Experimental investigation and cost analysis on a nanofluid-based desalination system integrated with an automatic dual-axis sun tracker and Fresnel lens

Sina Abbaszadeh Hashemi, Mohsen Kazemi, Amin Taheri, Mohammad Passandideh-Farda, Mohammad Sardarabadi

HIGHLIGHTS

• Performance of the CSS integrated with a two-axis STS and Fresnel lens was investigated.
• Effect of MWCNT/water nanofluid on improvement of fresh-water productivity was studied.
• Cost, energy and fresh-water productivity analysis on four various setups were performed.
• Total yield of fresh-water of CSS with STS was enhanced by 6100 mL/(m²·day) compared to that of CSS.
• Utilizing nanofluid and STS, the cost of fresh-water productivity was reduced by 0.206 $/liter.

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords:
Desalination system
Fresnel lens
Multiwall carbon nanotubes (MWCNTs)
Solar still
Solar tracking system (STS)

ABSTRACT

In this experimental work, the performance of a nanofluid-based solar still equipped with a dual-axis solar tracker system (STS) has been investigated through various viewpoints, i.e., daily and nightly fresh-water production, hourly and daily efficiency and cost. The proposed solar still consists of a conventional solar still (CSS), three Fresnel lens concentrator, and an active automatic STS. Moreover, the effects of deionized water, MWCNTs/water nanofluid with two mass fractions of 0.15 and 0.3%, as the heat transfer fluid (HTF), are studied on fresh-water productivity to evaluate the appropriate HTF type. The daily, nightly, and total fresh-water produced by the CSS with internal condenser is found to be 2180, 560, and 2740 mL/(m²·day) compared to that of CSS. However, the CSS integrated with STS and Fresnel lens can produce daily, nightly, and total fresh-water of 5310, 1080, and 6390 mL/(m²·day), respectively. In addition, the results indicate that using MWCNTs/water nanofluid with a mass fraction of 0.3% enhances fresh-water productivity by 31.6, 7.4, and 27.5%, respectively, compared to that of pure water as HTF. The results reveal that by using the nanofluid with a mass fraction of 0.15 and 0.3%, the daily average efficiency is increased about 9.56 and 17.85%, respectively, compared to that of pure water as HTF.
1. Introduction

The fresh-water is a vital substance for the existence of life on earth. However, the amount of clean, drinkable, and accessible water is reducing rapidly because of an increase in water pollution and a swelling population. 97% of the water in the globe is in the lakes, seas, and oceans, and only about 3% is available as fresh water and 1% as drinkable [1]. Oceans are the infinite sources of saline water. Desalination is a promising and suitable solution to eliminate salt to produce drinkable water. However, removing salts from seawater needs large amounts of energy usually supplied by burning fossil fuels which in turn leaves irreversible impacts on the environment and human health. Thus, improving the efficiency of desalination systems and utilizing renewable energies can be effective ways to decrease the environmental damages.

Desalination systems can be divided into two main groups: large scale or commercial and small scale or domestic. There are different technologies and processes for desalination in large scales, like multi-stage flash, multi-effect, membrane, reverse osmosis and distillation [2–5]. These types of desalination systems are energy-consuming; replacing these methods with alternative ways that are eco-friendly and affordable like solar and wind energies are preferred. Small-scale desalination systems mostly use solar energy as an alternative and inexpensive energy [6]. In domestic desalination systems, although the fresh-water production of solar stills is low, they are sustainable and affordable. Desalination by solar energy continues to attract a lot of research interest targeted to enhance their fresh-water productivity. Two main keys for solar desalination are evaporation and condensation. Solar energy evaporates the brine water and the condenser collects the distilled water [7]. There are several experimental and theoretical research available in the literature carried out to increase solar stills productivities [8–11]. Based on energy consumption, solar stills are categorized into two main types: passive and active [12]. Passive solar stills carry out the desalination process without any external source [6]. Low fresh-water yield is the main weakness of passive solar stills which is in the range of 3–6 kg/(m²·day) and 3.48 L/(m²·day), respectively. To tackle the problem of pas-

civity of the CSS with the aid of STS. The proposed STS follows the sun with the aid of four sensors and two DC electro-motor linked to a controller circuit. It should be noted that the HTFs (deionized water and two mass fractions of MWCNTs/water nanofluid) pass through spiral-shaped coils are placed at the bottom of the CSS (setup D in Fig. 1).

