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Abstract
The objective of this paper is to present a novel nonlocal strain gradient formulation 
for dynamic analysis of microgyroscopes. Taking into account the effect of nonlocal 
and gradient strains, the coupled equations of motion and the corresponding bound-
ary conditions are derived using the Hamilton’s principle. Reduced order models for 
electrostatic and electrodynamic performance of the gyroscope are presented based 
on Galerkin projection technique. First, the influence of nonlocal and length-scale 
parameters on the electrostatic instability of the microgyroscope are investigated and 
it will be demonstrated that for electrostatic loading, the pull-in instability is delayed 
with decreasing the nonlocal and/or increasing the length-scale parameters. Then 
the equations governing the electrodynamic performance of the system are solved 
and the time responses and phase diagrams along to the drive and sense directions 
are presented. The stable amplitude and instability margin of the gyroscope under 
electrodynamic loading will be demonstrated to be subjected to nonlocal and length-
scale parameters. Finally the frequency response of the gyroscope along the sense 
and drive directions are scrutinized. Accordingly, it will be shown that the nonlo-
cal and length-scale values affect the near-resonance amplitude of vibration signifi-
cantly. Furthermore, altering the values of nonlocal and length-scale parameters can 
change the distance between two peak frequencies as well as their absolute values.
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1  Introduction

Microelectromechanical gyroscopes have found numerous applications such as 
in inertial navigations, automotive engineering, virtual reality, robotics, video 
camera stabilization and many other instances [1–10]. Among various categories 
of microgyroscopes, suspended vibratory gyroscopes are of special importance 
thanks to suitability for fabrication using micromachining processes. Microma-
chined beam gyroscopes comprise an oscillating mass suspended over an elas-
tic beam. When the gyroscope body vibrates along the lateral axis (named drive 
direction) in a rotational frame, the Coriolis effect gives rise to a secondary 
oscillation perpendicular to the primary one (called the sense direction) with an 
amplitude proportional to the rotational velocity. Consequently, the rate of angu-
lar velocity can be measured via sensing the secondary oscillatory motion.

Beam microgyroscopes are excited via electrostatic, electromagnetic or piezo-
electric actuation schemes along the drive direction. The sensing procedure along 
the sense direction can also be accomplished using electrostatic, electromagnetic, 
piezoelectric, optical, capacitive, or piezoresistive principles. Fast response and 
simplicity of electrostatic actuation makes it preferable for both drive and sense 
applications [11]. However, there would be an upper limit for electrical actuation 
due to pull-in instability. Accordingly, pull-in phenomenon has been extensively 
investigated in prior arts [12–21].

Studying small-scale structures entails incorporating special features into 
the mathematical model which cannot be provided using classical approaches. 
Size-dependent behavior is among the most remarkable characteristics that was 
observed in micron and sub-micron structures [22]. Accordingly, higher-order 
continuum theories were presented to improve the accuracy of analytical model-
ling and capture the size dependent behavior of microstructures. The nonlocal 
and strain gradient theories are two prominent higher-order approaches that have 
drawn considerable attention during recent years.

The nonlocal elasticity theory, proposed by Eringen and Edelen [23] and Erin-
gen [24], assumes the stress at a certain point of an elastic body as a function of 
strains at all points in the continuum. In recent years several studies have been 
dedicated to investigate the behavior of small-scale structures in the context of 
nonlocal elasticity theory. In the area of beam structures, Reddy and El-Borgi 
[25], formulated the problem of Euler–Bernoulli and Timoshenko microbeams 
for the case of moderate rotations using nonlocal elasticity theory which were 
then solved using a nonlinear finite element model. Rahmani and Pedram [26], 
investigated dynamics of thick nanobeams made of functionally graded materi-
als based on the nonlocal elasticity. Najar et al. [27] studied the small scale effect 
on the nonlinear static and dynamic response of a capacitive nanoactuators sub-
jected to a DC voltage. They included the effect of residual stresses, initial deflec-
tion, von-Kármán nonlinear strains and intermolecular forces such as the Casimir 
and von der Waals in their model. Kivi et al. [28] investigated the bifurcation of 
nano-beams utilizing nonlocal elasticity. Ebrahimi and Salari [29, 30] modelled 
thermal buckling and vibration analysis of functionally graded nanobeams using 
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nonlocal elasticity approach. Nejad et al. [31] presented a solution for the buck-
ling problem of Euler–Bernoulli nano-scale beams made of two-directional func-
tionally graded materials. The nonlocal elasticity has also been employed to study 
post buckling vibration analysis of piezoelectric Timoshenko nanobeams [32]. In 
this study, the beam was considered under axial compression force, an applied 
voltage and a uniform temperature change and the generalized quadrature method 
was utilized to solve the resulted equations.

