A Note On The Stahl’s Theorem

Hamed Najafi

Abstract

Let \mathcal{H} be a Hilbert space and $\mathcal{B}(\mathcal{H})$ denotes the algebra of all bounded linear operators on \mathcal{H} and A be a bounden operator in \mathcal{H}. Let $A, B \in \mathcal{B}(\mathcal{H})$ be positive operators and Φ be a positive linear functional on $\mathcal{B}(\mathcal{H})$. We show that, if f is a non-negative operator decreasing function, then the function $t \to \Phi(f(A + tB))$ can be written as a Laplace transform of a positive measure.

Keywords and phrases: BMV conjecture, Laplace transform, Operator monotone functions.

1. Introduction

Let \mathcal{H} be a Hilbert space and $\mathcal{B}(\mathcal{H})$ denotes the algebra of all bounded linear operators on \mathcal{H} and A be a bounden operator in \mathcal{H}. An operator A is called positive if $\langle Ax, x \rangle \geq 0$ holds for every $x \in \mathcal{H}$ and then we writ $A \geq 0$. For self-adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$ we say $A \geq B$ if $A - B \geq 0$. For a continuous function f and a self adjoint operator A with spectra in domain of f, the operator $f(A)$ is defined by standard functional calculus. In particular, if \mathcal{H} is a finite dimensional Hilbert space and A has the spectral decomposition $A = \sum_{i=1}^{n} \mu_{i}P_{i}$, where P_{i} are the projections corresponding to the eigenspaces of eigenvalue μ_{i}, then

$$f(A) = \sum_{i=1}^{n} f(\mu_{i})P_{i}.$$

A function f on the interval I is called operator increasing if $A \geq B$ implies that $f(A) \geq f(B)$, for each self adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$ with spectra in I. Also, f is called operator decreasing function if $-f$ is operator increasing function.

The Bessis-Moussa-Villani conjecture states that for a self adjoint Matrix A and positive Matrix B, the function $f(t) = \text{Tr}\left(\exp^{A-tB}\right)$ can be represented as the Laplace transform

$$f(t) = \int_{0}^{\infty} \exp^{-tx} d\mu(x),$$

(1)
of a positive measure μ on $[0, \infty)$ [1]. This conjecture has attracted a lot of attention in mathematics and physics. Despite a lot of afford to prove the conjecture, it remained open until 2012. Eventually, Stahl [5] proved this conjecture. In [3], Hansen got a similar results.

Theorem 1.1. [3] If f is a non-negative operator decreasing function on $[0, \infty)$, then for positive matrices A, B the map $t \to \text{Tr} f(A + tB)$ can be written as the Laplace transform of a positive measure.

In proof of this theorem, Hansen used the theory of Frechet differentials and the Bernstein theorem highlighting the measure in (1) exists if and only if f is completely monotone or $(-1)^n f^n(t) \geq 0$, for each $n = 0, 1, 2, \ldots$ and $t > 0$.

In this note, we extended the results of Hansen and prove that for an arbitrary Hilbert space \mathcal{H} and any positive linear functional Φ on $\mathbb{B}(\mathcal{H})$. Also, in a special case, we obtained a partial extension of a famous equivalent statement for Bessis-Moussa-Villani conjecture which state for each $p \geq 0$ and positive semi-definite matrices A and B, the function $h_p(t) = \text{Tr} (A + tB)^p$ is completely monotone [4]. Indeed, we show that for a positive linear functional Φ on $\mathbb{B}(\mathcal{H})$, the function $\phi_p(t) = \Phi ((A + tB)^p)$ is completely monotone for each $-1 \leq p \leq 0$ and positive operators $A, B \in \mathbb{B}(\mathcal{H})$.

2. Main Results

The following theorem states the main results.

Theorem 2.1. Let $A, B \in \mathbb{B}(\mathcal{H})$ be positive operators and f be an operator decreasing function on $(0, \infty)$. For any positive linear functional Φ on $\mathbb{B}(\mathcal{H})$ the function $\phi(t) = \Phi (f(A + tB))$ is operator decreasing. In particular, if f is non-negative then ϕ is completely monotone.

By replacing f by $-f$ we obtain the following corollary.

Corollary 2.2. Let $A, B \in \mathbb{B}(\mathcal{H})$ be positive operators and f be an operator increasing function on $(0, \infty)$. Then, for any positive linear functional Φ on $\mathbb{B}(\mathcal{H})$ the function $\phi(t) = \Phi (f(A + tB))$ is an operator increasing function.

Example 2.3. The functions $\ln(t + 1)$ is a non-negative operator increasing function on $[0, \infty)$. Hence, for positive operators A, B and positive linear functional Φ, the function $t \to \Phi (f(A + tB))$ is a non-negative operator increasing function on $[0, \infty)$.

The function $f(t) = t^p$ is operator increasing for $0 < p < 1$ and operator decreasing for $-1 \leq p < 0$. Therefore, As an example we the following corollary is given.

Corollary 2.4. Let A, B be positive operators in $\mathbb{B}(\mathcal{H})$ and $-1 \leq p \leq 1$. For a positive linear functional Φ on $\mathbb{B}(\mathcal{H})$, the function $\phi(t) = \Phi ((A + tB)^p)$ is operator increasing if $0 < p < 1$ and operator decreasing if $-1 \leq p \leq 0$.

References

Hamed Najafi,
Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran

e-mail: hamednajafi20@gmail.com