with diameter of Dt and pore area. It is initially saturated with the
phase 1 (oil). An inlet is located on the left hand side of the ele-
ment, through which the phase 2 (water) is injected into the pore
area at a constant velocity (uin). uin is taken small enough to keep
the flow within the laminar regime and large enough to minimize
the effect of surface tension on the flow behavior. The outlet is
located on the right hand side of the element and is kept at zero
pressure. No-slip boundary conditions are used for the grain
dimensionless channel width in stratified two phase flow for b = 10 and b = 0.1 at
sh size with Cn = 0.01 and (b) Cn with h = e.



Fig. 6. The schematic of the discretized computational domain of the pore element
(h = 0.015Dg). The dimensions of the element components and the inlet/outlet are
specified.
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surfaces or in other words, the fluid-grain contact angle is set to p/
2 (neutral wettability). Symmetry boundary conditions are taken
for the lateral sides, to extend the geometry in the lateral direc-
tions. The characteristic length and time are defined as lc = Dg

and tc = Dg/uin, respectively. The volume fraction of water inside
the element (Rv) as a function of time is numerically studied. As
water flows through the element, Rv increases linearly as a function
of time until water reaches the outlet (water breakthrough time).
When the steady state condition is achieved, Rv is stabilized while
a certain volume of the initial oil is trapped on the upper side of the
element.

The viscosity ratio is set to b = 10. To confirm the mesh conver-
gence, we set Cn = 0.03 and vary the mesh size from h = 2e to
h = 0.5e. The LSM solution did not converge at h = 2e. As shown
in Fig. 7, the mesh convergences in PFM and LSM are achieved
when h 6 0:8e. Analytically, Rv is stabilized after breakthrough
time, due to incompressibility of the fluids. However, both meth-
ods predict a gradual increase of Rv versus time. This is mainly
due to the numerical volume shrinkage of the trapped oil. It is
important to note that PFM predicts lower shrinkage compared
to LSM. This is in agreement with the observations made in Sec-
tion 3.1 for rectangular bubble deformation.

To confirm the model convergence, mesh size is set to h = 0.8e
and Cn varies from 0.1 to 0.01 (Fig. 8). The PFM prediction con-
verges to the sharp-interface limit when Cn 6 0.03, while LSM
needs a thinner interfacial layer (Cn < 0.02). The LSM results show
Fig. 7. Water volume fraction (Rv) as a function of dimensionless time for the pore eleme
resolution at Cn = 0.03.
larger variations in the tested values of Cn. This demonstrates that
LSM is more sensitive to the interfacial thickness, compared to
PFM. It is worth to note that the rate of volume shrinkage in both
methods (especially in LSM) decreases as the interface approaches
the sharp limit. Based on the above studies, the later PFM and LSM
computations are performed using Cn = 0.01 and h = 0.8e, to make
sure that the interface is sharp enough and is resolved by enough
mesh in both methods.

From the physical point of view, when b P 1 the displacement
process is stable. However, when the viscosity of the displacing
fluid is less than the displaced fluid (b < 1), physical interface insta-
bilities occur which are known as Rayleigh–Taylor instabilities in
fluid dynamics. In larger scales, this phenomenon is called finger-
ing, which is prevalent in water-flooding of the porous media that
contain oil with larger viscosity than water. The effects of b on the
simulation results of PFM and LSM are studied in this section. Fig. 9
illustrates the fluid profiles at tD = 10 (steady state condition) pre-
dicted by PFM and LSM with different viscosity ratios of 1, 10 and
0.1. Fig. 10 depicts Rv versus time for the two methods at different
b. In general, LSM and PFM predict different steady profiles for the
interface. In the case of PFM, the interface ends are stabilized per-
pendicular to the grain walls, in agreement with the imposed no-
slip boundary condition. However, the ends of the interface pre-
dicted by LSM make are at oblique angles with the grain walls at
steady condition, which means that the interface is unstable in
LSM. On the other hand, LSM predicts relatively similar profiles
for fluid distributions (Fig. 9) and water volume fractions
(Fig. 10) at different viscosity ratios. However, PFM computations
result in different fluid profile and water volume fraction when
b = 0.1. As shown in Fig. 9 for PFM at b = 0.1, not only the volume
of the trapped oil in the upper side of the element increases, but
also small amount of oil is trapped in the lower part. This has re-
sulted in lower Rv (or higher trapped oil) at steady conditions
(Fig. 10). This means that PFM could capture the physical interface
instabilities.