On the other hand, the strain gradient theory describes the potential energy of a 
continuum as a function of strain tensor and its gradients. Primary form of the gradi-
ent theory was formulated by Mindlin and Tiersten [33], Aifantis [34] and Toupin 
[35] in which four size-dependent constants were added to the constitutive equa-
tions. Lam et al. [36] modified the initial formulation and presented a more compact 
format which included three additional length-scale parameter to the strain energy 
of a deformable body. As a result, the size effect can be acceptably captured in the 
mathematical model and the conformity of analytical predications and experimental 
findings is be improved remarkably. Accordingly, the strain gradient theory has been 
extensively utilized to study the mechanical behavior of micro structures. As some 
examples, static and vibration analysis of Euler–Bernoulli [37, 38], Timoshenko 
[39–41], third-order shear deformable [42] and Reddy–Levinson beam [43], non-
linear large deformation [44], pre-deformed [45] and curved microbeams [46], func-
tionally graded [47, 48], viscoelastic [49, 50], piezoelectric microbeams [51–53], 
thermal analysis [54], free and forced vibration [38, 55] and buckling analysis of 
beams in micro-scale [56, 57], carbon nanotubes [58], pull-in instability of microbe-
ams [59] and random vibration analysis of piezoelectric microbeams [60] as well as 
many other examples witness the superiority of strain gradient theory in providing 
accurate predictions for micro/nano structure modelling.

Application of the nonlocal elasticity to some problems leads to paradoxes. For 
example, in bending analysis of the Euler–Bernoulli cantilever nanobeams subjected 
to a point load, the results of nonlocal and classical theories are identical [61, 62]. 
Furthermore, the nonlocal elasticity can only capture the softening effect while stiff-
ness enhancement is also reported experimentally in the existed literature [36, 63]. 
The strain gradient theory on the other hand incorporates the stiffening effect into its 
formulation [60, 64]. This implies that the nonlocal and strain gradient formulations 
define two different size dependent behaviors. Accordingly, the two theories was 
combined into a compact theory called nonlocal strain gradient theory by the work 
of Lim et al. [65] in order to establish a more comprehensive framework for micro 
systems analysis. According to this new formulation, the stress at any point of a con-
tinuum is a function of non-gradient nonlocal and higher-order strain gradient stress 
fields. In this regard, two additional higher-order parameters, one capturing the non-
local and one accounting for the gradient stress field, are incorporated into the con-
stitutive equations. It was shown that for beam structures, the results of nonlocal 
strain gradient theory are in excellent accordance with that of molecular dynamic 
simulations. Consequently, the mechanical behavior of micro/nano-structures have 
been re-examined using the nonlocal strain gradient theory. To mention some of 
available arts, Li and Hu [66] investigated size dependent effects on the post-buck-
ling behaviors of nonlinear Euler–Bernoulli beams and dependence of buckling load 
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on the nonlocal and length-scale parameters. Şimşek [67] presented a nonlinear free 
vibration analysis of a functionally graded nanobeams using the nonlocal strain gra-
dient theory. Bending and free vibration analysis of nonlocal strain gradient func-
tionally graded (FG) beams was investigated by Li and Hu [68] and Fang et al. [69] 
respectively. Li et al. [70] proposed a nonlocal strain gradient model for longitudi-
nal vibration of nano-rods. Ebrahimi and Barati [71] analyzed buckling problem of 
size-dependent shear-deformable curved FG nanobeams using the concept of nonlo-
cal strain gradient theory. Xu et  al. [72] formulated the buckling of elastic beams 
by means of the nonlocal strain gradient approach. Farajpour et al. [73] studied the 
effects of the nonlocal and material length scale parameters on the buckling behav-
ior of orthotropic nanoplates using the nonlocal strain gradient theory.