In this study, the absorber pipe for the collector is made of copper with a suitable thermal conductivity/flexibility and high-pressure durability. Moreover, the copper tube is used for the heat exchanger in the CSS with the purpose of increasing the evaporation rate. Two copper tubes which are spiral-shaped are placed at the bottom of the solar still (see setup D). The outer and inner diameters of the copper tube in the collector and heat exchanger are 12 and 10 mm, respectively. The length and focal length of the linear Fresnel lens are 960 and 600 mm, respectively, and the surface area exposed to the incident solar
irradiation is 0.384 m². To track the sun location throughout the day-light, a dual-axis STS is designed. One centrifugal pump is used to circulate the HTF between the collector and heat exchanger in a closed loop. The outdoor experiments are conducted on sunny and stable days in June 2019 at the Ferdowsi University of Mashhad, Iran (36.26°N, 59.61°E). An actual image and schematic illustration of the experimental setups are shown in Figs. 2 and 3, respectively.

The following instruments are utilized for manually recording various parameters in this experimental study:

- The intensity of solar irradiation at the inclined south side of STS and the CSS is recorded manually using two same solar power meters, TES-1333 (number 2 in Fig. 2).
- The HTF temperature in both inlet and outlet of the heat exchanger and collector and feed-water temperature in the CSS are measured with PT-100 thermocouples.
- Two measuring cylinders with a precision of 10 mL is used to collect and measure produced fresh-water. Measuring instruments and their related sections in the experiments are summarized in Table 1.

2.2. Preparation and characterization of MWCNTs/water nanofluid

The MWCNTs nanoparticles and deionized water, whose specifications are summarized in Table 2, are used in the current experimental study. The use of MWCNTs/water nanofluid is because of its better thermal properties and stability with respect to the other nanofluids.
The MWCNTs nanoparticles are purchased in the dry form with a purity of +95% from VCN Nanomaterials Company in Iran. The TEM image of the MWCNT nanoparticles is illustrated in Fig. 4. The regular length, diameter, and specific surface area of studied nanoparticles are 5–10 µm, 20–30 nm, and +200 m²/g, respectively. The MWCNTs nanoparticles with the proper mass fractions are dispersed into deionized water using high-speed stirring (for 1 hr.) followed by ultrasonic vibration (4 cycles-30 min period).

3. Error analysis and uncertainty

The experiments are conducted after calibrating all measuring instruments including PT-100 thermocouples, light sensors, solar meters, and mercury thermometer. Generally, in the experimental studies, the uncertainty analysis is performed with various methods to ensure the reliability of the obtained data. In this study, the uncertainty calculations are carried out based on the methodology presented elsewhere [33,34]. The maximum uncertainty of the data and accuracy of measuring instruments are reported in Table 3.

4. Results and discussion

In this experimental study, four different setups including the CSS (setup A), the CSS with an internal condenser (setup B), the CSS with an internal condenser and external thermoelectric coolers (setup C), and the CSS with an internal condenser and external thermoelectric linked to a solar tracker system (setup D) are investigated. Furthermore, the effects of deionized water and two mass fractions of MWCNTs/water nanofluid (0.15 and 0.3%) are studied on the performance of the setup D. In the following sections, the results of four different setups are compared to each other in terms of fresh-water production, feed-water temperature, average daily efficiency, and cost analysis.
4.1. Operation conditions

The variation of operating conditions including the solar irradiation on the CSS, the solar irradiation on the STS (maximum received solar irradiation), and the ambient temperature from 8:30 to 17:00 in the month of July at this location (Latitude: 36.2° and Longitude: 59.1°) during the experiments is displayed in Fig. 5. According to this figure, the maximum, minimum, and average of solar irradiation on the STS are nearly 1083 W/m², 776 W/m², and 999 W/m², respectively. The corresponding values for solar irradiation on fixed the CSS are 1016 W/m², 221 W/m², and 709 W/m², respectively. It is clear that the solar irradiation values for dual-axis STS are higher than those of the fixed system because of the change of the sun position in the sky. In addition, the average ambient temperature measured by a thermometer is 32.83 °C. As a result of the small differences in the inclination angle between the CSS and STS at the noon time, the maximum values of solar irradiations for the two systems are slightly different. In fact, to have a maximum solar radiation during a day in summer at the location of the experiment (Latitude: 36.2° and Longitude: 59.1°), the CSS angle was fixed at 30° facing towards the south. The STS, however, continuously follows the sun’s position. Right at the noon time the angle of the STS was about 35°. Note that, the values of outdoor operating conditions including ambient temperature and solar irradiation depend on the time and location of the experiments.

