On Contractibility of Matrix Algebras
Mohammad Sal Moslehian & Assadollah Niknam

To cite this article: Mohammad Sal Moslehian & Assadollah Niknam (2002): On Contractibility of Matrix Algebras, Quaestiones Mathematicae, 25:3, 327-332
To link to this article: http://dx.doi.org/10.2989/16073600209486020

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
ON CONTRACTIBILITY OF MATRIX ALGEBRAS

MOHAMMAD SAL MOSLEHIAN
Dept. of Maths., Ferdowsi University, Mashhad 91775, Iran.
E-Mail msalm@math.um.ac.ir

ASSADOLLAH NIKNAM
Dept. of Maths., Ferdowsi University, Mashhad 91775, Iran.
E-Mail niknam@math.um.ac.ir

Abstract. We show first that for each C*-algebra A, contractibility of A implies contractibility of $M_n(A)$.
We next prove that an incidence algebra A of upper triangular matrices, defined by a partially ordered set Ω on \{1, 2, ..., n\} satisfying $(p, q) \in \Omega \Rightarrow p \leq q$, is a contractible Banach algebra if there is no discordant couple of D-transitive triples of elements of Ω.

Mathematics Subject Classification (2000): Primary 46H05, 46H25; Secondary 15A99.
Key words: Contractible Banach algebra, incidence algebra.

1. Introduction. Contractible Banach algebras are one of the homologically best algebras. A Banach algebra A is said to be contractible if it has the following (equivalent) properties [2]:

(i) $H^1(A, X) = 0$ for any Banach A-bimodule X, i.e. each derivation of A with values in any Banach A-bimodule is inner.

(ii) Every (one-sided or two-sided) Banach A-bimodule is projective.

(iii) A is unital and as a Banach A-bimodule is projective.

(iv) A is unital and the canonical morphism $\pi : \hat{A} \otimes A \longrightarrow A$ defined by $\pi(a \otimes b) = ab$ is a retraction, i.e. has a right inverse, in the category $\mathbf{A - mod - A}$ of Banach A-bimodules.

The reader is referred to [3] for details, undefined terms and notations on homology of Banach algebras.
2. Contractibility of square matrices with entries in a C*-algebra.
Throughout this section, A is a unital C*-algebra and $M_n(A)$ denotes the C*-algebra of $n \times n$ matrices with entries in A. Note that $M_n(A)$ is *-isomorphic to $A \otimes M_n(C)$. If $a \in A$ and $[\lambda_{ij}] \in M_n(C)$, then $a \otimes [\lambda_{ij}]$ is identified to the matrix $[\lambda_{ij} a]$ in $M_n(A)$; in particular if $\{E_{ij} : i, j = 1, \ldots, n\}$ is the standard system of matrix units for $M_n(C)$, we denote the corresponding element to $a \otimes E_{ij}$ by $a E_{ij}$.

We have
\[
\| a_{ij} \| \leq \| [a_{ij}] \| \leq \sum_{1 \leq i, j \leq n} \| a_{ij} \| \quad \text{for all } 1 \leq i, j \leq n \quad [4].
\]

Theorem 2.1. Let A be contractible, then so is $M_n(A)$.

Proof. Suppose that $\rho : A \to A \hat{\otimes} A$ is a right inverse morphism to the canonical morphism $\pi : A \hat{\otimes} A \to A$. Put $\bar{\rho}(a E_{ij}) = \lim_{n \to \infty} \sum_{k=1}^m u_k^* E_{ij} \otimes v_k^* E_{ij}$, in which $\rho(a) = \lim_n \sum_{k=1}^m u_k^* \otimes v_k^*$; and extend it by linearity to a mapping $\bar{\rho}$ from $M_n(A)$ to $M_n(A) \hat{\otimes} M_n(A)$:

\[
\bar{\rho}([a_{ij}]) = \bar{\rho} \left(\sum_{1 \leq i, j \leq n} a_{ij} E_{ij} \right) = \sum_{1 \leq i, j \leq n} \bar{\rho}(a_{ij} E_{ij}).
\]