The abovementioned review reveals that the nonlocal strain gradient theory has 
been successfully employed in formulating the mechanical behavior of miniatur-
ized systems and continues to spread through different micro/nano devices analysis. 
Nevertheless, as far as the authors know, electromechanical performance of micro-
gyroscopes based on the nonlocal strain gradient theory has not been addressed 
yet. Accordingly, this paper presents a new nonlinear dynamic model for doubly-
clamped microgyroscopes in the context of nonlocal strain gradient theory. The 
major novel contributions of this paper are: (1) develop a nonlocal strain gradient 
model for doubly-clamped microgyroscopes for the first time and (2) demonstrate 
and investigate the influence of nonlocal and length-scale parameters on the electro-
static, stability and electrodynamic response of the gyroscope which were not con-
sidered in previous related arts.

2 � Nonlocal Strain Gradient Theory

According to the nonlocal strain gradient theory, the strain energy of a linear elastic 
isotropic continuum is defined as [65]

In this equation �ij is the classical strain. Also �ij and �(1)

ij
 are the nonlocal stress 

and higher-order nonlocal stress tensors defined as

In Eqs. (2) and (3), Cijkl are elements of fourth-order elasticity tensor, lm is the 
material length-scale parameter taking the significance of strain gradient stress field 
into consideration and e0a and e1a are nonlocal parameters representing the effect 

(1)U =
1

2 ∫
V

(
�ij�ij + �

(1)

ij
∇�ij

)
dV

(2)�ij = Cijkl ∫
V

�0
(||x − x�||, e0a

)
��
kl
dV

(3)�
(1)

ij
= l2

m
Cijkl ∫

V

�1
(||x − x�||, e1a

)
∇��

kl
dV
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of nonlocal elastic stress field. In addition, �0
(|x − x�|, e0a

)
 and �1

(|x − x�|, e1a
)
 

are nonlocal functions corresponding to classical and strain gradient stress tensors, 
respectively. The total stress tensor, which includes both nonlocal and strain gradient 
stress tensors is then expressed as

in which ∇ = �∕�x is the nabla operator.
Considering e0 = e1 = e and supposing that the nonlocal functions satisfy the 

conditions given in [24] one can say

For one-dimensional structures such as beams, �xx would be the only nonzero 
strain element and ∇2 is the Laplacian operator. Consequently, the general constitu-
tive equation corresponding to nonlocal strain gradient theory becomes [67]:

3 � Mathematical Modelling

Schematic view of a micro-gyroscope with length L , width b and thickness h 
clamped at both extremes and rotating at Ω̂ along its longitudinal axis is shown in 
Fig. 1. A concentrated mass M is attached at its middle point on which the electrical 
actuation forces are applied. The sense and drive directions are denoted as ẑ  and ŷ , 
respectively.

