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1 Introduction19

1.1 Motivation20

We recall that a map p : E −→ B is called a fibration if it has homotopy lifting property21

with respect to an arbitrary space. A map p : E −→ B is said to have unique path lifting22

property if given paths w and w′ in E such that p ◦ w = p ◦ w′ and w(0) = w′(0), then23

w = w′ (see [13]).24

Fibrations in homotopy theory and fibrations with unique path lifting property, as a gen-25

eralization of covering spaces, are important. In fact, unique path lifting causes a given26

fibration p : E −→ B to have some behaviors similar to covering maps such as injectivity27

of induced homomorphism p∗, uniqueness of lifting of a given map and being homeomor-28

phic of any two fibers [13]. Moreover, unique path lifting has important role in covering29

theory and some recent generalizations of covering theory in [1–3, 5, 7]. In the absence of30

unique path lifting, some certain fibrations exist in which some of the above useful proper-31

ties are available. However, these fibrations lack some of the properties which unique path32

lifting guaranties, notably the being homeomorphic of fibers.33

We would like to generalize unique path lifting in order to preserve some homotopical34

behaviors of fibrations with unique path lifting. In Section 1.2, we consider unique path35

lifting problem in the homotopy category of topological spaces by introducing some various36

kinds of the unique path lifting property from homotopy point of view. Moreover, we find37

all possible relationships between them by giving some theorems and examples. Then in38

Section 3, we supplement the full relationships between these new notions in the presence39

of fibrations and also study fibrations with these new unique path lifting properties .40

By the weakly unique path homotopically lifting property (wuphl) of a map p : E −→ B41

we mean that if p ◦ w � p ◦ w′ rel İ , w(0) = w′(0) and w(1) = w′(1), then w � w′ rel42

İ . We will show among other things that a fibration has wuphl if and only if every loop in43

each of its fibers is nullhomotopic, which is a homotopy analogue of a similar result when44

we deal with unique path lifting property (see [13, Theorem 2.2.5]).45

In Section 4, we consider a new category, Fibwu, in which objects are fibrations with46

weakly unique path homotopically lifting property and commutative diagrams are mor-47

phisms. This category admits the category of fibrations with unique path lifting property,48

Fibu, as a subcategory. Also, by fixing base space of fibrations, we construct the category49

Fibwu(B) of fibrations over a space B with weakly unique path homotopically lifting prop-50

erty as objects and commutative triangles as morphisms. We show that these new categories51

have products and coproducts. A brief comparison of these new categories to the categories52

of other generalizations of covering maps is brought at the end of the section.53

Finally, in the last section, we introduce two subgroups of the fundamental group of a54

given space X, πf u

1 (X, x) and π
f wu

1 (X, x). In fact, these are the intersection of all the image55

subgroups of fibrations with unique path lifting and fibrations with weakly unique path56

homotopically lifting over X, respectively. We find the relationships of these two subgroups57

with the two famous subgroups of the fundamental group, the Spanier group π
sp

1 (X, x) and58

the generalized subgroup π
gc

1 (X, x) (see [8] and [1, 2], respectively).59

1.2 Preliminaries60

Throughout this paper, all spaces are path connected. A map f : X −→ Y means a con-61

tinuous function and f∗ : π1(X, x) −→ π1(Y, y) will denote the homomorphism induced62
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by f on fundamental groups when f (x) = y. Also, by the image subgroup of f we mean 63

f∗(π1(X, x)). 64

For given maps p : E −→ B and f : X −→ B, the lifting problem for f is to determine 65

whether there is a map f ′ : X −→ E such that f = p ◦ f ′. A map p : E −→ B is said to 66

have the homotopy lifting property with respect to a space X if for given maps f ′ :−→ E 67

and F : X × I −→ B with F ◦ J0 = p ◦ f ′, where J0 : X −→ X × I defined by 68

J0(x) = (x, 0), there is a map F ′ : X × I −→ E such that F ′ ◦ J0 = f ′ and p ◦ F ′ = F . 69

If α : I −→ X is a path from x0 = α(0) to x1 = α(1), then α−1 defined by α−1(t) = 70

α(1 − t) is the inverse path of α. For x ∈ X, cx is the constant path at x. If α, β : I −→ X 71

are two paths with α(1) = β(0), then α∗β denotes the usual concatenation of the two paths. 72

Also, all homotopies between paths are relative to end points. 73

A covering map is a map p : ˜X → X such that for every x ∈ X, there exists an open 74

neighborhood U of x, such that p−1(U) is a union of disjoint open sets in ˜X, each of which 75

is mapped homeomorphically onto U by p. 76

The category whose objects are topological spaces and whose morphisms are maps is 77

denoted by Top and, by hTop, we mean the homotopy category of topological spaces. 78

By Fib, we mean the category whose objects are fibrations and whose morphisms are 79

commutative diagrams of maps 80

where p : E −→ B and p′ : E′ −→ B ′ are fibrations. For a given space B, there exists a 81

subcategory of Fib, denoted by Fib(B), whose objects are fibrations with base space B and 82

morphisms are commutative triangles 83

If we restrict ourselves to fibrations with unique path lifting, then we get two subcategories 84

of Fib and Fib(B) which we denote by Fibu and Fibu(B), respectively. 85

2 Homotopically Lifting 86

Let p : E → B be a map and α : I → B be a path in B. A path α̃ : I → E is called 87

a lifting of the path α if p ◦ α̃ = α. The existence and the uniqueness of path liftings are 88

interesting problems in the category of topological spaces, Top. We are going to consider 89

the path lifting problems in the homotopy category, hTop. 90

Definition 2.1 Let p : E → B be a map and α : I → B be a path in B. By a homotopically 91

lifting of the path α we mean a path α̃ : I → E with p ◦ α̃ � α rel İ . 92

In the following, we recall the well-known notion unique path lifting and introduce some 93

various kinds of this notion from homotopy point of view. 94
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Definition 2.2 Let p : E → B be a map and let α̃ and ˜β be two arbitrary paths in E. Then95

we say that96

(i) p has unique path lifting property (upl) if97

α̃(0) = ˜β(0), p ◦ α̃ = p ◦ ˜β ⇒ α̃ = ˜β.