4.2. Selection of mass flow rates for Fresnel lens (HTF) and condenser (working fluid)

In this research, for the purpose of determining the appropriate flow rates of condenser working fluid and HTF, a series of experiments are performed on setups B and D, respectively. First, the variation of daily total fresh-water accumulation versus local time for the setup B for the condenser working flow rates of 30 L/hr, 50 L/hr, and 70 L/hr is shown in Fig. 6(a). It is evident from this figure that by increasing the flow rate of the condenser from 30 L/hr to 50 L/hr, the total water accumulation is enhanced by 32.9%. While this value for increasing the flow rate from 50 L/hr to 70 L/hr is just 10.5%. Therefore, based on a remarkable increase of fresh-water production for a flow rate of 50 L/hr, this flow rate is selected for the condenser working fluid for the rest of the experiments in this study. Next, for a fixed condenser flow rate of 50 L/hr, by varying the HTF flow rate from 10 L/hr to 30 L/hr, the daily total fresh-water accumulation with respect to the local time for setup D is illustrated in Fig. 6(b). Based on this figure, the total water accumulation for 10 L/hr, 20 L/hr and 30 L/hr are 5310 mL/(m²·day), 4190 mL/(m²·day), and 3700 mL/(m²·day), respectively. In fact, decreasing the HTF flow rate leads to an increase in feed-water temperature and improving the evaporation rate. Consequently, the 10 L/
As discussed in the previous sections, the selected flow rates for the condenser working fluid and the HTF are 50 L/hr and 10 L/hr, respectively. In this section, all studied setups are compared in terms of daily, nightly, and total fresh-water accumulation during the experiments. The variation of the hourly and daily fresh-water accumulation versus local time during the tests (8:00–17:00) for setup A-D are illustrated in Fig. 9(a) and (b), respectively. Moreover, Fig. 10 shows the daily (8:00–17:00), nightly (17:00–8:00) and total fresh-water accumulation (summation of daily total and nightly) for the four setups. Based on Fig. 9(a) and (b), it is clear that, although the feed-water temperature of setup A is higher than that of setups B and C, the hourly and daily total fresh-water of setup A is too low. This is because setup A does not include any cold surfaces as a condenser. It should be noted that both evaporation and condensation are important issues for fresh-water production. Increasing feed-water temperature without having a condensing surface has a negligible effect on CSS efficiency. Fig. 8(a) shows that trends of hourly fresh-water for setups B and C are approximately the same and the maximum rate happens at 13:30–14:30. However, the fresh-water of setup D is markedly enhanced by increasing the feed-water temperature with the aid of a heat exchanger and thermoelectric coolers are also added to the system (setup C), the average feed-water temperature is reduced to 48.95 °C. When three thermoelectric coolers are also added to the system (setup C), the average feed-water temperature is 47.21 °C. However, as compared to setups B and C, when a heat exchanger connected to the STS is added to the system (setup D), the feed-water temperature is increased by 9.87 °C and 11.61 °C, respectively. As shown in Fig. 8(b), by replacing the MWCNTs/water nanofluid with mass fractions of 0.15 and 0.3% instead of water, the average feed-water temperature will be increased by 2.23 °C and 5.69 °C, respectively. In fact, better thermal properties of nanofluid compared to water lead to more heat transfer rates between the HTF and feed-water, and a substantial effect on the performance and evaporation rate inside the solar still.
and Fresnel lenses. To increase the efficiency of the CSS, by adding an internal condenser with an inlet working fluid temperature of 20 °C (setup B) and three external thermoelectric coolers (setup C), the daily total fresh-water is enhanced nearly by 1716.76% and 1950%, respectively, compared to that of the CSS. The reason for the considerable improvement in fresh-water production is adding a condenser to the system in setups B and C. In order to increase the feed-water temperature of the CSS, setup D has a spiral heat exchanger linked to the STS with three linear Fresnel lenses as a concentrator. Due to a higher feed-water temperature and the existence of condenser, the amount of total fresh-water production of setup D is more than setups A-C. The amount of fresh-water produced up to 17:00’s clock for setup B, C, and D is 2180, 2460, and 5310 mL, respectively.