As mentioned in Section 2.3, the numerical solver controls the
size of the time steps during the computations to converge the
solution. Fig. 11 illustrates the reciprocal of time step sizes taken
by the solver versus number of time steps for PFM and LSM in com-
putation of flow when Cn = 0.01, h = 0.8e and b = 0.1. Although the
average time step sizes are approximately the same, the ampli-
tudes of step size fluctuations in PFM is much less than LSM. These
fluctuations result in larger number of time steps for LSM (more
than two times). In spite of the number of degrees of freedom for
LSM which is much less than PFM (see Section 2.3), the running
of LSM computations takes longer time in comparison with PFM
(about 1.5 times).
nt simulated by PFM and LSM. The convergence is studied with respect to the mesh



Fig. 8. Water volume fraction (Rv) as a function of dimensionless time for the pore element simulated by PFM and LSM. The convergence is studied with respect to the
interfacial thickness when h = 0.8e.

Fig. 9. Comparison between PFM and LSM predictions of two-phase flow profile
through the pore element at tD = 10 for three different viscosity ratios.
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A slightly more complicated pore element is simulated to inves-
tigate the effects of the diffusion terms on the results of PFM and
LSM. The new model is similar to the pore element that was de-
scribed above; however as depicted in Fig. 12, the diameter of
the upper grain is smaller (0.8Dg) that creates inhomogeneity (dual
permeability) in the model. Another difference between the new
model and the previous one is that water is injected from two in-
lets on the left hand side of the element, so the water currents from
the inlets merge in the pore area. Computation of two interfaces
while merging is one of the difficulties of two-phase flow
simulation methods, especially in modeling of flow through porous
media. This is more complicated if the interfaces have different
Fig. 10. Comparison between PFM and LSM predictions of water volume rat
profiles before merging, which the case in inhomogeneous media
is. Fig. 13 shows the effects of diffusion coefficients (Mc and x)
on the results of PFM and LSM during interface merging. The vis-
cosity ratio is b = 1. As shown in Fig. 13, the PFM predicted inter-
faces are stable (perpendicular to the walls) at different mobility
values during the merging. However, the LSM interfaces are not
normal to the walls before and after merging, which demonstrates
the instability of the interfaces. In the case of PFM, it is observed
that before merging, the interface profiles are not a function of
Mc at 1 and 0.01. However the LSM results demonstrate that the
forms of the interfaces (especially the upper one) are dependent
on x. For both methods higher diffusion coefficient has resulted
in a more realistic interface merging. This is more evident in the
case of LSM, in which a numerical intermediate phase is formed
during merging when x = 0.01. From a physical point of view, since
b = 1, the pore area is fully flooded by water; however it is ob-
served that LSM predicts small trapped oil in vicinity of the grain
wall, which is due to the numerical instabilities originated by
unstable interfaces. It is worth noting that this small trapped oil
shrinks gradually with time and eventually disappears, not shown
here, in agreement with the previous LSM results. The diffusion
coefficients in the coming simulations are set based on the sensi-
tivity analysis performed in this section and Section 3.1.
3.3.2. Homogenous porous medium
The homogenous porous medium is simulated by subtracting

the homogenously distributed circular grains from a rectangular
domain with the area of 0.015 � 0.0046 m2. The circular grains
are represented by an equilateral triangular array ([16 � 5]). The
io (Rv) in the pore element versus tD for three different viscosity ratios.



Fig. 11. Comparison between PFM and LSM history of reciprocal of step sizes versus number of time steps in computation of flow through the single pore element.

Fig. 12. The schematic of the discretized computational domain of the inhomoge-
neous pore element (h = 0.015Dg).
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same as the pore element, no-slip and symmetry boundary condi-
tions are used for the grain walls and the lateral sides, respectively.
The model is initially saturated with the oil and the water is in-
jected with constant velocities through the inlets on the left hand
side of the model. The outlets are located on the other side of the
domain and their pressure is set to zero. Water and oil densities
are set to 1000 kg/m3 and the interfacial tension coefficient is set
to 0.04 N/m.

