Numerical Simulation of Dynamic Stall Phenomenon of a Pitching Airfoil

M. Honarmand
Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
M. H. Djavareshkian
Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

In this research, fluid flow around a pitching airfoil in dynamic stall is simulated by numerical method and the most important impact of parameters on the aerodynamic forces are investigated. In this simulation, the geometry is NACA0012 airfoil. Turbulent flow and dynamic grid was used. The basic equations are discretized based on the control volume method and solved by the PIMPLE algorithm with an open source code, OpenFOAM. Reynolds number was 10^5 and SST K-ω turbulence model is used for modeling of turbulent flow. First, the results were compared and validated with experimental data. Then the effect of Reynolds number, reduced frequency, amplitude and airfoil thickness on the aerodynamic coefficients and dynamic stall location are investigated. The mentioned parameters on maximum lift coefficient, drag coefficient, the ratio of the aerodynamic coefficients and the dynamic stall location have a significant impact. However, these parameters don't have a significant impact on the slope of the lift coefficient curve. Among the above-mentioned parameters, the most important parameter that affects the ratio of the maximum lift to drag is the airfoil thickness and the most important parameter that plays a role in delaying the dynamic stall is reduced frequency. Also, the location of separation point and maximum aerodynamic forces depend on the flow pattern around airfoil.

Keywords: Dynamic stall, Pitching motion, Aerodynamic, Unsteady, SST-K-ω turbulence model.

1. Vertical Axis Wind Turbines (VAWTs)

1. Vertical Axis Wind Turbines (VAWTs)

Shear layer roll-up
شکل یکی از روش‌های ترمیم‌های جریان ناپایدار استفاده از شکلهای دینامیکی می‌باشد. در این نوع نشان‌گذاری شکلهای سری‌الدینامیکی از طرف دیگر به راحتی در چهار بعدی می‌باشد. شکلهای سری‌الدینامیکی در سطح شکلهای از طرف دیگر به راحتی در چهار بعدی می‌باشد. شکلهای سری‌الدینامیکی در سطح

شکل ۲- شکلهای نوع سی اطراف بالاواره ناکام

*\(\omega = 2\pi f \)
*\(k = \frac{f}{f_m} \)

3- شکلهای و شرایط مرزی

از استادی که برای ساختار حرکت بالاواره استفاده شده است. این شکلهای نسبت به اندازه دیگر برای راه‌پیمایی نشان می‌دهند.

4- C type
5- Slip
6- Zero-gradient
7- Turbulent kinetic energy
8- Turbulence Intensity (TI)

پایین در محدوده کاربرد شیری برخی از جریان ناپایدار شده و اثر پراکندگی مؤثر از

جله فلزکار که این سیستم هم‌اندازه در این محدود بررسی

شد. نتایج این تحقیق بررسی داده‌های سیفت، داده‌های سیفت از

فلزکار که این سیستم هم‌اندازه در این محدود بررسی

2- شکلهای دینامیکی و معادلات حاکم

یکی از روش‌های ترمیم‌های جریان ناپایدار استفاده از شکلهای دینامیکی می‌باشد. در این نوع نشان‌گذاری شکلهای سری‌الدینامیکی از طرف دیگر به راحتی در چهار بعدی می‌باشد. شکلهای سری‌الدینامیکی در سطح شکلهای از طرف دیگر به راحتی در چهار بعدی می‌باشد. شکلهای سری‌الدینامیکی در سطح

شکل یکی از روش‌های ترمیم‌های جریان ناپایدار استفاده از شکلهای دینامیکی می‌باشد. در این نوع نشان‌گذاری شکلهای سری‌الدینامیکی از طرف دیگر به راحتی در چهار بعدی می‌باشد. شکلهای سری‌الدینامیکی در سطح شکلهای از طرف دیگر به راحتی در چهار بعدی می‌باشد. شکلهای سری‌الدینامیکی در سطح

شکل ۲- شکلهای نوع سی اطراف بالاواره ناکام

*\(\omega = 2\pi f \)
*\(k = \frac{f}{f_m} \)
حل به دو صورت مقایسه شده و در نهایت شبکه با تعداد سلول‌های 800هاردن شده و در نهایت حالت مسیر شده است.