If $\sum_{k=1}^m u_k \otimes v_k = 0$, then by [4, proposition 11.1.8] there exist an $m \times m$ complex matrix $[c_{jk}]$ such that $\sum_{j=1}^m c_{jk} u_j = 0 (k = 1, \ldots, m)$ and $\sum_{k=1}^m c_{jk} v_k = v_j (j = 1, \ldots, m)$. Hence, $\sum_{k=1}^m u_k E_{ij} \otimes v_k E_{ij} = 0$. Therefore, the map

\[
\omega : \sum_{k=1}^m u_k \otimes v_k \mapsto \sum_{k=1}^m u_k E_{ij} \otimes v_k E_{ij}
\]

is well-defined and furthermore,

\[
\left\| \sum_{k=1}^m u_k E_{ij} \otimes v_k E_{ij} \right\| \leq \inf \left\{ \sum_{k=1}^m \| u_k' \| \left\| v_k' \right\| : \sum_{k=1}^m u_k \otimes v_k = \sum_{k=1}^m u_k' \otimes v_k' \right\} = \left\| \sum_{k=1}^m u_k \otimes v_k \right\|.
\]
Thus,
\[
\| \tilde{\rho}(a_{ij}) \| = \lim_{n \to \infty} \| \sum_{k=1}^{m_n} u_k^n E_{ij} \otimes v_k^n E_{ij} \|
\leq \lim_{n \to \infty} \| \sum_{k=1}^{m_n} u_k^n \otimes v_k^n \| = \lim_{n} \sum_{k=1}^{m_n} u_k^n \otimes v_k^n \leq \| \rho \| \| a \|.
\]

It follows that \(\tilde{\rho} \) is well-defined and \(\| \tilde{\rho} \| \leq n^2 \| \rho \| \).

\(\tilde{\rho} \) is a morphism in \(M_n(A) \) mod \(M_n(A) \). In fact for each \([a_{ij}], [b_{ij}] \in M_n(A)\), by virtue of \([c_{ij}] = \sum_{1 \leq i,j \leq n} c_{ij} E_{ij}\), we have

\[
\tilde{\rho}(b_{pq}[a_{ij}]) = \sum_{1 \leq i,j \leq n} \tilde{\rho}(b_{pq}) \rho(a_{ij} E_{ij}) = \sum_{1 \leq i,j \leq n} (\sum_{p=1}^{n} b_{pq} E_{pq}) \rho(a_{ij} E_{ij})
= \sum_{1 \leq i,j \leq n} [b_{pq}] \rho(a_{ij} E_{ij}) = [b_{pq}] \rho([a_{ij}]).
\]

Similarly, \(\tilde{\rho}(b_{pq} [a_{ij}]) = \tilde{\rho}(a_{ij} E_{ij}) = \rho(a_{ij} E_{ij}) \).

It is straightforward to show that \(\tilde{\rho} \) is a right inverse to the canonical morphism \(\bar{\pi} : M_n(A) \otimes M_n(A) \to M_n(A) \). It follows that \(M_n(A) \) is contractible.

\begin{corollary}
\(M_n(C) \) is contractible.
\end{corollary}
\begin{proof}
\(C \) is contractible, since the canonical morphism \(\pi : C \otimes C \to C \) is an isomorphism.
\end{proof}

\begin{corollary}
If \(A \) has discrete primitive spectrum and all its irreducible representations are finite dimensional, then the same is true for \(M_n(A) \).
\end{corollary}
\begin{proof}
A unital C*-algebra is contractible iff its primitive spectrum is discrete and each of its irreducible representations is finite dimensional [1, Assertion IV.5.15].
\end{proof}

The following is a good question in the argued context:

\begin{question}
Is the biprojectivity of \(M_n(A) \) implies the biprojectivity of \(A \)?
\end{question}

In this section we characterize a class of contractible Banach algebras among matrix algebras. We shall set up our notation.