(ii) p has homotopically unique path lifting property (hupl) if98

α̃(0) = ˜β(0), p ◦ α̃ = p ◦ ˜β ⇒ α̃ � ˜β rel İ .

(iii) p has weakly homotopically unique path lifting property (whupl) if99

α̃(0) = ˜β(0), α̃(1) = ˜β(1), p ◦ α̃ = p ◦ ˜β ⇒ α̃ � ˜β rel İ .

(iv) p has unique path homotopically lifting property (uphl) if100

α̃(0) = ˜β(0), p ◦ α̃ � p ◦ ˜β rel İ ⇒ α̃ � ˜β rel İ .

(v) p has weakly unique path homotopically lifting property (wuphl) if101

α̃(0) = ˜β(0), α̃(1) = ˜β(1), p ◦ α̃ � p ◦ ˜β rel İ ⇒ α̃ � ˜β rel İ .

Example 2.3 Every continuous map from a simply connected space to any space has wuphl102

and whupl. Note that every injective map has upl and also, for injective maps, wuphl and103

uphl are equivalent.104

We recall that for a given pointed space (X, x), P(X, x) is the set of all paths in X105

starting at x. Also, we recall that the fundamental groupoid of X is the set of all homotopy106

classes of paths in X which we denote by ΠX107

ΠX = {[α] | α : I −→ X is continuous}.
If f : X −→ Y is a map, then by Pf : P(X, x) −→ P(Y, y) we mean the function given by108

Pf (α) = f ◦α and by f∗ : ΠX −→ ΠY we mean the function given by f∗([α]) = [f ◦α].109

Also, by a slight modification, we define the set of all paths in X starting at x110

Π(X, x) = {[α] ∈ ΠX | α(0) = x}.
By a straightforward verification we have the following results.111

Proposition 2.4 Let p : E −→ B be a map. Then112

(i) Injectivity of Pp : P(E, e) −→ P(B, b) for any e ∈ E is equivalent to p having upl.113

(ii) Injectivity of p∗ : π1(E, e) → π1(B, b) for any e ∈ E is equivalent to p having114

wuphl.115

(iii) Injectivity of p∗ : Π(E, e) → Π(B, b) for any e ∈ E is equivalent to p having uphl.116

(iv) Injectivity of p∗ : π1(E, e) → π1(B, b) for any e ∈ E implies that p has whupl.117

(v) Injectivity of p∗ : ΠE → ΠB implies that p has wuphl.118

(vi) Injectivity of p∗ : Π(E, e) → Π(B, b) for any e ∈ E implies that p has hupl.119

It is worth to note that the converse implications of (iv) and (vi) do not hold in general120

(see Example 2.8, part (iv)). To see that the converse implication of (v) does not hold,121

consider the first projection pr1 : R2 −→ R and the two paths α̃, ˜β : I −→ R2 given by122

α̃(t) = (t, 1) and ˜β(t) = (t, 2). Obviously, pr1 ◦ α̃ = pr1 ◦ ˜β while α̃ and ˜β do not have123

the same initial and end points.124
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In the next proposition, we show that the uniqueness and the homotopically uniqueness 125

of path lifting are equivalent. 126

Proposition 2.5 A map p : E → B has upl if and only if p has hupl. 127

Proof By definition, if p has upl, then p has hupl. Let p have hupl and α̃ and ˜β be two 128

paths in E with α̃(0) = ˜β(0), p ◦ α̃ = p ◦ ˜β. Define, for every t ∈ I , α̃t , ˜βt : I → E by 129

α̃t (s) = α̃(st) and ˜βt (s) = ˜β(st). Clearly α̃t (0) = ˜βt (0) and p ◦ α̃t = p ◦ ˜βt . Since p has 130

hupl, we have α̃t � ˜βt rel İ and so α̃t (1) = ˜βt (1) which implies that α̃(t) = ˜β(t). Hence 131

α̃ = ˜β. 132

Using definition and a similar argument as the above, the following results hold. 133

Proposition 2.6 The following implications hold for any map p : E → B. 134

(i) upl ⇒ whupl. 135

(ii) uphl ⇒ whupl. 136

(iii) uphl ⇒ wuphl. 137

(iv) uphl ⇒ upl. 138

(v) wuphl ⇒ whupl. 139

A map p : E −→ B is said to have the unique lifting property with respect to a space 140

X if by given two liftings f, g : X −→ E of the same map (that is p ◦ f = p ◦ g) such 141

that agrees for some point of X, we have f = g. Since maps with upl have unique lifting 142

property with respect to path connected spaces [13, Lemma 2.2.4], the following result is a 143

consequence of the implication uphl ⇒ upl. 144

Corollary 2.7 If a map has uphl, it has the unique lifting property with respect to path 145

connected spaces. 146

The following examples show that the converse of implications in Proposition 2.6 do not 147

hold. 148

Example 2.8 (i) wuphl � uphl. Let E = {0}×[0, 1]×[0, 1] and B = {0}×[0, 1]×{0}. 149

If p : E −→ B is the vertical projection from E onto B, then p has wuphl since E 150

is simply connected. But p does not have uphl. For if α̃, ˜β : I −→ E are two paths 151

with α̃(t) = (0, 0, t
2 ) and ˜β(t) = (0, 0, t) and α : I −→ B is the constant path at 152

(0, 0, 0), then α̃(0) = (0, 0, 0) = ˜β(0) and p ◦ α̃ = α = p ◦ ˜β while α̃ and ˜β are not 153

path homotopic. 154

(ii) whupl � uphl. Using the same example as (i). 155

(iii) whupl � upl. Using the same example as (i). 156

(iv) upl � uphl. Let E = {(x, y, 2) ∈ R3} − {(0, 0, 2)}, B = {(x, y, 0) ∈ R3} and 157

p : E −→ B be the vertical projection. 158

(v) whupl � wuphl. Using the same example as (iv). 159

Note that among the results of this section, there are no relationship between upl and 160

wuphl. In the following example, we show that neither of the two properties implies the 161

other. 162
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Example 2.9 The map introduced in Example 2.8, (iv), has upl but does not have wuphl.163

Conversely, let p : {0}× [0, 1] → {0} be the constant map, then p has wuphl but it does not164

have upl.165

We can summarize the results of this section in the following diagram.