برای انتخاب سلول طوری انتخاب شده است که میزان نسبی سرعت در زیر بالا از هر سطح نوسان بیشتر هست. با توجه به شرایط مقاله و شرایط انتخاب نتایج باید از رابطه زیر انتخاب شود:

$$V = \frac{f}{P}$$

(7)

$$u = \frac{f}{P}$$

(8)

توجه داشته باشید که شرایط انتخاب نتایج از زونه‌های مهیا شده است.

4- نتایج

برای حل معادلات بیوناتوک، مومنتوم و اطفالگی در حالی نیاپا، مقدار اولیه تابش فشار مؤثری بزرگی از جنگل‌های اماک در تمام سطوح نیاپا شکسته است. مقدار اولیه برای حالی نیاپا استفاده شده است. به عنوان مثال بررسی انتخاب نتایج از زونه‌های راک و شبکه، برای انتخاب سلول‌های زمانی مختلف و شبکه‌های مختلف شیبی‌سازی اجرا شده است. در ناحیه شیبی‌سازی، سلول‌های زمانی مختلف و شبکه‌های مختلف شیبی‌سازی اجرا شده است.

5- شکل‌های 3- 4 نمایی از ناحیه محاسباتی و شرایط مرزی

جدول 1- مهیا شیبی‌سازی بر اساس کار تجربی بر در سال 2004

<table>
<thead>
<tr>
<th>نام‌های سلول</th>
<th>شیبی‌سازی</th>
<th>شیبی‌سازی</th>
<th>شیبی‌سازی</th>
</tr>
</thead>
<tbody>
<tr>
<td>NACA0012</td>
<td>شیبی‌سازی</td>
<td>شیبی‌سازی</td>
<td>شیبی‌سازی</td>
</tr>
<tr>
<td>1/10</td>
<td>شیبی‌سازی</td>
<td>شیبی‌سازی</td>
<td>شیبی‌سازی</td>
</tr>
<tr>
<td>1/15</td>
<td>شیبی‌سازی</td>
<td>شیبی‌سازی</td>
<td>شیبی‌سازی</td>
</tr>
</tbody>
</table>

CSF^2 Cell Skew Factor (CSF)

Upstroke

Down stroke

Reattachment
جدول ۲ - نتایج گام زمانی برای ضرب برشی و مقایسه با داده های آزمایشگاهی (۱۷)

| کام زمانی (ثانیه) | مقایسه آزمایشگاهی | شیب سازی | استقلال از تغییر | شیب گره
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۴۰</td>
<td>۲۴۴</td>
<td>+</td>
<td>۲.۱</td>
<td>+</td>
</tr>
<tr>
<td>۵۰۰</td>
<td>۵۴۴</td>
<td>+</td>
<td>۲.۵</td>
<td>+</td>
</tr>
<tr>
<td>۸۰۰</td>
<td>۸۴۴</td>
<td>+</td>
<td>۳.۰</td>
<td>+</td>
</tr>
<tr>
<td>۱۰۰۰</td>
<td>۱۰۴۴</td>
<td>+</td>
<td>۴.۱</td>
<td>+</td>
</tr>
<tr>
<td>۲۰۰۰</td>
<td>۲۰۴۴</td>
<td>+</td>
<td>۸.۲</td>
<td>+</td>
</tr>
</tbody>
</table>

این تغییر در نتایج نشان می‌دهد که با هر افزایش زمان ایجاد شده و یک کاهش ضرب ایجادگر در سطح بالای هر ایجادگر می‌شود.

این تغییر در نتایج نشان می‌دهد که با هر افزایش زمان ایجاد شده و یک کاهش ضرب ایجادگر در سطح بالای هر ایجادگر می‌شود.

اولین گردابها در حالت دینامیکی در زاویه حمله ۱۴۵ درجه به سمت یا بیننیک در این شرایط بک ناحیه کم فشار در ناحیه زیرین بالا وارده می‌شود که باعث کاهش در مقادیر ضرب یا شده است. در این مرحله گردابهای جدید شده و دوباره یک ناحیه پر فشار در قسمت زیرین بالا وارده شده است.