(4)tij = �ij − ∇�
(1)

ij,m

(5)
[
1 − (ea)2∇2

]
�ij = Cijkl�kl

(6)
[
1 − (ea)2∇2

]
�
(1)

ij
= l2

m
Cijkl∇�kl

(7)
[
1 − (ea)2∇2

]
txx = E

(
1 − l2

m
∇2

)
�xx

Fig. 1   Schematic view of a doubly-clamped microgyroscope
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The displacement field of the gyroscope subjected to coupled lateral-transverse 
loads can be defined using the Euler–Bernoulli beam theory as

where û , v̂ and ŵ are axial, lateral and transverse deflections of the beam and u1 , u2 
and u3 are total displacement of a material point of the beam fibers along x̂ , ŷ and 
ẑ  directions, respectively. Therefore, the nonzero strain component can be obtained 
using the von-Kármán relation as [74]

which gives the nonzero stress component as

Simplifying the second term of the strain energy variation in Eq. (1) using 
integration by-part, one can get

Defining the following classical and nonlocal stress resultants

Equation (11) is further simplified to

The kinetic energy of the gyroscope can be decomposed into translational 
and rotational parts. Defining an inertial reference frame C

(
x̂ŷ̂z

)
 and a rotational 

(8)u1 = û − z
𝜕ŵ

𝜕x̂
− y

𝜕v̂

𝜕x̂
, u2 = v̂, u3 = ŵ

(9)𝜀xx =
𝜕û

𝜕x̂
− z

𝜕2ŵ

𝜕x̂2
− y

𝜕2v̂

𝜕x̂2
+

1

2

(
𝜕v̂

𝜕x̂

)2

+
1

2

(
𝜕ŵ

𝜕x̂

)2

(10)𝜎xx = E

[
𝜕û

𝜕x̂
− z

𝜕2ŵ

𝜕x̂2
− y

𝜕2v̂

𝜕x̂2
+

1

2

(
𝜕v̂

𝜕x̂

)2

+
1

2

(
𝜕ŵ

𝜕x̂

)2
]

(11)

�U = ∫
V

�
�xx��xx − ∇�(1)

xx
��xx

�
dV +

⎡⎢⎢⎣∫A
�(1)
xx
��xxdA

⎤
⎥⎥⎦

�����
L

0

= ∫
V

txx��xxdV +
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L

0
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(
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(z)
c
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c

)
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(z)
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𝜕

𝜕x̂

(
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𝜕
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𝜕ŵ

𝜕x̂

)
𝛿ŵ +
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𝛿ŵ +

𝜕2M(y)
c

𝜕x̂2
𝛿v̂

)
dx̂

+
{
Nc

𝜕v̂

𝜕x̂
𝛿v̂ + Nc

𝜕ŵ
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𝛿ŵ −

(
M(z)

c

𝜕𝛿ŵ
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frame C′
(
x̂′ŷ′ẑ′

)
 , the displacement components of a generic point P when moving 

to the deflected position P′ can be described as (see Fig. 2)

Accordingly, the velocity of a point in the deformed state can be described as

Using Eq. (15), the translational kinetic energy of the beam is expressed as

where � denotes the Dirac delta function.
To determine the rotational kinetic energy, two other reference frames are defined 

which account for rotation of the beam cross section about coordinate axes. Refer-
ence frame D

(
x1y1z1

)
 with unit vectors 

(
��⃗i1, ��⃗j1, ��⃗k1

)
 is considered as a result of rotat-

ing frame C′ by angle � about ẑ′ . The fourth reference frame is called D′
(
x′
1
y′
1
z′
1

)
 

with unit vector 
(
��⃗i′
1
, ��⃗j′
1
, ��⃗k′

1

)
 and is obtained by rotating frame D with angle � about y1 

axis. Therefore, the angular velocity of the microgyroscope is stated in terms of D′ 
unit vectors as

Now replacing the small rotation angles as � = �v∕�x and � = −�w∕�x , the rota-
tional kinetic energy of the gyroscope is resulted as

(14)R⃗ = rP i⃗ + v̂ j⃗ + ŵ k⃗

(15)
(
dR⃗

dt̂

)

C

=

(
dR⃗

dt̂

)

C�

+ Ω̂ × R⃗ =
(
𝜕v̂

𝜕t̂
− ŵ Ω̂

)
+
(
𝜕ŵ

𝜕t̂
+ v̂ Ω̂

)

(16)