Q2

166

3 Fibrations and Homotopically Liftings167

In the classic book of Spanier [13, Chapter 2] one can find considerable studies on fibra-168

tions with unique path lifting property. In this section, we intend to study and compare169

fibrations with the various kinds of homotopically unique path lifting properties introduced170

in Section 1.2.171

Examples 2.8 (iv) and 2.9 show that the two implications upl (hupl) ⇒ uphl and172

upl (hupl) ⇒ wuphl do not hold in general. In the following proposition we show that173

these two implications hold with the presence of fibrations.174

Proposition 3.1 For fibrations the following implications hold.175

(i) upl (hupl) ⇒ uphl.176

(ii) upl (hupl) ⇒ wuphl.177

Proof For (i) see [13, Lemma 2.3.3]. Part (ii) comes from the definitions and part (i).178

The following corollary is a consequence of the above result and Proposition 2.6 (iv).179

Corollary 3.2 For fibrations, upl (hupl) and uphl are equivalent.180

In the following example, we show that the converse of Proposition 3.1 (ii) does not hold.181

Note that fibrations with unique path lifting which are generalizations of covering maps, has182

no nonconstant path in their fibers. In fact, for fibrations, this is equivalent to the unique183

path lifting (see [13, Theorem 2.2.5]).184

Example 3.3 Let p : X × Y −→ X be the projection which is a fibration, where Y is a185

non-singleton simply connected space. If x ∈ X, then the fiber over x, p−1(x) = {x} × Y186

is homeomorphic to Y and so every fiber has a nonconstant path which implies that p does187

not have upl. To show that p has wuphl, let α̃, ˜β : I −→ X × Y be two homotopically188

liftings of a path α : I → X with α̃(0) = ˜β(0) = (x0, y0) ∈ p−1(x0), where x0 = α(0)189

and α̃(1) = ˜β(1). Then α̃ = (̃α1, α̃2), ˜β = (˜β1, ˜β2), where α̃1, ˜β1 are paths in X with190

α̃1(0) = ˜β1(0) = x0 and α̃2, ˜β2 are paths in Y with α̃2(0) = ˜β2(0) = y0. If p◦α̃ � p◦˜β � α191
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rel İ , then α̃1 � ˜β1 rel İ . Since α̃(1) = ˜β(1), we have α̃2(1) = ˜β2(1) and hence α̃2 ∗ ˜β−1
2 is 192

a loop in Y at y0. Simple connectedness of Y implies that α̃2 � ˜β2 rel İ . Thus α̃ � ˜β rel İ . 193

In the following theorem, we show that considering unique path lifting problem in the 194

homotopy category makes all paths in fibers homotopically constant, i.e., nullhomotopic. 195

Theorem 3.4 If p : E −→ B is a fibration, then p has wuphl if and only if every loop in 196

each fiber is nullhomotopic. 197

Proof First, assume that p has wuphl and α : I −→ p−1(b0) is a loop in the fiber over b0 198

in E which implies that p ◦ α = cb0 , where cb0 is the constant path at b0. Also, we have 199

p ◦ cα(0) = cb0 , α(0) = cα(0)(0) and α(1) = cα(0)(1). Then α � cα(0) rel İ since p has 200

wuphl which implies that α is nullhomotopic. Conversely, let 201

· · · → π1(F )
⊆∗→ π1(E)

p∗→ π1(B) . . .

be the long exact sequence of induced by the fibration p with the fiber F . By the assumption 202

π1(F ) = 0 and so p∗ is injective. Hence the result holds by Proposition 2.4 (ii). 203

By Proposition 2.4 (iv) and a similar proof to the above, we can replace wuphl with 204

whupl. 205

Theorem 3.5 A fibration p : E −→ B has whupl if and only if every loop in each fiber is 206

nullhomotopic. 207

Corollary 3.6 If p : E → B is a fibration, then whupl and wuphl are equivalent. 208

Remark 3.7 Note that the converse of Corollary 3.6 does not necessarily hold. As an exam- 209

ple, if p : {∗} −→ I is the constant map ∗ 
→ 0, then p has wuphl and whupl but p is not 210

a fibration. To see this, let ˜f : X −→ {∗} be defined by x 
→ ∗ and F : X × I → I be 211

defined by F(x, t) = t , then p ◦ ˜f = F ◦ J0. But there is no map ˜F : X × I −→ {∗} such 212

that p ◦ ˜F = F because p ◦ ˜F(x, 0.5) = p(∗) = 0 but F(x, 0.5) = 0.5. 213

It is known that if p : E → B is a fibration with upl, then the induced homomorphism by 214

p, p∗ : π1(E, e0) → π1(B, b0) is a monomorphism [13, Theorem 2.3.4]. By Proposition 215

2.4 and Corollary 3.6, we have a similar result for fibrations with whupl. 216

Corollary 3.8 If p : (E, e0) −→ (B, b0) is a fibration, then whupl is equivalent to 217

injectivity of p∗ : π1(E, e0) −→ π1(B, b0). 218

Corollary 3.9 For a fibration p : E −→ B with wuphl and path connected fibers, the 219

induced homomorphism p∗ : π1(E, e0) −→ π1(B, b0) is an isomorphism. 220

Proof Let [α] ∈ π1(B, b0) and α̃ be a lifting of α starting at e0, then α̃(1) ∈ p−1(b0). 221

Assume that λ is a path in p−1(b0) from α̃(1) to e0, then [̃α ∗ λ] ∈ π1(E, e0) and p∗([̃α ∗ 222

λ]) = [α ∗ cb0 ] = [α]. Hence p∗ is onto. Injectivity of p∗ comes from Proposition 2.4 (ii). 223

224
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Note that path connectedness of fibers is essential in the previous theorem. For example,225

let p be the exponential map R → S1 which is a covering map. Clearly, fibers are discrete226

and we know that p is a fibration with upl and so by Proposition 3.1 (ii), p has wuphl, but p∗227

is not an isomorphism. The results of this section can now be summarized in the following228

diagram.229

The following two diagrams give a comparison of relationship between the five kinds of230

the unique paths liftings. It is well known that in fibrations, fibers have the same homotopy231

type and in fibrations with upl and path connected base space, every two fibers are home-232

omorphic (see [13, Lemma 2.3.8]). In the following example, we show this fact fails if we233

replace upl with wuphl (whupl).234

Example 3.10 Let E = {(x, y) ∈ R2|x ≥ 0, y ≥ 0, y ≤ 1 − x}, B = [0, 1] and p :235

E −→ B be the projection on the first component which is clearly a map. For given maps236

F : X × I −→ B and ˜f : X −→ E with F ◦ J0 = p ◦ ˜f , define ˜G : X × I −→ I × I by237
˜G(x, t) = (F (x, t), pr2 ◦ ˜f ). Let ˜F = r ◦ ˜G where r : I × I → E is the retraction238

r(x, y) =
{

(x, 1 − x), y ≥ 1 − x

(x, y), y ≤ 1 − x.

