












Figure 15. The comparison of AR parameters between the configurations 1 and 2.

Figure 16. The comparison of AR residuals between the configurations 1 (black) and 2 (green).
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residuals associated with the damaged condition will
increase.

Damage localization and quantification. For the process of
damage localization, the parameters and residuals of
the AR models in the test configurations 1 and 5 are
applied to equations (4) and (7) for determining the
threshold limits. In the baseline phase, the PAC and
RRC threshold limits correspond to 0.6327 and 0.4782,
respectively. Even though the configuration 5 is gener-
ally a damaged condition, the main reason of using it as
an undamaged state is to incorporate the environmental
variability in the ASCE structure. In fact, it is assumed
that the configuration 5 is an undamaged condition
with the environmental variability as the stiffness reduc-
tion by removing the only braces on one bay (the south-
east corner) at the first story. This assumption is similar
to the simulation of environmental condition incorpo-
rated in the states 4–9 of the laboratory frame (Table 1),
where the reductions in stiffness of the model in one or
two columns of the first, second, and third inter-story
were simulated as the environmental variability.

After the determination of PAC and RRC threshold
levels, the parameters and residuals of AR models in
the configuration 1 are applied to the PAC and RRC
equations as the features of undamaged state (aH and
eH). By contrast, the corresponding characteristics of
AR models in each of the configurations 2–4 are uti-
lized as the features of damaged condition (aD and eD).
As such, any PAC quantity less than 0.6327 or any
RRC value more than 0.4782 is indicative of the loca-
tion of damage. In Table 3, the configurations 2–4 have
the same damage pattern as removing the bracing sys-
tem from the east side, where has been equipped with
the sensors 3, 6, 9, 12, and 15 as shown in Figure 12.
Depending on the number of braces eliminated from

the stories of the east side, the mentioned sensors are
representative of the damage locations. Hence, one
attempts to perceive whether the proposed PAC and
RRC methods are initially able to detect the east side
of the ASCE structure as the only damaged area.
Additionally, it is evaluated whether the proposed
methods can identify the precise damage locations,
which are close to the mentioned sensors. Figures 17
and 18 illustrate the results of damage localization and
quantification obtained by the proposed PAC and
RRC methods in the test configurations 2–4. Note that
the level of damage severity in the test configurations
2–4 increases by removing the bracing system. In other
words, the configuration 2 presents the highest level of
damage severity, whereas the configuration 4 has the
lowest level of damage.

In Figure 17, it is obvious that the PAC quantities at
the sensors 3, 6, 9, 12, and 15 in the test configurations
2–4, with the exception of the PAC value at the sensor
9 in the configuration 4, are under the PAC threshold
level indicating the locations of damage. Likewise, it
can be discerned from Figure 18 that the amounts of
RRC at the above-mentioned sensors in the test config-
urations 2–4, with the exception of the RRC value at
the sensor 9 in the configuration 4, exceed the RRC
threshold level, which imply the damage locations in
the ASCE structure. It is worthwhile remaking that the
removal of a brace from a story reduces the stiffness of
story. Hence, the responses of sensors mounted on the
bottom and top of the story will change. In the config-
uration 4, the sensors 3 and 6 were installed at the bot-
tom and top of the first story and the sensors 12 and 15
were located at the bottom and top of the fourth story.
Hence, the removal of braces from these stories leads
to the PAC and RRC methods identify the sensors 3, 6,
12, and 15 as the locations of damage. On the other

Figure 17. Damage localization and quantification by the PAC method in the ASCE structure.
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hand, there are no structural changes around the sensor
9 in this configuration. As a result, the observations in
Figures 17 and 18 confirm that the proposed PAC and
RRC methods are precisely able to identify the loca-
tions of damage.

For the procedure of damage quantification, one can
observe that the PAC quantities at the damage loca-
tions decrease with increasing the level of damage from
the configuration 4 to the configuration 2. More pre-
cisely, the values of PAC at the damage locations of the
test configuration 2 are closer to 0 than the other con-
figurations, which means that this configuration pro-
vides the highest level of damage severity. Furthermore,
the same conclusions can be achieved for the RRC
method. As expected, the configuration 2 indicates the
highest level of damage severity since the RRC values
at the damage locations are closer to 1 compared to the
other configurations.

Summary and conclusion

In this article, two novel damage indices and a new
iterative order determination method regarding time
series modeling have been proposed in order to identify
the location of damage and estimate the level of dam-
age severity. The AR model has been identified as the
most compatible time series model with the measured
vibration time-domain responses using the Box–Jenkins
methodology and Leybourne–McCabe hypothesis test.
In the iterative technique, the robust orders of AR
models have been chosen under the residual analysis
using the numerical Ljung–Box Q-test. The damage-
sensitive features were the parameters and residuals of
AR model, which have been applied to the equations of
PAC and RRC for locating and quantifying damage.
In an unsupervised learning manner, the features of

undamaged conditions with the operational and envi-
ronmental variability in the baseline phase have been
used to define the threshold limits based on 95% confi-
dence interval of the PAC and RRC values. A three-
story laboratory frame and a model-scale steel structure
have eventually been utilized to verify the accuracy and
robustness of the proposed methods along with some
comparative studies.

In both examples, the results of model order deter-
mination showed that the proposed iterative technique
is able to extract uncorrelated residuals. These results
were confirmed by the p-values of Ljung–Box Q-test
and the ACF plots of the model residuals. In the proce-
dures of damage localization and quantification, both
PAC and RRC methods could successfully identify the
location of damage and estimate the level of damage
severity under varying the operational and environmen-
tal conditions. It was observed that the PAC value less
than the PAC threshold level and the RRC quantity
more than the RRC threshold limit indicate the loca-
tion of damage. At the damaged area, the closest PAC
value to 0 and the nearest RRC quantity to 1 are the
highest levels of damage severity.

The study on the laboratory frame showed that the
parameters and residuals of the robust AR model
extracted from the feature extraction algorithms, Type
I and Type II, are sensitive to damage. The compara-
tive studies indicated that the proposed PAC has better
results compared to the IDM in the presence of opera-
tional variability, while the proposed RRC method and
DF provide successful results in the damage localiza-
tion and quantification.
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