T
T
=

1

2

L

∫
0

{
(𝜌A +M𝛿(x̂ − L∕2))

[(
𝜕ŵ

𝜕t̂

)2

+
(
𝜕v̂

𝜕t̂

)2

+ Ω̂2
(
ŵ
2 + v̂

2
)
+ 2Ω̂

(
v̂
𝜕ŵ

𝜕t̂
− ŵ

𝜕v̂

𝜕t̂

)]}
dx̂

(17)

CΩ⃗D
�

=

(
Ω̂ cos𝜓 cos𝜙 −

𝜕𝜙

𝜕t̂
sin𝜓

)
i⃗
�

1
+

(
𝜕𝜙

𝜕t̂
− Ω̂ sin𝜙

)
j⃗
�

1
+

(
Ω̂ sin𝜓 cos𝜙 +

𝜕𝜙
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cos𝜓

)
k⃗
�

1

Fig. 2   Displacement components of a generic point of the microgyroscope
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In has to be noted that in Eq. (18), the assumption of Jx�
1
= Jy�

1
= Jz�

1
= J is 

employed. The total kinetic energy of the gyroscope is then expressed as 
T = TT + TR . Finally, variation of the works done by external loads including elec-
trical actuation in the transverse and lateral directions as well as a distributed vis-
cose damping are written as

where � is the dielectric constant of the gap medium and w0 and v0 (as shown in 
Fig. 1) are the gap distances of the drive and sense capacitors, respectively. Moreo-
ver, Aw and Av denote the areas of the drive and sense capacitors, respectively.

Employing the Hamilton’s principle as follows,

equations governing the dynamic behavior of the system are resulted as

(18)
T
R
=

1

2

L

∫
0

{
J

((
𝜕2ŵ

𝜕x̂𝜕t̂

)2
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)2
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+ JΩ̂2
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𝜕ŵ

𝜕x̂

)2

+
(
𝜕v̂

𝜕x̂

)2
)
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𝜕ŵ
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)}
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𝜕t̂2
+

𝜕Nc

𝜕x̂
= 0

(22)

𝜕

𝜕x̂

(
Nc

𝜕v̂

𝜕x̂

)
+

𝜕2M
(y)
c

𝜕x̂2
+
(
𝜌A +M𝛿

(
x̂ −

L

2

))(
𝜕2v̂

𝜕t̂2
− Ω̂2v̂ − 2Ω̂

𝜕ŵ
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Also, the boundary conditions at x̂ = 0 and x̂ = L are briefed in the Appendix I.
Utilizing Eq. (7) and the definition of force and moment resultant given in Eq. 

(12), the following relations are obtained

in which

It has to be noted that in deriving Eqs. (24)–(26), the fact that 
∫
A

ŷdA = ∫
A

ẑdA = 0 are employed.

Neglecting the axial inertia in Eq. (21) and inserting the outcome into Eq. (24), 
one can get [67]

which assuming 𝜕Nc∕𝜕x̂ = 0 leads to

In this equation, C is the integration constant. Integrating Eq. (29) 
over the microbeam length and using the boundary conditions fixed ends 
û(0) = û(L) =

𝜕2û

𝜕x̂2
(0) =

𝜕2û

𝜕x̂2
(L) = 0 for the fixed ends, the axial force Nc is derived 

as [75]

Now substituting Nc , M
(y)
c  and M(z)

c
 from Eqs. (30), (25) and (26) into Eqs. (22) 

and (23), equations of motion take the form
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Defining the following normalized variables

the normalized equations of motion become

(31)
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𝜕x̂2𝜕t̂2
−

̇̂
Ω
𝜕2v̂

𝜕x̂2

��

(33)x =
x̂

L
, v =

v̂

v0
, w =

ŵ
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where

4 � Electrostatic Performance of the Microgyroscope

In this section, quasi-static behavior of the microgyroscope is investigated. To 
this end, the time-dependent terms of the equations of motion (i.e. the expressions 
including time derivatives) as well as the AC component of the loading must be 
removed. As a result, equations governing the electrostatic motion of the gyroscope 
take the form