این تغییر در نتایج نشان می‌دهد که با هر افزایش زمان ایجاد شده و یک کاهش ضرب ایجادگر در سطح بالای هر ایجادگر می‌شود.
شکل ۶- خطوط جریان همراه با میدان فشار برای زواياي مختلف در حالت حرکت پچشی نوسانی
سرعت بیشینه خود بررسی یک حالت کاهش افتراقی (نوسانی) در
نیوودار ضرب، با مشاهده می‌شود (شکل 9) بعد از اولین سیکل حركت
نوسانی همانطور که در شکل 8 نشان داده شده است، نوسانات هر
حلقه از ضراب آبودینامیکی بصورت مشابه تکرار شده است.

شکل 8- حالت حرکتی از این اثر نابایانی به وسیله لیش من [18] توضیح
داده شده است.

2-1-4-2 اثر فرکانس کاهیده
اثر فرکانس کاهیده بر حرکت بیشینه نابایان در نیوودار ضرب، با
پس در مقابل زاویه حمله برای فرکانس های کاهیده 0/1، 0/15 و 0/2
در عدد

شکل 7- نمودار استمالضرب بر اساسهای در مقابل زمان پی بعده در
هر دوره از نوسان

2-1-5 اثر عدد ریوندلز
اثر عدد ریوندلز بر ضرب، در این بررسی قبل از 0/1، 0/15، 0/2 و
0/25 مورد مطالعه قرار گرفته است. در این بررسی عدد ریوندلز با لرخت
دینامیکی نگه داشته شده، زیرا در صورتی که عدد ریوندلز با سایر
پارامترهای ای (سرعت و ترت) در این بدون عیان، فرکانس کاهیده دستیاب
تنی نشان دهنده تغییر می‌شود که فرمیکی جریان را تحت تأثیر داده و نتیجه
محاسبات حاصل می‌شود. این بررسی برای فرکانس کاهیده 1/3، حساسیت
بل و دانه نوسان 15 درجه حوالی نقطه 60، نسبت بی برت و ترت
ایلیه 10 درجه و دانه نوسان 15 درجه حوالی نقطه 60، نسبت بی برت و ترت
بالا به 100 درجه انجام شد. با این عدد ریوندلز از 0/100
بالا به 500 درجه انجام شد. با این عدد ریوندلز از 0/100
بالا به 500 درجه انجام شد. با این عدد ریوندلز

0/1، 0/15، 0/2 و
0/25 مورد مطالعه قرار گرفته است. در این بررسی عدد ریوندلز با سایر

3-1/2-1 میانگین در طراحی های مهندسی این نسبت بسیار حائز اهمیت

می‌باشد.

نکته قابل توجه در نظیر ضرب، در حالاتی که در زاویه بکند 20
درجه به بعد که برت دانه و عدد ریوندلز دیگر ندارد، در نون
به طراحی کاهیده عدد ریوندلز که بود کمی از جهت خاص جریان

می‌باشد.

بای افزایش عدد ریوندلز از 100/0/1 به 0/5 مورد مطالعه قرار گرفته است.

2/1 میانگین در طراحی های مهندسی این نسبت بسیار حائز اهمیت

می‌باشد.

2-1-5-1 اثر عدد ریوندلز
اثر عدد ریوندلز بر ضرب، در این بررسی قبل از 0/1، 0/15، 0/2 و
0/25 مورد مطالعه قرار گرفته است. در این بررسی عدد ریوندلز با لرخت
دینامیکی نگه داشته شده، زیرا در صورتی که عدد ریوندلز با سایر
پارامترهای ای (سرعت و ترت) در این بدون عیان، فرکانس کاهیده دستیاب
تنی نشان دهنده تغییر می‌شود که فرمیکی جریان را تحت تأثیر داده و نتیجه
محاسبات حاصل می‌شود. این بررسی برای فرکانس کاهیده 1/3، حساسیت
بل و دانه نوسان 15 درجه حوالی نقطه 60، نسبت بی برت و ترت
ایلیه 10 درجه و دانه نوسان 15 درجه حوالی نقطه 60، نسبت بی برت و ترت
بالا به 100 درجه انجام شد. با این عدد ریوندلز از 0/100
بالا به 500 درجه انجام شد. با این عدد ریوندلز از 0/100
بالا به 500 درجه انجام شد. با این عدد ریوندلز