Clearly, p ◦ ˜F = F . Also ˜F ◦ J0 = r ◦ ˜G ◦ J0 = r ◦ ˜f = ˜f , since ˜f (x) ∈ E and r|E is the239

identity. Then p is a fibration. But p−1(0) = {0} × I and p−1(1) = {(1, 0)} which imply240

that the fibers of p are not homeomorphic and so p has not upl, whereas by Theorem 3.4,241

p has wuphl.242

Another different influence of upl and wuphl on the fibrations is uniqueness of the lifted243

homotopy as follows.244

Proposition 3.11 Let p : E → B be a fibration. Then p has upl if and only if it has unique245

homotopy lifting property, namely, every homotopy in B can be lifted uniquely to E.246
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Proof Let p be a fibration with unique homotopy lifting property, ˜f : {∗} → E be defined 247

by ˜f (∗) = e0, α be a path in B starting at b0 := p(e0) and F : {∗} × I → B be defined by 248

F(∗, t) = α(t). Then p ◦ ˜f (∗) = b0 = α(0) = F(∗, 0) = F ◦ J0(∗). Since p is a fibration, 249

there is ˜F : {∗} × I → E with p ◦ ˜F = F, ˜F ◦ J0 = ˜f . Define α̃(t) = ˜F(∗, t), then 250

p ◦ α̃ = p ◦ ˜F = F = α, α̃(0) = ˜F(∗, 0) = ˜f (∗) = e0, and so α̃ is a lifting of α beginning 251

at e0. Let ˜β be another lifting of α beginning at e0, then by defining ˜G : {∗} × I → E 252

by ˜G(∗, t) = ˜β(t), we have p ◦ ˜G(∗, t) = p ◦ ˜β(t) = α(t) = F(∗, t) and ˜G ◦ J0(∗) = 253
˜G(∗, 0) = ˜β(0) = e0 = ˜f (∗). Uniqueness of homotopy lifting implies that ˜F = ˜G and 254

hence ˜F(∗, t) = ˜G(∗, t) which implies that α̃(t) = ˜β(t). 255

Conversely, let p be a fibration with upl and ˜f : Y → E, F : Y × I → B be two maps 256

with p◦ ˜f = F ◦J0. Also, let ˜F, ˜G : Y ×I → E be two maps with p◦ ˜F = p◦ ˜G = F , and 257
˜F ◦ J0 = ˜G ◦ J0 = ˜f . For an arbitrary fixed y ∈ Y , let α(t) = ˜F(y, t) and β(t) = ˜G(y, t), 258

then p ◦ α(t) = p ◦ ˜F(y, t) = F(y, t) and p ◦ β(t) = p ◦ ˜G(y, t) = F(y, t). Also, 259

α(0) = ˜F(y, 0) = ˜F ◦ J0(y) = ˜G ◦ J0(y) = ˜G(y, 0) = β(0).

Since p has upl, we have α(t) = β(t) and hence ˜F(y, t) = ˜G(y, t) which implies that 260
˜F = ˜G. 261

Proposition 3.12 A fibration p : E → B has wuphl if it has homotopically unique homo- 262

topy lifting property, namely, for every topological space Y , any homotopy F : Y × I → B 263

and every map ˜f : Y → E with p◦ ˜f = F ◦J0, if there exist homotopies ˜F, ˜G : Y ×I → E 264

such that p ◦ ˜F = F , ˜F ◦ J0 = ˜f , p ◦ ˜G = F and ˜G ◦ J0 = ˜f , then ˜F � ˜G, rel {y0} × İ , 265

for a fixed y0 ∈ Y . 266

Proof By Corollary 3.6, it is enough to prove that p has whupl. Let α be a path in B 267

from b0 to b1 and α̃, ˜β : I → E be two liftings of α from e0 to e1. Also, assume that 268

F : {∗} × I → B is defined by F(∗, t) = α(t) and ˜f : {∗} → E is defined by ˜f (∗) = e0. 269

Then p ◦ ˜f (∗) = e0 = α(0) = F(∗, 0) = F ◦ J0(∗). Let ˜F, ˜G : {∗} × I → E be two maps 270

such that ˜F(∗, t) = α̃(t) and ˜G(∗, t) = ˜β(t). Then p◦ ˜F(∗, t) = p◦ α̃(t) = α(t) = F(∗, t) 271

and ˜F ◦ J0(∗) = ˜F(∗, 0) = α̃(0) = e0 = ˜f (∗) and also, p ◦ ˜G(∗, t) = p ◦ ˜β(t) = 272

α(t) = F(∗, t) and ˜G ◦ J0(∗) = ˜G(∗, 0) = ˜β(0) = e0 = ˜f (∗). By assumption, there exists 273

H1 : {∗} × I × I → E such that H1 : ˜F � ˜G rel {∗} × İ . Define H : I × I → E by 274

H(t, s) = H1(∗, t, s). It is easy to see that H : α̃ � ˜β rel İ . 275

Note that the converse of the above proposition does not hold, in general. Let p : {0} × 276

I → {0} be the projection, F : I × I → {0} be the constant homotopy F(t, s) = 0 and 277
˜f : I → {0}×I be defined by ˜f (t) = (0, 1

2 ). Since the only fiber of p is simply connected, 278

p is a fibration with wuphl. Now, let ˜F and ˜G : I ×I → {0}×I be two homotopies defined 279

by ˜F(t, s) = (0, 1−s
2 ) and ˜G(t, s) = (0, 1+s

2 ), respectively. Then p ◦ ˜F = F , ˜F ◦ J0 = ˜f , 280

p ◦ ˜G = F and ˜G ◦ J0 = ˜f . Note that ˜F is not homotopic to ˜G relative to {0} × İ . 281