To obtain the reduced-order model, the deflection components v and w are 
expanded in series form as

(35)
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where �i(x) denotes the i th mode shape of the beam and pi and qi signify the con-
tribution of each mode in electrostatic response. Substituting Eq. (39) into Eqs. (37) 
and (38) and performing the Galerkin projection leads to

where prime represents d∕dx.
To examine the performance of the system in quasi-static loading regime, a typical 

microgyroscope with specifications given in Table 1 in considered. The electrostatic 
response of the gyroscope for different values of nonlocal parameter is depicted in 
Fig. 3. The solid and dashed lines represent the stable and unstable solutions respec-
tively. The figure reveals that by increasing the parameter ea , the pull-in instability 
occurs in smaller values of voltages. Also the maximum achievable amplitude of the 
gyroscope is further restricted.

The significance of length-scale parameter lm in the electrostatic response of the sys-
tem is highlighted in Fig. 4. This figure demonstrates that as the length-scale param-
eter is increased, the pull-in phenomenon shifts towards higher voltage values. In other 
words, employment of materials with higher length-scale values for the gyroscope, can 
extend the stability margin of the system and increase the instability voltage values.

(39)
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5 � Electrodynamic Performance of the Microgyroscope

The electrodynamic performance of the microgyroscope is specified when the mid-
point mass is subjected to 

(
VDC + VAc cosΩt

)
 along the drive direction and VDC in 

the sense direction. To derive a reduced order model for the dynamic behavior of the 
gyroscope, its deflection along the sense and drive directions are stated as

where pi(t) and qi(t) represent the temporal generalized coordinates capturing the 
contribution of each mode in the dynamic response. Substituting Eq. (42) into the 
governing equations in (34) and (35) along with utilizing the Galerkin projection 

(42)

v(x, t) =

M∑
i=1

�i(x)pi(t)

w(x, t) =

N∑
i=1

�i(x)qi(t)

Table 1   Geometric and 
mechanical properties of the 
gyroscope under study

Parameter Value

Gyroscope length (μm) 800
Gyroscope width (μm) 2.8
Gyroscope thickness (μm) 2.8
Gap distance (μm) 2
Electrode area (μm2) 392
Middle mass (kg) 7.2128 × 10–12

Young’s modulus (GPa) 160
Mass density (kg/m3) 2300

Fig. 3   Normalized electrostatic 
response of the microgyroscope 
for different nonlocal param-
eters and length-scale value 
l
m
= 0.01L
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technique along the beam length, the reduced order model corresponding to the 
electrodynamic operation of the gyroscope is obtained as

where prime and dot denote derivative with respect to the normalized variables x 
and t , respectively. Employing N = M = 1 in Eqs. (43) and (44) as it was exten-
sively used in the prior arts [45, 60, 76–78], the resulted equations can be solved 
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Fig. 4   Normalized electrostatic 
response of the microgyro-
scope for different length-scale 
parameters and nonlocal value 
ea = 0.2
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using the fourth-order Runge Kutta method to determine the temporal response of 
the gyroscope.

5.1 � Time Response

For the system described in Table 1, the time history response in the sense and drive 
directions are illustrated in Fig. 5. According to the figure, the response of the beam 
in both directions is characterized as a combination of a small and a high frequency 
component. Since the cross section area of the gyroscope and the actuation surface 
are the same along the sense and drive directions, these two frequencies are similar. 
Additionally, �∕2 phase difference exists between the time response in the sense and 
drive directions.

To further scrutinize the time response of the system, the phase trajectories of 
the gyroscope in a longer time interval are portrayed in Fig. 6. As the figure shows, 
starting from specific initial conditions (which is zero in the presented diagram), the 
amplitude of vibration increases until it reaches a limit cycles which demonstrate 
that the time response of the gyroscope is stable.