Atmosphere with a lower temperature at night (17:00–8:00) results in the release of the stored thermal energy and production of more fresh-water. According to Fig. 10, the amount of fresh-water produced in the night period is significantly lower than the amount produced during the day. This is because only the remaining water vapor in the system is condensed at night. As the amount of remaining vapor for setup B and C in nearly the same, the amount of nocturnal water for these setups are almost the same. For setup D which is equipped with the STS, the remaining vapor at the end of the day is significantly more, therefore, the nocturnal water production in this setup is more than that of the other setups. The nightly fresh-water produced in setup D is 910 mL more than that of setup A, 520 mL more than that of setup B, and 450 mL more than that of setup C. The results from Fig. 10 shows the total yield of fresh-water of setup D is 133.21% and 106.98% more than setups B and C, respectively.

4.5. Effects of the fluid type of HTF in setup D

Based on work by Muraleedharan et al. [31], using a nanofluid as HTF has an inevitable effect on fresh-water production of the CSS; therefore, in this section, the effects of various HTFs (deionized water, and MWCNTs/water) are investigated on the fresh-water production. Fig. 11(a) displays the variation of daily total fresh-water accumulation versus local time for setup D for various HTFs. Moreover, Fig. 11(b) shows the daily, nightly, and total yield (summation of daily and nightly) of fresh-water for setup D. The results in Fig. 11(a) shows that using of MWCNTs/water with mass fractions of 0.3 and 0.15% instead of deionized water can increase daily total fresh-water production by 31.6% and 11.84%, respectively. The reason for the fresh-water increase maybe because of the better thermal conductivity of the MWCNTs/water nanofluid in comparison with the deionized water. It means that the rate of absorbing heat from the collector and releasing heat to the feed-water in MWCNTs/water nanofluid is more than deionized water. Regarding the results presented in Fig. 11(b), it could be concluded that by summation of the daily and nightly fresh-water, the total yield for setup D is 6390 mL/(m²·day), 6990 mL/(m²·day), and 8150 mL/(m²·day) in the case of deionized water, MWCNTs/water 0.15%, and MWCNTs/water 0.3%, respectively. In addition, the values of nightly fresh-water prove that the feed-water temperature at the end of the day in the cases of nanofluid, as the HTF, is more than deionized-water which in turn leads to an increase of the fresh-water production at night. Adding nanoparticles in the base-fluid can increase the heat transfer rate and thereby enhancing the feed-water evaporation rate. As stated earlier, the main purpose of the current study is to enhance the performance of a CSS by employing a dual-axis solar tracking system. Thus, studying the effects of other mass fractions or other types of nanofluids is intended for future studies.

5. Energy analysis of different solar stills

In order to scrutinize the performance of considered solar stills, hourly and daily efficiencies should be calculated. In this section, based on the obtained experimental data, the system performance is studied.

The hourly efficiencies in cases of CSS and CSS linked to STS could be determined based on the following two equations, respectively:

$$
\eta_h = \frac{m \times h_g}{A \times l(t) \times \Delta t} \times 100
$$

$$
\eta_d = \frac{m \times h_g}{A \times l(t) \times \Delta t} \times 100
$$

Here, m and h_g are fresh-water distilled mass (kg) and the latent heat of feed-water (J/kg), and the received average solar irradiation. In Eq. (2), the term $(m \times c \times \Delta t)$ is the thermal energy provided by the STS in which, m, c, and Δt are the HTF mass flow rate (kg/s), HTF specific heat capacity (J/kg.K), and the difference between inlet/outlet temperatures (°C) in the STS. The Daily average efficiency of considered solar stills is defined as:

$$
\eta_D = \frac{\sum \eta_h}{n}
$$

Here, η_h and n are hourly efficiency and total working hours, respectively.