4 Categorical Viewpoints 282

Topological spaces as objects and fibrations with upl as morphisms form a category. Also, 283

fibrations with upl and commutative diagram between them and fibrations with upl over 284

a base space B and commutative triangles between them are two categories which have 285



AUTHOR'S PROOF JrnlID 40306 ArtID 219 Proof#1 - 04/08/2017

UNCORRECTED
PROOF

M. Tajik et al.

products and coproducts (see [13, Section 2.2]). In this section, we state some categorical286

properties of fibrations with wuphl.287

Proposition 4.1 (i) Composition of two maps with wuphl is a map with wuphl.288

(ii) Composition of two fibrations with wuphl is a fibration with wuphl.289

Proof Part (i) comes from the definition and part (ii) is a consequence of Theorem 3.4.290

By the above proposition, there is a category whose objects are fibrations with wuphl291

and whose morphisms are commutative diagrams of maps292

where p : E −→ B and p′ : E′ −→ B ′ are fibrations with wuphl. We denote this category293

by Fibwu which has Fibu as a subcategory. Also, for a given space B, there exists another294

subcategory of Fibwu, denoted by Fibwu(B), whose objects are fibrations with wuphl which295

have B as the base space and whose morphisms are commutative triangles296

Obviously, Fibu(B) is a subcategory of Fibwu(B). Note that in the above diagram although297

p, p′ are fibrations, h is not necessarily a fibration. By the following proposition and exam-298

ple, we show that upl property of p, p′ is sufficient for h being a fibration with upl, while299

wuphl property is not.300

Proposition 4.2 Every morphism in the category Fibu(B) is a fibration with upl.301

Proof Consider a morphism in Fibu(B) as follows:302

E h

p

E

p

B.

Let Z be a space, ˜f : Z → E be a map and F : Z × I → E′ be a homotopy such that303

h ◦ ˜f = F ◦ J0. Then p′ ◦ h ◦ ˜f = p′ ◦ F ◦ J0 and so p ◦ ˜f = (p′ ◦ F) ◦ J0. Since p is a304

fibration, there is a homotopy ˜G : Z × I → E such that p ◦ ˜G = p′ ◦ F and ˜G ◦ J0 = ˜f .305

Hence p′ ◦ h ◦ ˜G = p′ ◦ F and h ◦ ˜G ◦ J0 = h ◦ ˜f = F ◦ J0. For an arbitrary fixed z ∈ Z,306

we have p′ ◦ h ◦ ˜G(z,−) = p′ ◦ F(z,−) and h ◦ ˜G(z, 0) = F(z, 0). Since p′ has upl, we307

have h ◦ ˜G(z,−) = F(z,−) and since z is arbitrary, h ◦ ˜G = F . Therefore h is a fibration.308

Moreover, h has upl. To show this, let α̃ and ˜β be two paths in E beginning from the same309

point and h ◦ α̃ = h ◦ ˜β. Then p′ ◦ h ◦ α̃ = p′ ◦ h ◦ ˜β and so p ◦ α̃ = p ◦ ˜β. Since p has310

upl, we have α̃ = ˜β.311
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Example 4.3 Let CS1 be the cone over S1, S1 × I/(z, 1) ∼ (z′, 1). Then p : CS1 −→ 312

{[(z, 1)]} and p′ : I −→ {[(z, 1)]} are fibrations with wuphl. Define h : CS1 −→ I by 313

h([(z, t)]) = t for every z ∈ S1 and any t ∈ I . Obviously p′ ◦ h = p but h is not a fibration 314

since its fibers do not have the same homotopy type, for example h−1(1) = {[(1, 1)]} while 315

h−1(0.5) = {[(z, 0.5)]|z ∈ S1} which is homeomorphic to S1. 316

It is known that any family of objects in the categories Fibu and Fibu(B) has a product 317

and coproduct (see [13, pp. 69-70]). Now, we are going to show that this fact holds in the 318

categories Fibwu and Fibwu(B). 319

Proposition 4.4 The product of fibrations with wuphl is a fibration with wuphl. 320

Proof Since the product of fibrations is a fibration, it is sufficient to show that every loop 321

in each fiber of product of such fibrations is nullhomotopic. But this is because of that a 322

loop in a fiber of a product of fibrations is a product of loops each of which is in a fiber of 323

a fibration with wuphl. 324

To show that Fibwu(B) has the products, let us recall the Whitney sum of fibrations. If 325

{pj : Ej → B|j ∈ J } is an indexed collection of fibrations with wuphl over the space B, 326

define 327

⊕B,J Ej = {(ej )j ∈ �jEj |ej ∈ Ej , and pj (ej ) = pi(ei), for i, j ∈ J }
and also define 328

⊕B,J pj : ⊕B,J Ej → B

(ej )j � pj (ej ).

Since (⊕B,J pj )
−1(b) = {(ej )j ∈ �jEj |pj (ej ) = b, for j ∈ J }, the fibers of ⊕B,J pj are 329

the product of the fibers of pj and so we can deduce that ⊕B,J pj is a fibration with wuphl. 330

Proposition 4.5 Let {pj : Ej → B|j ∈ J } be an indexed collection of fibrations with 331

wuphl on the space B. Then ⊕B,J pj is a fibration with wuphl. 332

The following result is a consequence of Propositions 4.4, 4.5. 333

Theorem 4.6 The categories Fibwu and Fibwu(B) have products. 334

Suppose {pj : Ej → Bj |j ∈ J } is an indexed collection of objects in Fibwu and �jEj 335

is the disjoint union of Ej ’s. Then q : �jEj −→ �jBj given by q|Ej
= pj is a fibration 336

and since a fiber of q is a fiber of one of pj
,s, every loop in the fibers of q is nullhomotopic 337

and hence q has wuphl. Also, if {pj : Ej → B|j ∈ J } is an indexed collection of objects in 338

Fibwu(B), then q ′ : �jEj −→ B given by q ′|Ej
= pj is also a fibration. Note that fibers of 339

q ′ are the disjoint union of fibers of pj
,s and so every loop in fibers of q ′ is nullhomotopic. 340