The influence of DC voltage on the temporal response of the gyroscope is 
illustrated in Fig. 7. According to the figure, increasing the DC voltage changes 
the displacement components as well as their time derivatives along the sense 
and drive directions to larger values. As long as the input voltage remains within 
the operational stability limit, the trajectory maintains its closed nature which is 
an indication of stable performance. However, if VDC exceeds a specific value of 
16.8V (denoted as dynamic pull-in voltage), the beam becomes unstable and col-
lapse onto the fixed electrodes. In such circumstance, the phase trajectory do not 
follow a stable closed path.

The dependence of vibration along the drive direction on the AC voltage is 
also highlighted in Fig. 8. Similar to the previous diagram, for some AC voltages 
within the stabile zone, the gyroscope performance is stable. But, allowing VAC to 
surpass particular value, the structural restoring force cannot resist the electrody-
namic attraction and the beam becomes unstable.

The influence  of the length-scale and nonlocal parameters on the time response 
of the gyroscope in its stable regime is displayed in Fig.  9. Part (a) of the figure 
shows that by increasing the effect of nonlocality, the velocity amplitude in the 
sense direction declines while deflection v(t) get increased. On the other hand, as 
spotlighted in part (b), while the length-scale parameter raises up, the amplitude 
of deflection and velocity along the sense direction further restricted. This implies 
that taking advantage of materials with higher lm values in design and construction 
of microgyroscopes can effectively reduce the operational limit of the system and 
diminish the possibility of pull-in occurrence.

The temporal response of the gyroscope in the verge of instability are plotted in 
Fig. 10 for different nonlocal and length-scale values. According to this figure, for a 
constant combination of DC and AC loading, the beam can operate in stable region 
for some small values of ea and lm . Nonetheless, by increasing the nonlocal and/or 
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decreasing the length-scale variables while keeping DC and AC voltages unchanged, 
the system loses its stability and continues its motion until it collapses onto the fixed 
electrode.

5.2 � Frequency Response

In this section, the frequency responses of the gyroscope along the sense and 
drive directions in the vicinity of fundamental natural frequency of the system are 
studied. In order to analyze the role of nonlocal an length-scale parameters on the 
frequency response, the previously described gyroscope (Table 1) is considered 
and VDC = 8V , VAC = 0.1V , Ω̂ = 100 rad∕s and 

⋅

Ω̂ = 0 is adopted throughout the 
section.

Figures  11 and 12 present the frequency response along the sense and drive 
directions respectively, for different ea values. Using the data provided in these 
figures, the following inferences can be resulted:

Fig. 5   Normalized time domain 
response of the gyroscope in the 
sense and drive directions

Drive Sense

(a) (b)

(
) (
)

Fig. 6   Representation of limit cycle along: a sense and b drive directions under combined AC-CD load-
ing
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•	 Harmonic excitation in the drive direction engenders similar response in the 
sense direction due to gyroscopic effect of the Coriolis force.

•	 In excitation frequencies away enough from the fundamental frequency, the 
more the nonlocal parameter values, the more the amplitude of vibration.

•	 Near the fundamental frequency of the system, the influence of ea is reverse. 
As Figs. 11 and 12 demonstrate, in these areas smaller ea values leads to lower 
vibration amplitudes.

•	 By increasing the nonlocal parameter, the dynamic amplification takes place 
in smaller excitation frequencies. More specifically, by increasing the value 
of ea , both peaks of the diagram are shifted toward smaller frequency values. 
As a consequence, the nonlocal variable plays a dual role in the frequency 
response of the system which should be carefully considered in design proce-
dure.

The dependence   of the frequency response on the length-scale parameters is 
also characterized in Figs. 13 and 14. According to these figures:

•	 The amplitude of vibration is reduced by increasing the length-scale param-
eter. This fact is true both for excitation frequencies away from and near the 
gyroscope fundamental frequency.