Let Ω be a partially ordered set on $\{1, 2, \ldots, n\}$ such that $(p, q) \in \Omega$ implies $p \leq q$, and $A(\Omega)$ be the subalgebra of $M_n(\mathbb{C})$ of all matrices (a_{ij}) such that $a_{ij} = 0$ unless $(i, j) \in \Omega$. Note that the condition $(p, q) \in \Omega \Rightarrow p \leq q$ ensures that each element of $A(\Omega)$ is upper triangular and the transitivity guarantees that $A(\Omega)$ is closed under multiplication. $A(\Omega)$ is a Banach algebra with respect to the usual norm which inheriting from $M_n(\mathbb{C})$. Applying the terminology of [1], $A(\Omega)$ is called an incidence algebra of upper triangular matrices (the other names are digraph algebra and finite dimensional CSL-algebra). We shall write A for $A(\Omega)$. E_{pq} stands as already for the matrix having zero everywhere except the (p, q)th place and the (p, q)th place has the entry 1. The multiplication in A is determined by the products $E_{ij} E_{kl} = \delta_{ik} E_{jl}$ where δ denotes the Kronecker symbol. Evidently $\{E_{pq} | (p, q) \in \Omega\}$ is a linear basis for A.

A transitive triple is an ordered triple of the form $((p, q), (q, r), (p, r))$ of elements in Ω; if in addition $p \neq q$ and $q \neq r$, it said to be D-transitive. Two distinct D-transitive triple are called discordant if their third components are equal or there exists a pair (i, j) occurring in different components of them.

Lemma 3.1. Let $\rho : A \rightarrow A \hat{\otimes} A$ be a right inverse morphism to the canonical morphism in $A \mod A$ and $((p, q), (q, r), (p, r))$ be a D-transitive triple. Then

$$
\rho(E_{pq}) = E_{pq} \otimes E_{qq} + \sum_{i,j,k,l} \alpha_{ij}^{kl} E_{ij} \otimes E_{kl} \tag{1}
$$

$$
\rho(E_{qr}) = E_{qq} \otimes E_{qr} + \sum_{i,j,k,l} \beta_{ij}^{kl} E_{ij} \otimes E_{kl} \tag{2}
$$

$$
\rho(E_{pr}) = E_{pq} \otimes E_{qr} + \sum_{i,j,k,l} \gamma_{ij}^{kl} E_{ij} \otimes E_{kl} \tag{3}
$$

in which the summations are taken over all i, j, k, l such that $((i, j), (k, l), (i, l))$ is not a transitive triple.

Proof. Notice first that $\{E_{ij} \otimes E_{kl} | (i, j), (k, l) \in \Omega\}$ is a linear basis for $A \hat{\otimes} A$.

Since $\pi \circ \rho = 1_A$, we have

$$
\rho(E_{pq}) = a_0 E_{pq} \otimes E_{pq} + a_1 E_{p(p+1)} \otimes E_{(p+1)q} + \cdots

\cdots + a_{l-p} E_{pq} \otimes E_{qq} + \sum_{i,j,k,l} \alpha_{ij}^{kl} E_{ij} \otimes E_{kl} \tag{4}
$$

$$
\rho(E_{qr}) = b_0 E_{qq} \otimes E_{qr} + b_1 E_{q(q+1)} \otimes E_{(q+1)r} + \cdots

\cdots + b_{r-q} E_{qr} \otimes E_{rr} + \sum_{i,j,k,l} \beta_{ij}^{kl} E_{ij} \otimes E_{kl}, \tag{5}
$$
\[\rho(E_{pr}) = c_0 E_{pp} \otimes E_{pr} + c_1 E_{p(p+1)} \otimes E_{(p+1)r} + \cdots
\cdots + c_{q-p} E_{pq} \otimes E_{qr} + \cdots
+ c_{r-p} E_{pr} \otimes E_{rr} + \sum_{i,j,k,l} \gamma_{ij}^{kl} E_{ij} \otimes E_{kl}. \tag{6} \]

The summations are taken over all \(i, j, k, l \) such that \((i, j), (k, l), (i, l) \) is not transitive triple. Note also that
\[q-p \sum_{u=0}^{r-q} b_u = q-p \sum_{u=0}^{r-p} c_u = 1. \]