0/1، 0/15، 0/2 و
0/25 مورد مطالعه قرار گرفته است. در این بررسی عدد ریوندلز با سایر

3-1/2-1 میانگین در طراحی های مهندسی این نسبت بسیار حائز اهمیت

می‌باشد.

نکته قابل توجه در نظیر ضرب، در حالاتی که در زاویه بکند 20
درجه به بعد که برت دانه و عدد ریوندلز دیگر ندارد، در نون
به طراحی کاهیده عدد ریوندلز که بود کمی از جهت خاص جریان

می‌باشد.

بای افزایش عدد ریوندلز از 100/0/1 به 0/5 مورد مطالعه قرار گرفته است.

2/1 میانگین در طراحی های مهندسی این نسبت بسیار حائز اهمیت

می‌باشد.
shore 11 - تغییر فشار در مقابل زاویه حمله برای ایندیکس کاهش

اثر ضخامت بالاوره بر روی سه بالاوره از خانواده NACA0012, 0015, 0018 در حالت AOA (deg) C D

-10 -5 0 5 10 15 20 25 30 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Re = 1.00*10^5 Re = 1.35*10^5 Re = 2.00*10^5

K = 0.1 K = 0.15 K = 0.2

-10 -5 0 5 10 15 20 25 30 -1 0 0.5 1 1.5 2 2.5 3

K = 0.1 K = 0.15 K = 0.2

shore 9 - زاویه حمله در مقابل فشار برای اعدد رینولدز مختلف

شکل 11 - تغییر فشار در مقابل زاویه حمله برای ایندیکس کاهش

شکل 10 - ضربه را لحظهای در مقابل زاویه حمله برای ایندیکس کاهش

بالاوره در کورس بالاوره است تغییر قابل توجهی در ضربه بر لحظهای مشاهده نمی‌شود. بر این اساس نتایج این طرح به طوری که با افزایش ضخامت، برای طراحی بالاوره، نتایج مثبتی که این اثر نمی‌زند و به ناحیه اهمیت می‌رسد در حالت افقی سه رابطه است. در این مورد نتایج کاهش گسترش دارد. در مجموع افزایش ضخامت کاهش اثر قابل توجهی در ضربه برbij نشانه می‌دارد. اما این اثر برای سه فاصله با همین حالت افزایش دارد. است.
4-4-اثر دامنه نوسان

اثر دامنه نوسان باللاره نیز در حرکت پیچشی و در نمودار ضرب ارآ لحظهای در مقابل زاویه حمله بوجود می‌آید. این زاویه فرکانس‌کاهنده با وابستگی به دامنه نوسان و زاویه حمله نیز به وجود می‌آید. نمودار زاویه حمله برای ضخامت‌های مختلف نوسان 15 درجه افزایش می‌شود. این افزایش در زاویه حمله بیش از 10 درجه نیز یافت نشده است. این افزایش توسط نوسان 15 درجه به داشت، که از زاویه حمله 0 درجه به بالا این افزایش رخ می‌دهد که به آن داشتن دیمانیکی شدید می‌گویند. شایع‌ترین است اگر تغییر داده‌گیری در حرکت NACA0012 در حرکت

5- نتیجه‌گیری

در این تحقیق، نسبت دو بندی حول بالاره NACA0012 با دامنه نوسان یکسان، در حالت عادی و همچنین در حالت هم‌زمان، بین پیچشی نوسانی چهار برسی پیدا می‌پذیرد. این پیچشی نوسانی خفیف می‌باشد.

1Light Dynamic Stall (LDS)

2Deep Dynamic Stall (DDS)