Fig. 12 shows the daily average efficiency of considered solar stills. From Fig. 9, it is found that due to increasing fresh-water production, setups B and C elevate the daily average efficiency. For instance, the daily average efficiencies obtained by Eq. (3) for setup A, B, and C are 1.48, 19.66, and 22.87%, respectively. Furthermore, it is found that the solar stills linked to the STS with MWCNT/water nanofluid 3% wt. gives the best result. In fact, MWCNTs nanoparticles due to their high thermal properties and their Brownian motion, particle migration and other unique heat transfer mechanisms in the pure base fluid (water) lead to enhancing system efficiency. For instance, by using the nanofluid with a mass fraction of 0.15 and 0.3%, the daily average efficiency is increased about 9.56 and 17.85%, respectively, compared to pure water.
6. Cost analysis of different solar stills

A cost analysis is carried out based on the presented method in Refs. [35,36] for three experimental setups considered in this paper. The total annual cost (TAC) for 1 L fresh-water production encompasses various parameters as:

\[
TAC = AFC + AMC - ASV
\]
(4)

in which, the AFC is annual first cost, AMC annual maintenance cost, and ASV annual salvage cost. The annual first cost can be stated as:

\[
AFC = CRF \times \text{Initial investment}
\]
(5)

in which, the CRF is the capital recovery factor calculated using:

\[
CRF = \frac{1}{(1 + i)^n} - \frac{1}{n}
\]
(6)

where \(n\) is the prospect period for the system (10 years) and \(i\) is the annual interest rate (20%). Based on Eq. (4), the AMC and system salvage value (S) is considered 30% of AFC and 10% of the initial cost:

\[
ASV = S \times SFF
\]
(7)

In the above equation, the SFF is the sinking fund factor calculated as:

\[
SFF = \frac{i}{(i + 1)^n} - 1
\]
(8)

By considering \(Q\) as the total volume of fresh-water produced, it can be considered that the cost of 1 L of distilled water is:

\[
1 \text{ L} = \frac{AFC}{Q}
\]
(9)

On the basis of outdoor experimental results, the fresh-water production of setups A, C, D (water), and D (nanofluid) are 0.29 L/day, 3.09 L/day, 6.39 L/day, and 8.15 L/day, respectively. Regarding Mashhad weather conditions, it is assumed that the considered solar stills run 320 days during the year (sunny and stable days). Therefore, the cost of fresh-water production from setup A, C, D (water), and D (nanofluid) is obtained as 0.24, 0.31, 0.039 and 0.034 $/liter, respectively. In Table 4, a comparison is given based on the above-mentioned results for different considered setups.

6.1. Results comparison

As stated previously, the focus of this study is on the effects of water and MWCNTs/water nanofluid as the HTFs on the performance of CSS equipped with a dual-axis STS and linear Fresnel lens. Different designs of solar stills have been investigated by various research groups in the literature and their results are compared with those of the present study in Table 5. The results for fresh-water yield, overall efficiency, and cost per liter of distilled water are provided in this table. The available experiments in the literature on CSS equipped with a dual-axis STS to enhance the performance are limited. It is clearly observed that the accumulated fresh-water yield values are low (\(\leq 5\) kg/m\(^2\)·day) in the works of Agrawal and Rana [37], Ketabchi et al. [38], Al-harahsheh et al. [39], Yousef and Hassan [40], Vigneswaran [41], and Rajaseenivasan and Murugavel [42]. Moreover, it is found that the solar stills by Rajesh et al. [43], Morad et al. [44] and Hassan [45] have low efficiency (\(\leq 30\)%). As shown in Table 5, although the proposed solar still designs by Wu et al. [46] lead to a suitable value for accumulated fresh-water yield during a day, their results are not analyzed from the efficiency/cost viewpoints. The fresh-water productivity and efficiency of the present study (nanofluid-based solar still with STS) are higher than those given in Refs. [47,48].

7. Conclusion

In this research, the idea of connecting the CSS to STS equipped with Fresnel lenses was experimentally investigated. Four various setups including; the CSS, the CSS with an internal condenser; the CSS with an internal condenser and external thermoelectric coolers; and the CSS with a dual-axis STS equipped with Fresnel lenses were designed and fabricated. A series of experiments were first performed to select appropriate flow rates of condenser working fluid and HTF. Next, the effects of deionized water, MWCNTs/water nanofluid with two mass fractions of 0.15 and 0.3% as the HTF were studied on fresh-water productivity and efficiency of various operating conditions were compared to each other. The entire experiments were executed on non-cloudy and stable days of June 2019.