The grain diameter (Dg) and the throat size (Dt) determine the
void fraction (porosity) of the medium. Experimental studies show
that there is a relationship between the medium fluid flow
Fig. 13. The interface profiles before and after merging in inhomogeneous pore
properties, porosity and surface area. The Kozeny–Carman formu-
lation (Chilingar et al., 1963) is a well-known empirical correlation
that relates the medium absolute permeability to the porosity and
the average grain size of a pore volume. This correlation can be sta-
ted as k ¼ CD2

gu3=ð1�uÞ2, where k is the absolute permeability, u
is the porosity of the medium and C is the Kozeny–Carman con-
stant that depends on the type of porous medium. When one fluid
flows through porous medium, absolute permeability is obtained
by k = Ql/(Arp), where A is the medium cross section area (in
2D models it is corresponding to the width of the medium), rp
is the pressure gradient in the medium and Q is the liquid flow rate
that is calculated by integrating the steady fluid velocity on the
outlet. The absolute permeability versus Kozeny–Carman formula-
tion is plotted in Fig. 14 for the media with different porosities sim-
ulated by the two methods. Fig. 14 shows a linear relationship
between the absolute permeability and Kozeny–Carman relation,
which confirms the consistency of the numerical models with
the existing empirical correlation. The slope of the line determines
the Kozeny–Carman constant for this medium.

A uniform homogenous medium with an obstacle is constructed
using LSM and PFM to compare the effects of flow disturbance and
viscosity contrast on the results of the two methods. In this med-
ium we set Dg = 0.001 m and Dt = 0.00015 m. The domain area, pore
network distributions and boundary conditions are as described
above. The medium porosity is obtained as u = 35%. Fig. 15 depicts
the geometry of the domain, in which a small obstacle (perturba-
tion) is simulated between two grains at the beginning of the
medium. For the flow through porous media, the critical values
element, simulated by PFM and LSM with different diffusion coefficients.



Fig. 14. Absolute permeability as a function of Kozeny–Carman relation for
homogenous porous media, simulated by LSM and PFM.
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of Reynolds number at the onset of non-laminar flow, according to
the reported empirical and numerical experiments, range between
1 and 10 (Hassanizadeh and Gray, 1987). The critical Re of 2 is used
in this work. The injection velocity (u) is set low enough to mimic
the laminar regime. On the other hand, it is set high enough to
minimize the effect of the interfacial tension on the flow behavior
(High Ca). Hence the flow pattern depends on viscosity ratio more
than on the interfacial tension. Water and oil viscosities are set to
lw = 0.001 and lo = 0.02 Pa s, respectively. As described in Sec-
tion 3.3.1, when b� 1, the interface instabilities may cause finger-
ing phenomenon. Displacement of viscous oil by a less viscous
solvent is inherently unstable, even when the medium is homoge-
neous. The presence of heterogeneities (such as obstacle) inevita-
bly influences the formation of viscous fingering (Araktingi and
Orr, 1993). The obstacle is simulated in this problem as an initial
flow perturbation to initiate the instabilities. This perturbation cre-
ates a kind of anisotropy in the medium.

Fig. 16 compares PFM and LSM predicted phase profiles and
flow streamlines just after the time when water passes the obstacle
(tD = 2.7). Small amount of oil is trapped behind the obstacle. As
was noticed in the single pore element (Fig. 9), different interface
profiles are predicted by the methods around the trapped oil. It
is possible to observe unstable interfaces (with oblique angles with
the grain walls) in the result of LSM, similar to what was observed
in the pore element. Water, which is injected from five inlets, is
forced to pass through three pore throats. In PFM the water
streamlines are concentrated on the middle throat, so the velocity
in the middle throat is higher than the lateral ones at this time.
However, LSM predicts higher velocities for the two lateral throats.
As demonstrated in Fig. 17, the pressure distributions at tD = 2.7 are
Fig. 15. The schematic of the geometry of the homogenous medium
exactly the same for the two methods, except the pressure of
water. PFM simulates a lower water pressure (�750 Pa), compared
to LSM (�1000 Pa), maybe due to their difference in implementa-
tion of surface tension (see Section 3.2). In the PFM predicted pro-
file, the maximum pressure is for the trapped oil, which is
physically more realistic.