Fig. 7   Phase diagram cor-
responds to the electrodynamic 
performance of the gyroscope 
for different DC voltages with 
solid and dashed lines represent 
the response in sense and drive 
directions respectively (with 
V
AC

= 0.5V  , l
m
= 0.01L and 

ea = 0.2)

Fig. 8   Phase diagram cor-
responds to the electrodynamic 
performance of the gyroscope in 
the drive direction for different 
AC voltages (with VDC = 12V , 
lm = 0.01L and ea = 0.2)
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•	 Near the fundamental frequency, as lm increases, the maximum amplitude along the 
sense and drive directions become smaller and the dynamic amplification occurs in 
higher frequencies. Furthermore, the two amplification frequencies become closer.

 

(a) (b)

(
)

(
)

= 0.2
= 0.3
= 0.4
= 0.5

= 0.01
= 0.10
= 0.15
= 0.20

Fig. 9   Phase diagram corresponds to the stable motion along the sense direction with V
DC

= 10V  and 
V
AC

= 0.5V  : a the significance of nonlocal parameter ea for l
m
= 0.01L ; b the significance of length-

scale parameter l
m
 for ea = 0.2

(a) (b)

Fig. 10   Phase diagram corresponds to the unstable motion along the sense direction V
AC

= 0.5V  : a the 
significance of nonlocal parameter ea for l

m
= 0.01L and V

DC
= 10V  ; b the significance of length-scale 

parameter lm for ea = 0.4 and V
DC

= 14V
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6 � Conclusions

In this paper, a nonlocal strain gradient formulation for doubly clamped microgyro-
scopes was developed to simultaneously incorporate the effects of nonlocal and gradi-
ent strains into the mathematical model in order to improve the accuracy of mathemati-
cal predictions. The governing equations corresponding to the lateral vibration of the 
microgyroscope along the sense and drive directions as well as the associated bound-
ary conditions were developed employing energy approach which were then used to 
derive a reduced-order model for the system. By investigating the electrostatic behavior 
of the gyroscope, it was demonstrated that the maximum static deflection and maxi-
mum allowable voltage are affected by the values of higher-order variables. In better 
words, for smaller values of nonlocal parameter ea or higher values of the length-scale 
parameter lm , pull-in instability occurs at higher voltage values and the stable operating 
ranger would be broader. Temporal response of the gyroscope is then obtained by solv-
ing the dynamic reduced order model. It was demonstrated that the microgyroscope 
has a stable limit cycle in both sense and drive directions, but by increasing the DC or 
AC voltages beyond specific values, the gyroscope response become unstable. Further-
more, stability of the gyroscope was shown to be subjected to the nonlocal and length-
scale parameters so that increasing the length-scale or nonlocal values can increase the 

Fig. 11   Near resonance 
frequency response of the 
microgyroscope in the sense 
direction for different nonlocal 
parameters

Fig. 12   Near resonance fre-
quency response of the microgy-
roscope in the drive direction for 
different nonlocal parameters
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amplitude of gyroscope response and finally leads to instability of the system. Finally, 
the gyroscope frequency responses were presented and the role of nonlocal and length-
scale parameters were investigated. As the results of this section clarified, these two 
important design parameters can have different impacts near and away from the gyro-
scope fundamental frequency. The maximum amplitude near resonance is increased by 
decreasing ea and/or lm values. Furthermore, the frequency corresponds to the maxi-
mum amplitude approaches the fundamental frequency of the gyroscope by decreasing 
ea or increasing the lm values. The results of this study can be employed to design and 
tune microgyroscopes for operating within a desirable stable range or satisfying spe-
cific dynamic performance.

Appendix I: Boundary Conditions

(I-1)𝛿û = 0 or Nc = 0

(I-2)𝛿
(
𝜕û

𝜕x̂

)
= 0 or Nnc = 0

Fig. 13   Near resonance 
frequency response of the 
microgyroscope in the sense 
direction for different length-
scale parameters

Fig. 14   Near resonance fre-
quency response of the microgy-
roscope in the drive direction for 
different length-scale parameters
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