Hence q ′ has wuphl. Therefore, we have the following result. 341

Theorem 4.7 The categories Fibwu and Fibwu(B) have coproducts. 342

If f : X → B is a map, we define a functor from Fibwu(B) to Fibwu(X) and we show 343

that this functor preserves the universal objects. Recall that if p : E → B is a fibration, 344
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then the projection f ∗p : X ×B E → X is a fibration which is called the fibration induced345

from p by f (see [13, page 98]). Now, we have the following result.346

Proposition 4.8 If p : E −→ B is a fibration with wuphl and f : X −→ B is a map, then347

f ∗p is a fibration with wuphl.348

Proof Let α, β be paths in X×B E with the same initial point and the same end point. Then349

α = (α1, α2) and β = (β1, β2), where α1, β1 and α2, β2 are paths in X and E, respectively.350

Also, since α(0) = β(0), α(1) = β(1), we have α1(0) = β1(0), α2(1) = β2(1). Assume351

(f ∗p) ◦ α � (f ∗p) ◦ β rel İ . By definition α1 � β1 rel İ . Hence f ◦ α1 � f ◦ β1 rel İ and352

since (α1(t), α2(t)), (β1(t), β2(t)) ∈ X ×B E for all t ∈ I , we have p ◦ α2 � p ◦ β2 rel İ .353

But p has wuphl and therefore α2 � β2 rel İ . Hence α � β rel İ which implies that f ∗p354

has wuphl.355

We know that f ∗ : Fib(B) → Fib(X) is a functor. Thus, by the above proposition, we356

have the following result.357

Theorem 4.9 For any map f : X −→ B, f ∗ : Fibwu(B) → Fibwu(X) is a functor.358

Proposition 4.10 If f : X → B and p : E → B are two objects in Fibwu(B), then the359

projection q2 : X ×B E → E is an object in Fibwu(E).360

Proof Consider two maps ˜f : Z → X ×B E and F : Z × I → E with q2 ◦ ˜f = F ◦ J0.361

Then ˜f (z) = (pr1 ◦ ˜f (z), F (z, 0)) and f ◦ pr1 ◦ ˜f (z) = p ◦ F(z, 0). Let G := p ◦ F .362

Then f ◦ pr1 ◦ ˜f = G ◦ J0 and since f is a fibration, there exists a map ˜G : Z × I → X363

such that f ◦ ˜G = G and ˜G ◦ J0 = pr1 ◦ ˜f . Hence f ◦ ˜G = p ◦ F and so we can define364

a map ˜F : Z × I → X ×B E by ˜F(z, t) = (˜G(z, t), F (z, t)). Therefore q2 ◦ ˜F = F and365
˜F ◦ J0 = ˜f . A similar proof to Proposition 4.8 shows that q2 has wuphl.366

Proposition 4.11 Let f : X → B and p : E → B be two objects in Fibu(B) (or Fibwu(B))367

such that p is a universal object. Then f ∗p : X×B E → X is a universal object in Fibu(X)368

(or Fibwu(X)).369

Proof Let g : E′ → X be an object in Fibu(X). Then p′ := f ◦ g : E′ → B is an object in370

Fibu(B) and so the universality of p implies that there exists a unique morphism h : E → E′371

such that p′ ◦ h = p. Since p and f ◦ (f ∗p) are fibrations with upl, using Proposition372

4.2, the projection q2 is a fibration with upl and so h ◦ q2 is a fibration with upl. Note that373

p′ ◦ h ◦ q2 = p ◦ q2 = f ◦ (f ∗p) and p′ ◦ q ′
2 = f ◦ (f ∗p′) where q ′

2 : X ×B E′ → E′ is374

the projection. Therefore, the universality of the pullback X ×B E′ implies that there exists375

a morphism k : X ×B E → X ×B E′ such that f ∗p′ ◦ k = f ∗p. Define t = q ′
2 ◦ k, then t376

is a fibration with upl and g ◦ t = g ◦ q ′
2 ◦ k = f ∗p′ ◦ k = f ∗p. By a similar argument to377

the above and using Proposition 4.10, we have the same result for Fibwu(X).378

Remark 4.12 Recently, Fischer and Zastrow [7] and Brazas [1–4] have introduced new379

categories, the category of generalized coverings, lpc0-coverings and the category of380

semicoverings over a given space X, denoted by GCov(X), Covlpc0(X) and SCov(X),381

respectively. A generalized covering map is a surjection map p : ˜X → X with a path382
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connected and locally path connected total space such that for every path connected and 383

locally path connected space Y , any x̃ ∈ ˜X, and any map f : (Y, y) → (X, p(x̃)) with 384

f∗π1(Y, y) ⊆ p∗π1(˜X, x̃), there exists a unique map ˜f : (Y, y) → (˜X, x̃) such that 385

p ◦ ˜f = f , (see [1, 7]). The definition of a lpc0-covering map is similar to the definition 386

of a generalized covering map, with the difference that it necessarily is not a surjection. But since 387

by our general assumption its base space is path connected, then it is surjective and so 388

GCov(X) = Covlpc0(X). Also, a semicovering map is a local homeomorphism which has 389

upl and path lifting property (see [9, Definition 7, Corollary 2.1] and [10, Theorem 2.3]). 390

The category of covering spaces of X, Cov(X) is a subcategory of GCov(X) and SCov(X). 391

Note that these categories are not equivalent to Fibu(X) and Fibwu(X). For comparing 392

these categories, the following diagram summarizes a number of implications of relations 393

between classical coverings and their generalizations. According to the enumeration of the 394

implications in the following diagram, for each arrow a reference or a proof is given. The 395

label (1,⇒) means, that an argument is to be given, why this implication is true, while 396

(1,�) means, that an argument is to be given, why the converse of this implication does not 397

hold in general. Also, “+LPC” means the total space is assumed to be locally path connected. 398

(1,⇒): Follows from Theorems 2.2.2 and 2.2.3 of [13]. 399

400

(1,�): Let p : S1 × N → S1 be defined by p(z, n) = zn. Then the restriction of p to 401

the n-th component, namely, pn : S1 × {n} → S1 with pn(z, n) = p(z, n) is a 402

covering map and so is a fibration with upl. Therefore, by Theorem 2.3.2 of [13], 403

p is a fibration. Moreover, it is easy to see that p has upl, but p is not a covering 404

map (see [3, Example 3.8]). 405

(2,⇒): Refer to [7, 13]. 406

(2,�): Because every generalized universal covering is a generalized covering and using 407