The preliminary differences between the results of the two
methods lead to quite different fluid profiles in later times. The
fluid distribution profiles at breakthrough times are compared in
Fig. 18. The water breakthrough time in PFM simulated model is
tD = 25, which is earlier than the LSM breakthrough time (tD = 30)
due to different predicted water profiles. Both methods demon-
strate the water fingers, which are initiated by the obstacle. How-
ever the predicted flow patterns are completely different for PFM
and LSM, in terms of the number, sizes and directions of the fin-
gers. PFM simulates two relatively parallel thick fingers which
are initially separated around the obstacle and flow with relatively
the same velocities toward the outlets. In LSM predicted profile,
the water streams are joined together just after the perturbation,
then sets of small fingers are formed which propagate in various
directions of anisotropic medium. According to the literature labo-
ratory and computational studies (e.g. Araktingi and Orr, 1993;
Tang and Wei, 1996 Riaz et al., 2007; Buchgraber et al., 2011),
when a low viscosity fluid is injected in a medium which is satu-
rated with a high viscosity fluid, after a while, several large fingers
initiate that spread at their tips toward the outlet. Later at longer
distances, the finger tips may become unstable and split into sev-
eral smaller fingers. Our numerical model has small dimensions,
and based on the previous studies, just few large fingers which
are directed toward the outlets are expected to be formed. It may
be concluded that the formed fingers in PFM are more physically
realistic, while the special fingering phenomenon observed in the
LSM results seems to be due to the numerical instabilities. Finger-
ing causes an early water breakthrough, which results in a low
sweep efficiency of the displacement process. After water break-
through, the injected water flows through the fingers directly to
the outlets, so some parts of the media remain unswept. The earlier
water breakthrough time in PFM results in prediction of lower
sweep efficiency, compared to LSM. Fig. 19 compares the LSM
and PFM predicted volume fraction of injected water in the med-
ium and average pressure gradients between the inlets and the
outlets as functions of time. The pressure gradient (rp) is nondi-
mensionalized by the characteristic pressure gradient (rpc) which
is defined as the pressure gradient when water is the only flowing
fluid inside the medium. As shown in Fig. 19, Rv increases linearly
for both methods due to the constant injection velocity up to
breakthrough time. For PFM after the breakthrough time of the first
finger (tD = 25), the second finger still moves toward the outlet.
Then Rv is stabilized and no more oil is produced. For LSM as water
breakthroughs from the upper outlet (at tD = 30), not only no more
oil is produced, but also the water area starts to shrink mainly due
to the numerical instabilities of the predicted interfaces, hence Rv
with obstacle. The inlets/outlets and the obstacle are specified.



Fig. 16. Comparison between the phase distributions and flow streamlines in homogenous porous medium at tD = 2.7, simulated by PFM and LSM.

Fig. 17. Comparison between the pressure profiles in homogenous porous medium at tD = 2.7, simulated by PFM and LSM.

Fig. 18. Comparison between the phase distributions in homogenous porous medium at water breakthrough time, simulated by PFM and LSM.

Fig. 19. Volume fraction of injected water (Rv) and dimensionless average pressure
gradient between inlets and outlets versus time in homogenous medium simulated
by PFM and LSM.
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decreases. Analytically, the pressure gradient at tD = 0 (rp0) can be
calculated as the pressure gradient when the medium is fully sat-
urated with oil (rpc/b) plus surface tension pressure (�2r/Dg). For
the above given b, r and Dg, the initial dimensionless pressure
(rp0/rpc) is approximately obtained as 22, which is in agreement
with PFM initial pressure gradient (Fig. 19). Due to the lower vis-
cosity of water compared to oil, as water is injected, the pressure
gradient inside the medium declines. As shown in Fig. 18, water
moves straightly toward the outlet in PFM predicted profile. So
the water front in PFM is faster in approaching the outlet, com-
pared to LSM; hence the inlet pressure (and pressure gradient) de-
creases with a higher rate for PFM. After breakthrough time, the
flow happens only through the water path, so the pressure gradient
jumps to a constant lower value which is equal to rpc, hence the
dimensionless pressure gradient is analytically obtained as 1, in
agreement with PFM result.

The domain of the homogenous porous medium with obstacle
was discretized using 101,117 mesh grids. The number of degrees
of freedom in time dependant solving of this numerical model was
898009 and 678211 for PFM and LSM, respectively. As observed
before in Section 3.3.1, despite the lower degrees of freedom of
LSM, the number of time steps in the solution of LSM was 18632
which is approximately four times that of PFM (4795). The large
number of step sizes result in a considerably longer running time
for LSM simulation which was 120 h, compared to 40 h for PFM,
on a system with 2.67 GHz CPU and 16 GB RAM.
3.3.3. Dual-permeability porous medium
The influence of permeability contrast on the water-flooding

process is investigated in this section. The dual-permeability med-
ium (Fig. 20) is simulated by decreasing the diameter of the grains
in one side of the homogenous medium that was described in the
previous section. The thickness of high permeable layer is
0.0017 m. The grain diameter and throat size in high permeable
region are 0.0008 and 0.00035 m, respectively. The permeability
ratio between the high permeable layer and the bulk is approxi-
mately 10.