Based on this study, the following conclusions are made:

- From a series of experiments, the condenser working fluid and HTF flow rates were selected as 50 L/hr and 10 L/hr, respectively.
- Increasing feed-water temperature without adding a condenser had a negligible effect on fresh-water productivity.
- Adding an internal condenser and simultaneous internal condenser and thermoelectric coolers as condenser surface enhanced total fresh-water production approximately by 844 and 965%, respectively, compared to that of the CSS.
- The daily, nightly, and total yield of fresh-water presented solar still (the CSS with STS) with deionized water as HTF compared to that of the CSS was increased by 5190, 910, and 6100 mL/(m\(^2\)·day), respectively.
- For the CSS with the STS system, using MWCNTs/water nanofluid 0.15 and 0.3% wt. enhanced the total fresh-water productivity by 9.38% and 27.54%, respectively, compared to that of the deionized water.
- The cost of fresh-water production from setup A, C, D (water), and D (nanofluid) was obtained as 0.24, 0.31, 0.039 and 0.034 $/liter, respectively.
- By increasing the nanofluid mass fraction from 0.15% to 0.3%, the daily average efficiency was increased about 9.56 and 17.85%, respectively, compared to pure water.
Table 5
Comparison of available experimental results with those of the present study in terms of design, accumulated yield, overall efficiency, and cost.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Design of experimental setup</th>
<th>Accumulated yield (kg/m²/day)</th>
<th>Overall efficiency (%)</th>
<th>Cost per liter of distilled water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wu et al. [46]</td>
<td>Effect of linear Fresnel lens on solar still performance</td>
<td>15.16</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Rajesh VR et al. [43]</td>
<td>Solar still equipped with a spot Fresnel lens</td>
<td>7</td>
<td>24</td>
<td>N/A</td>
</tr>
<tr>
<td>Al-barahsheh et al. [39]</td>
<td>Solar still equipped with external solar collector</td>
<td>4.3</td>
<td>N/A</td>
<td>0.05</td>
</tr>
<tr>
<td>Morad et al. [44]</td>
<td>Solar still equipped with a solar collector</td>
<td>10.06</td>
<td>80.6</td>
<td>N/A</td>
</tr>
<tr>
<td>Kabeel and Abdelgaied [47]</td>
<td>Solar still utilizing paraffin wax as a thermal energy storage</td>
<td>7.54</td>
<td>N/A</td>
<td>0.03</td>
</tr>
<tr>
<td>Yousif and Hassan [40]</td>
<td>Solar still with porous media in the water basin</td>
<td>3.68</td>
<td>36.9</td>
<td>0.05</td>
</tr>
<tr>
<td>Rajaseenivasan and Murugavel. [49]</td>
<td>Effect of single and double basin slope on performance of solar still</td>
<td>4.75</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nazari et al. [48]</td>
<td>Solar still coupled with thermoelectric cooler</td>
<td>5.63</td>
<td>N/A</td>
<td>0.0252</td>
</tr>
<tr>
<td>Muraldeeharan et al. [31]</td>
<td>Effect of Al₂O₃/water nanofluid and linear Fresnel lens on the performance of a solar still</td>
<td>12.19</td>
<td>53.55</td>
<td>0.0197</td>
</tr>
<tr>
<td>Hassan [45]</td>
<td>Solar still with a parabolic collector</td>
<td>8.53</td>
<td>22.96</td>
<td>0.0207</td>
</tr>
<tr>
<td>Ketabcib et al. [38]</td>
<td>Solar still linked to a external flat plate reflectors</td>
<td>4.2</td>
<td>36.7</td>
<td>N/A</td>
</tr>
<tr>
<td>Agrawal and Rana [37]</td>
<td>Conventional solar still</td>
<td>6.2</td>
<td>41.99</td>
<td>N/A</td>
</tr>
<tr>
<td>Vigneswaran et al. [41]</td>
<td>Solar still coupled with phase change material as a heat energy storage</td>
<td>4.4</td>
<td>46.29</td>
<td>N/A</td>
</tr>
<tr>
<td>Present study</td>
<td></td>
<td>8.15</td>
<td>64.17</td>
<td>0.034</td>
</tr>
</tbody>
</table>

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The Research of The Corresponding Author is supported by a Grant from the Ferdowsi University of Mashhad (1/49612).

References