Example 4.15 of [7], a generalized universal covering is not necessarily a covering 408

map. 409

(3,⇒): Follows from [3, Proposition 3.7]. 410

(3,�): The same counterexample as for (1). 411

(4,⇒): Follows from (1) and Proposition 3.1 (ii). 412

(4,�): The same counterexample as for (1). 413

(5,⇒): It is Proposition 3.1 (ii). 414

(5,�): It is Example 3.3. 415

(6,⇒): Follows from Theorem 2.4.5 of [13]. 416

(6,�): Similar to (2,�), Example 4.15 of [7] is a generalized universal covering which 417

is not a fibration (with upl). 418

(7,⇒): See page 9 of [6]. 419

(8): If “fibration with wuphl” ⇒ “semicovering”, then by Proposition 3.1 (ii) “fibra- 420

tion with upl” ⇒ “semicovering”, which contradicts (9). 421

(9): Let p : E × ({0} ∪ { 1
n
|n ∈ N}) → E be the trivial bundle, then p is a fibration 422

with upl. But since p is not a local homeomorphism, p is not a semicovering. 423

(10): By (6,�) we have “generalized covering” � “fibration (with wuphl)”. Also, 424

“fibration with wuphl” � “generalized covering” because otherwise since a gen- 425

eralized covering map has upl, we have “fibration with wuphl” ⇒ “fibration with 426

upl”, which is a contradiction (see Example 3.3). 427

We just know that every semicovering is a Serre fibration [4, Lemma 2.7] and a semi- 428

covering with locally path connected and semilocally 1-connected base is a covering map, 429
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[3, Corollary 7.2]. We leave the reader with the open problem of whether or not the inverse430

of arrows 7, 8 and 9 in the diagram can hold.431

5 Some Fibration Subgroups432

In this section, we introduce some normal subgroups of the fundamental group of a433

given space X related to its fibrations. Then we compare them with the other well-known434

subgroups of the fundamental group of X.435

Definition 5.1 Let X be a space and x0 ∈ X.436

(i) By the fu-subgroup of π1(X, x0) we mean the intersection of all the image subgroups437

of fibrations over X with upl. We denote it by π
f u

1 (X, x0).438

(ii) By the fwu-subgroup of π1(X, x0) we mean the intersection of all the image439

subgroups of fibrations over X with wuphl. We denote it by π
f wu

1 (X, x0).440

Proposition 5.2 For a given space X and x0 ∈ X, we have441

π
f wu

1 (X, x0) � π
f u

1 (X, x0) � π1(X, x0).

Proof Obviously, π
f u

1 (X, x0) and π
f wu

1 (X, x0) are subgroups of π1(X, x0) and by Propo-442

sition 3.1, π
f wu

1 (X, x0) ⊆ π
f u

1 (X, x0). We show that they are normal subgroups of443

π1(X, x0). Let [α] ∈ π1(X, x0), [β] ∈ π
f u

1 (X, x0) (or π
f wu

1 (X, x0)) and H be an arbi-444

trary image subgroup of a fibration with upl (wuphl) p over X, namely, H = p∗π1(˜X, x̃),445

where x̃ ∈ p−1(x0). Let α̃ be a lifting of α at x̃. Since [β] ∈ π
f u

1 (X, x0) (or π
f wu

1 (X, x0))446

and α̃(1) ∈ p−1(x0), [β] ∈ p∗π1(˜X, α̃(1)) and so there is a loop ˜β at α̃(1) such that ˜β447

is a homotopically lifting of β. Thus α̃ ∗ ˜β ∗ α̃−1 is a loop and a homotopically lifting of448

α ∗ β ∗ α−1 at x̃ which implies that [α ∗ β ∗ α−1] ∈ H .449

Let {pj : Ej → B|j ∈ J } be the indexed collection of fibrations with upl over B and450

H = ∩j (pj )∗π1(Ej , ej ). For all j ∈ J , give b = pj (ej ). It is well known that Fibu(B) has451

a universal object as p : (E, e) → (B, b) (see [13, Page 84]). We claim that p∗π1(E, e) =452

H . To prove this, clearly H ⊆ p∗π1(E, e) since p is a fibration with upl. Also, by the453
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universality of p, for every j ∈ J there exists an object hj : E → Ej such that pj ◦hj = p. 454

Then p∗π1(E, e) = (pj ◦ hj )∗π1(E, e) = (pj )∗ ◦ (hj )∗π1(E, e) ⊆ (pj )∗π1(Ej , ej ). 455

Therefore p∗π1(E, e) ⊆ ∩j (pj )∗π1(Ej , ej ) = H . Hence we have the following result. 456

Theorem 5.3 For a given space B and every b ∈ B, π
f u

1 (B, b) is the image subgroup of a 457

fibration with upl over B. 458

Theorem 5.4 For a given space B and every b ∈ B, π
f wu

1 (B, b) is the image subgroup of 459

a fibration with wuphl over B. 460

Proof Let {Hj |j ∈ J } be the family of image subgroups of fibrations with wuphl over B. 461

For every j ∈ J , there is a fibration with wuphl pj : Ej → B such that pj∗π1(Ej , ej ) = 462

Hj for an ej ∈ p−1
j (b). Fix ej as the base point of Ej . Let E := �jEj , p := �j∈J pj : 463

E → �jB be the product of pj ’s and �∗p : B ×�j B E → B be the induced fibration from 464

p by �, where � : B → �jB is the diagonal map �(b) = (b)j . By Propositions 4.4 and 465

4.8, p and �∗p are fibration with wuphl. We show that the image of (�∗p)∗ is ∩j∈J Hj . 466

Let e := �j ej and [β] ∈ π1(B ×�j B E, (b, e)). Then β = (α, γ ), where α and γ := �j γj 467

are the loops in B and E at b and e, respectively. Moreover, for every j ∈ J , γj is a loop in 468

Ej at ej . By the definition of pullback 469

� ◦ α = p ◦ γ = (�jpj ) ◦ (�j γj ) = �j (pj ◦ γj ),

which implies that pj ◦ γj = α for any j ∈ J . Hence we have 470

pj∗[γj ] = [pj ◦ γj ] = [α] ⇒ [α] ∈ pj∗π1(Ej , ej ) = Hj ⇒ [α] ∈ ∩jHj .