From the physical point of view, the injected water tends to flow
through high permeable layer due to the lower flow resistivity of this



Fig. 20. The schematic of the geometry of dual-permeability medium. The inlets/outlets and the high permeable layer are specified.

Fig. 21. Comparison between the fluid distributions predicted by PFM with Mc = 1 and 0.01and LSM with x = 1 and 0.1 at water breakthrough times.

Fig. 22. Volume fraction of injected water (Rv) in dual-permeability medium and
dimensionless average pressure gradient in high permeable layer versus time
simulated by PFM with Mc = 1 and LSM with x = 0.1.
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layer compared to the low permeable one. The low permeable zone
remains unswept, except small parts close to the inlets, where the
injected water is stabilized. The effects of Mc and x on two-phase
flow in a single pore were studied in Section 3.3.1. To better compre-
hend the influences of the diffusion coefficients (Mc andx), a study is
performed in complicated dual-permeability medium. The fluid dis-
tributions predicted by PFM and LSM for dual-permeability model
are compared in Fig. 21. The comparison is made on two different
diffusion coefficients for each method at water breakthrough time
when lw = lo = 0.001 Pa s. Although in all the simulations, an earlier
water breakthrough is observed in high permeable layer, the profiles
of the water and the breakthrough times are different. As depicted in
Fig. 21, the diffusion coefficients considerably affect the results in
both methods, especially for LSM. In the case of PFM, as mentioned
in Section 2.3, Mc has to be large enough to retain a constant interfa-
cial thickness and small enough to keep the convective motion. The
results for both Mc values (1 and 0.01) show a more or less constant
interfacial thickness during fluid propagations. In other words this
range of Mc is large enough to properly diffuse the interface. The dif-
ferent water profiles predicted by PFM with different Mc values are
mainly due to the influence of Mc on the convective motion. Lower
Mc has resulted in easier water–oil displacement hence higher water
volume fraction in high permeable zone and later breakthrough
time. Comparison of the numerical results with experimental obser-
vations is a possible way to find the proper diffusion coefficient. Sim-
ilar to the previous sections, the first observation in the results of
LSM is unstable interfaces in contact with the no-slip grain walls.
Moreover, it is possible to see that x considerably affects the LSM
predicted water profiles. When x = 1, LSM computes a larger water
swept area in low permeable zone compared to what is physically
expected. By decreasing x to 0.1, the LSM predicts a more realistic
water profile, similar to PFM results. However several volumes of
trapped oil appear in high permeable zone, which are mainly due
to a lower diffusion coefficient that makes it difficult for the interface
to merge, as discussed in Section 3.3.1. Since the water profiles and
breakthrough times predicted by PFM and LSM are relatively similar
when Mc = 1 andx = 0.1, the later studies are done using these cases.

The average pressure gradients in high permeable layer and
water volume fraction in the medium as a function of time are
compared for PFM and LSM in Fig. 22. The pressure gradient
(rp) is nondimensionalized by the characteristic pressure gradient
(rpc) which is defined here as the pressure gradient in high perme-



Fig. 23. Snap shots of fluid distributions (to the left) and velocity field (to the right) at tD = 18 (after water breakthrough time) predicted by LSM with x = 0.1.

Fig. 24. Fluid distributions and flow streamlines at tD = 20 (to the left) and tD = 30 (to the right) simulated by PFM with Mc = 1. Water viscosity is enhanced at tD = 25.
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able layer when water is the only flowing fluid inside the medium.
After a transient time, the pressure gradients in both methods get
relatively constant values before breakthrough time due to equal
viscosities of oil and water. LSM predicts higher pressure gradients
in high permeable layer, compared to PFM. The analytical values
for the dimensionless pressure gradient in high permeable layer
before and after breakthrough time are 6 and 1, respectively (based
on the approximation made in Section 3.3.2). The PFM predicted
pressures are in a good agreement with the analytical values. As
shown in Fig. 22, unlike PFM which is successful in keeping a stable
water profile after breakthrough time, the LSM predicted water
volume fraction declines after breakthrough time which again con-
firms the area shrinkage as well as instability of no-slip boundary
conditions in LSM. Fig. 23 demonstrates the fluid distribution and
velocity field computed by LSM just after breakthrough time
(tD = 18). Fig. 23 also shows that the simulated trapped oils (as
demonstrated in Fig. 21 for LSM with x = 0.1) disappear in a short
time after breakthrough, due to unstable interface deformations.
The velocity profile clearly illustrates high velocity spots around
the unstable interface, which are due to the numerical effects
and cause nonrealistic deformations.