Since \(\rho \) is an \(A \)-bimodule morphism, (4) and (5) imply:
\[\rho(E_{pr}) = \rho(E_{pq}, E_{qr}) = a_0 E_{pp} \otimes E_{pr} + a_1 E_{p(p+1)} \otimes E_{(p+1)r} + \cdots
\cdots + a_{q-p} E_{pq} \otimes E_{qr} + \cdots \tag{7} \]
\[\rho(E_{pr}) = \rho(E_{pq}, E_{qr}) = b_0 E_{pq} \otimes E_{qr} + b_1 E_{p(q+1)} \otimes E_{(q+1)r} + \cdots
\cdots + b_{r-q} E_{pr} \otimes E_{rr} + \cdots \tag{8} \]

Now comparing (6), (7) and (8) we can conclude the following:
\[a_0 = c_0 = 0, \ a_1 = c_1 = 0, \ldots, a_{q-p-1} = c_{q-p-1} = 0, \]
and then
\[b_1 = c_{q-p+1}, \ b_2 = c_{q-p+2}, \ldots, b_{r-q} = c_{r-p} = 0. \]

Thus, \(a_{q-p} = b_0 = c_{q-p} = 1 \) and
\[\rho(E_{pq}) = E_{pq} \otimes E_{qq} + \sum_{i,j,k,l} \alpha_{ij}^{kl} E_{ij} \otimes E_{kl} \]
\[\rho(E_{qr}) = E_{qq} \otimes E_{qr} + \sum_{i,j,k,l} \beta_{ij}^{kl} E_{ij} \otimes E_{kl} \]
\[\rho(E_{pr}) = E_{pq} \otimes E_{qr} + \sum_{i,j,k,l} \gamma_{ij}^{kl} E_{ij} \otimes E_{kl}. \]

We are now ready to prove our main result:

Theorem 3.2. An incidence algebra \(A(\Omega) \) of upper triangular matrices is contractible if there is no discordant couple of \(D \)-transitive triples of elements of \(\Omega \).

Proof. Suppose that there are no discordant couples of \(D \)-transitive triples and let \((m, n) \in \Omega\). We may consider two cases:

(i) Suppose \((m, n)\) is a component of a \(D \)-transitive triple:

(ii) If the triple is of the form \((m, n), (n, r), (m, r)\), we define
\[\rho(E_{mn}) = E_{mn} \otimes E_{nn} \text{ according to (1)}. \]
(i - 2) If the triple is of the form \((s, m), (m, n), (s, n)\), we define
\[\rho(E_{mn}) = E_{mm} \otimes E_{mn} \]
according to (2).

(i - 3) If the triple is of the form \((m, t), (t, n), (m, n)\), we define
\[\rho(E_{mn}) = E_{mt} \otimes E_{tn} \]
according to (3).

(ii) If \((m, n)\) is not a component of any D-transitive triple, we put
\[\rho(E_{mn}) = E_{mm} \otimes E_{mn}. \]

Then \(\rho\), being defined on a basis of \(A\), is a well-defined \(A\)-bimodule morphism and furthermore \(\pi \circ \rho = 1_A\). Hence, \(A\) is contractible.

If there is a discordant couple of D-transitive triples, Lemma 1 clearly yields a contradiction; e.g., if there exist \((i, j), (j, k), (i, k)\) and \((h, i), (i, j), (h, j)\) it follows from the lemma that
\[\rho(E_{ij}) = E_{ij} \otimes E_{jj} + \ldots = E_{ii} \otimes E_{ij} + \ldots \]
which is contradictory to the linear independence of the \(E_{pq}\)’s.

Example 3.3. The incidence algebra of all \(4 \times 4\) matrices of the form
\[
\begin{pmatrix}
* & 0 & * & * \\
0 & * & 0 & 0 \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{pmatrix},
\]
where the stars indicate arbitrary complex numbers, is contractible; but the incidence algebra of all upper triangular \(4 \times 4\) matrices is not contractible.

Question 3.4. What can we say about the contractibility of incidence algebra \(A(\Omega)\) without the condition \((p, q) \in \Omega \Rightarrow p \leq q\) on \(\Omega\)?

References

Received 31 July, 2001