Therefore (�∗p)∗([β]) = [(�∗p) ◦ β] = [(�∗p) ◦ (α, γ )] = [α] and hence 471

(�∗p)∗π1(B ×�j B E) ⊆ ∩jHj . The converse of the inclusion is clear since �∗p is a 472

fibration with wuphl. 473

For an open covering U of a given space X and x0 ∈ X, π(U , x0), the Spanier subgroup 474

with respect to U , is the subgroup of π1(X, x0) consisting of all homotopy classes of loops 475

that can be represented by a product of the following type 476

n
∏

j=1

αj ∗ βj ∗ α−1
j ,

where the αj ’s are arbitrary paths starting at the base point x0 and each βj is a loop inside 477

one of the neighborhoods Ui ∈ U . Spanier [13] used this subgroup for classification of cov- 478

ering spaces of a given space. In fact, for every open cover U of X, there exists a covering 479

map p : ˜XU → X such that p∗π1(˜XU , x̃0) = π(U , x0) and conversely, for every covering 480

map p : ˜X → X, there exists an open cover U of X such that p∗π1(˜X, x̃0) = π(U , x0) 481

(see [13, Theorems 2.5.12-13]). The Spanier group of a given space X, π
sp

1 (X, x0), which 482

is introduced in [8] is the intersection of all π(U , x0), for every open cover U of X. 483

Mashayekhy et al. [11] used the Spanier group for the existence of some universal coverings 484

of spaces with bad local behavior. They showed in [11] that if p : ˜X → X is a categorical 485

universal covering of X, then p∗π1(˜X, x̃0) = π
sp

1 (X, x0). But the existence of such categor- 486

ical universal covering is not possible in general and we need X has some local properties 487

which are introduced in [12]. Note that these local conditions are not necessary when we 488

work with fibrations with upl. 489
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In the following propositions, we will compare these subgroups, by the hypothesis of490

locally path connected total space.491

Proposition 5.5 If X is a connected and locally path connected space, then492

π
f wu

1 (X, x0) ⊆ π
f u

1 (X, x0) ⊆ π
sp

1 (X, x0).

Proof The left inclusion holds by Proposition 3.1 (ii). For the right inclusion, let U be an493

open cover of X. Using [13, Theorem 2.5.13] there exists a covering map p : ˜XU → X494

with p∗π1(˜XU , x̃0) = π(U , x0). By assumption X is connected and locally path connected,495

then ˜XU is connected and locally path connected. Since every covering map is a fibra-496

tion with upl, we have π
f u

1 (X, x0) ⊆ π(U , x0). Since U is arbitrary we can conclude that497

π
f u

1 (X, x0) ⊆ π
sp

1 (X, x0).498

Brazas [1, 2] has introduced a subgroup of π1(X, x), which is the intersection of all the499

image subgroups of generalized covering maps of X. It is shown that this subgroup is a500

generalized covering subgroup of π1(X, x) and we denote it by π
gc

1 (X, x), (see [1, Theorem501

15] and [2, Theorem 2.36]). Note that by Remark 4.12, there is no relationship between502

generalized coverings and fibrations with wuphl in general. Therefore, there is no inclusion503

relationship between π
gc

1 (X, x) and π
f wu

1 (X, x). However, by implication 6 in Section 4,504

since every fibration with upl whose total space is locally path connected is a generalized505

covering map, we have the following result.506

Proposition 5.6 For a given connected and locally path connected space X and x0 ∈ X,507

we have508

π
gc

1 (X, x0) ⊆ π
f u

1 (X, x0) ⊆ π
sp

1 (X, x0).

Remark 5.7 There are some known spaces X with non-trivial fu-subgroup π
f u

1 (X, x0). For509

example, let RX be the space introduced in [14]. The spaceRX does not admit a generalized510

universal covering space (see [14, Proposition 14]). On the other hand, a space X admits511

a generalized universal covering if and only if π
gc

1 (X, x0) = 0 (see [1, Corollary 16] or512

[2, Corollary 2.38]). Hence π
gc

1 (RX, x0) �= 0 and so by Proposition 5.6, πf u

1 (RX, x0) �= 0.513

As discussed in [13, Page 84], for a given space X and x ∈ X, the category Fibu(X)514

admits a simply connected universal object if and only if π
f u

1 (X, x) = 0. In the following515

we will show it in the category Fibwu(X).516

Let p : ˜X → X be a simply connected universal object in the category Fibwu(X),517

i.e., π1(˜X, x̃) = 0. Then since π
f wu

1 (X, x) ⊆ p∗π1(˜X, x̃), we have π
f wu

1 (X, x) = 0.518

Conversely, let the category Fibwu(X) have a universal object p : (˜X, x̃) → (X, x) and519

π
f wu

1 (X, x) = 0. If p′ : (˜Y , ỹ) → (X, x) is an arbitrary object in Fibwu(X), then there is520

an object q : (˜X, x̃) → (˜Y , ỹ) such that p′ ◦ q = p. Therefore521

p∗π1(˜X, x̃) = (p′ ◦ q)∗π1(˜X, x̃) = p′∗ ◦ q∗(π1(˜X, x̃)) ⊆ p′∗π1(˜Y , ỹ)

which implies that522

p∗π1(˜X, x̃) ⊆
⋂

{p′∗π1(˜Y , ỹ)| p′ : (˜Y , ỹ) → (X, x) is an object of Fibwu(X)}.
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Hence p∗π1(˜X, x̃) ⊆ π
f wu

1 (X, x) = 0 and so p∗π1(˜X, x̃) = 0. 523

Since by Proposition 2.4, p∗ is a monomorphism, π1(˜X, x̃) = 0 and hence ˜X is simply 524

connected. Thus we have the following result. 525

Theorem 5.8 Let X be a topological space and x ∈ X. 526

(i) If the category Fibwu(X) admits a simply connected universal object, then 527

π
f wu

1 (X, x) = 0. 528

(ii) If the category Fibwu(X) admits a universal object and π
f wu

1 (X, x) = 0, then it is a 529

simply connected object. 530
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