It is possible to recover the remaining oil by enhancing the
water phase viscosity after breakthrough time. Water viscosity is
enhanced to 0.04 Pa s at tD = 25 by defining a step function.
Fig. 24 compares the fluid distributions and flow stream lines pre-
dicted by PFM at two different times before and after viscosity
enhancement. After water breakthrough, all the injected water
goes directly through the water path and does not sweep the
remaining oil. By enhancing the water viscosity, the resistivity of
the water path increases, hence water is diverted toward the low
permeable areas and sweeps the oil. With this viscosity ratio, final-
ly almost entire oil in the medium is fully displaced by water.

Similar to what has been discussed in more details for the
homogenous model, the number of time steps taken by solver in
simulation of dual-permeability medium with LSM was more than
seven times that of PFM. Consequently, the LSM simulation run-
ning time took more than five times longer than PFM for this
model.

4. Conclusions

Different 2D models are simulated by conservative level set
method (LSM) and Cahn–Hilliard phase field method (PFM), using
a robust finite element solver to evaluate and compare the
methods based on their running time, accuracy and ability to cap-
ture physical phenomena related to flow in porous media. The
assessment enables us to select a suitable model for the future
works in enhancing oil recovery, in which fluids having different
viscosities flow through dual-permeability porous media.

The study of rectangular bubble deformation shows that PFM
better conserves the area compared to LSM; however initialization
time and diffusion coefficient are important factors that affect the
rate of area shrinkage in both methods. Longer initialization time
and higher Pe (lower diffusion coefficients) result in lower rate of
area shrinkage. It is demonstrated that PFM better handles the sur-
face tension created parasite currents. Parallel two phase flow
through 1D channel serves to study the effects of model conver-
gence and mesh convergence on accuracy of the methods. It is con-
cluded that the results of the two methods are almost insensitive
to the mesh sizes in this particular problem, while the interface
thickness plays an important role in the accuracy of the results,
when compared with the analytical solution. The model conver-
gence is not achieved even at Cn = 0.006 in both methods due to
interdependency of the fluid thicknesses and interface thicknesses
in parallel flow. The study of surface tension effect on parallel flow
demonstrated that PFM more accurately predicts the fluid veloci-
ties at different capillary numbers.

To verify the influences of model convergence, mesh conver-
gence and diffusion coefficients on the flow through porous media,
two different single pore element models are studied. The results
show that LSM needs thinner interface to be converged, compared
to PFM, so that the PFM model convergence takes place at
Cn = 0.03, while LSM needs Cn = 0.01. The results of model conver-
gence and mesh convergence analysis in single pore element are
used in simulating more complicated two-phase flow in porous
media. PFM shows that is able to capture the Rayleigh–Taylor
instabilities in single pore element. The interface merging process
is also easier handled by PFM. Diffusion coefficients, including
mobility (M) and re-initialization parameter (x) affect the inter-
face merging in PFM and LSM, respectively. Lower diffusion coeffi-
cient results in more difficult interface merging, especially for LSM.
LSM has also difficulty in modeling stable interfaces around the no-
slip walls (grains). The unstable interfaces together with high rate
of area shrinkage result in physically unrealistic behaviors in the
LSM results.

The effects of viscosity and permeability contrasts were studied
by simulating homogenous medium containing an obstacle and
dual-permeability porous medium. Both methods captured the
main phenomena, including fingering and early water
breakthrough due to viscosity and permeability contrasts. How-
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ever, the details of PFM predictions, such as pressure gradient in
the medium, fingering shapes and numbers and water profile after
breakthrough time are more realistic compared to the analytical
values and the experimental observations. The main drawback of
LSM is that it did not capture a stable water profile after break-
through time. Furthermore, in a specific simulation, LSM needs
smaller time steps, hence larger number of time steps to converge
the model solutions, so typically the LSM simulation running times
are considerably longer than PFM, e.g. approximately three and
five times in simulation of homogenous and dual-permeability
porous media, respectively.

It is concluded that PFM, which is a physically originated meth-
od, is more efficient in simulation of complex two-phase flow
through porous media. It produces more accurate results in shorter
times, compared to LSM.
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