Ground magnetic survey over an aeromagnetic anomaly in the Dahaneh Siah copper deposit and KC5 exploration prospect (Bardaskan)

M. R. Haidarian Shahri, M. H. Karimpour, A. Malekzadeh

The Geology department, Ferdowsi University of Mashhad
E-mail: hshahri@ferdowsi.um.ac.ir

(Received: 16/06/2005, received in revised form: 08/08/2005)

Abstract: KC5 copper exploration prospect is located 80 Km to the northwest of Bardaskan and 4 Km to the Northeast of Dahaneh Siah copper mine in Khorasan Razavi. KC5 and Dahaneh Siah areas belong to Sabzevar geological Zone. Copper mineralization is observable mainly as secondary minerals such as Malachite and Chlorite which fills joints and fractures in a faulty contact at the boundary of the volcanic and Oriyan sedimentary (carbonaceous and tuff) rocks. High intensity ellipsoidal aeromagnetic anomaly overlies the boundary between the volcanic and carbonaceous rocks which follows old abandoned copper mines and extends to the KC5 prospect and Dahaneh Siah area. Studies indicate the presence of magnetite up to maximum 5% in the volcanic rocks. Magnetic susceptibilities of the volcanic rocks in the KC5 west, KC5 east and Dahaneh Siah show that this parameter is 2 times smaller in the first area than in the second and third. Magnetic anomalies of the two volcanic units in the KC5 east are similar but their amplitudes are lower than the anomalies produced by the same units in the KC5 west. Anomaly amplitudes of the Dahaneh Siah volcanic are smaller than those produced by the same volcanic unit in the KC5 west and east. Lower magnetic susceptibilities of surface volcanic samples in the KC5 west and their higher amplitude anomalies in comparison with the anomalies from similar volcanic units in the KC5 east and Dahaneh Siah implies that the source of the anomaly and main mineralization at KC5 west must be deep. Correlation of aeromagnetic anomaly with old abandoned copper mine (including the Dahaneh Siah copper mine and the KC5 prospect area), upper boundary of the volcanic and carbonaceous sediment and geochemical anomaly of the region are indications of the relation of main mineralization with aeromagnetic anomaly.

Keywords: Magnetic susceptibility, Magnetic anomaly, KC5, Dahaneh Siah.
مغناطیسی سنج‌های زمینی بر روی بی‌هنجاری‌های مغناطیسی هواپیمایی در منطقه معدن مس دهنه سیاه و منطقه اکتشافی \(KC5 \) (بردسکن)

محمدرضا حیدریان رستمی، محمدحسن کریمی‌پور و آزاده ملک‌زاده شفافوردی

گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد

E-mail: hshahi@ferdowsi.um.ac.ir

(دریافت مقاله ۸۴/۳/۲۸، دریافت نسخه نهایی ۸۴/۵/۱۷)

چکیده: محدوده اکتشافی مس \(KC5 \) در ۸۰ کیلومتری شمال غرب بردسکن و ۴ کیلومتری شمال شرقی معدن مس دهنه سیاه در خراسان رضوی است. مناطق \(KC5 \) و دهنه سیاه جزئی زون‌های شناسی‌ساز برای هنگام مزدیری و کالکوژیت به صورت پرکنده درز و شکستگی‌ها در مرز سنگ‌های اندرفانتنال و سنگ‌های سری عریان (کریناتون و توپ)، که دریافت‌های مغناطیسی سنگی هواپدید بین غربی شکل باشد بازه‌ای روی مرز بین سنگ‌های اندرفانتنال و سنگ‌های کریناتون معدن مس قدمی‌های منتوکوک را تعقیب کرده و تا منطقه اکتشافی \(KC5 \) و معدن مس دهنه سیاه ادامه می‌یابد. مطالعات و وجود مکثیت حداکثر ۵ درصد در سنگ‌های اندرفانتنال را نشان می‌دهد. بی‌هنجاری‌های غربی و شرقی معدن مس \(KC5 \) در مناطق شرقی و غربی سیاه \(KC5 \) و به عنوان درمنطقه کالکوژیت به همان واژه‌ها و شکل‌ها، در منطقه غربی و شرقی کریناتون \(KC5 \) است. بی‌هنجاری‌های مغناطیسی کلمات مربوط به همان واژه‌ها و شکل‌ها به عنوان درمنطقه \(KC5 \) می‌باشد. دامنه بی‌هنجاری واحد اندرفانتنال دهنه سیاه از بی‌هنجاری‌های همان‌واحد در منطقه غربی و شرقی کریناتون \(KC5 \) است. بی‌هنجاری‌های مغناطیسی کلمات مربوط به همان واژه‌ها و شکل‌ها به عنوان درمنطقه \(KC5 \) می‌باشد.
مقدمه

محیط‌های اکتشافی مس KC5 در 80 کیلومتری شمال غربی شهرستان برکسک و در 4 کیلومتری شمال شرقی معدن مس دهنه سیاه در محدوده خراسان رضوی قرار دارد. از نظر ساختاری این دو منطقه جزیی از زون زمین‌شناسی سیبرو محسوب می‌شوند. زمین‌شناسی زون سیبرو مشکل از سه‌گهای انت‌فیشانی پلازيک، افولاپت، سگ‌های انت‌فیشانی و منشته‌های عریان بوده و وسیله گسل کتار (ربوش) در جنوب و گسل شاه‌میری در شمال محدود می‌شود (شکل 1). در سمت غرب مرز جنوبی این زون گسل دوچرخه است [10]. شکلاً ساختاری این زون متأثر از گسل‌های محدود‌کننده آن بوده بطوریکی روند بسیاری از مجموعه‌های چین خوردگی ماه‌هاً با گسل‌های محدود‌کننده آن (شرقی- غربی تا شمال شرقی- جنوب غربی) است. کانی‌های نسیم در در دو منطقه پیشتر در غلبه کانی‌های تانوهی مالاکیت و کالکوزیت (در سطح، کندوکوهای قدمی و مغزه‌های حفری دو چاه از دهنه سیاه) به صورت پرگنده در و شکستگی‌ها در مرز فوقانی واحد آنت‌فیشانی (آندزینی) و بخش تحتانی تنسته‌های عریان که روش مطالعه

به منظور بررسی ارتباط زمین‌شناسی- کانی‌سازی منطقه و باسپیدای مغناطیسی آن، مطالعات در دو بخش زمین‌شناسی و زئوفیزیکی انجام شد. مطالعات زمین‌شناسی- کانی‌سازی شامل:
1- تصویب نقشه زمین‌شناسی محدوده اکتشافی مس KC5 بر روی نشه
2- مطالعه 22 مقطع نازک و 2 بلک صلیقلی از KC5 و دهنه سیاه (از سطح در KC5) مغزه‌ها در دهنه سیاه.
3- مطالعه مغزه‌های حفری چاه شماره 13 به عمق 92.85 متر و چاه شماره 28 به عمق 60 متر از دهنه سیاه.
4- مطالعات کانی‌شناسی با استفاده از XRD محتویات داخل حفره‌های سنگ‌های آنت‌فیشانی 4 نمونه.
شکل ۱ نمای زون سیزور و واحد‌های تشکیل‌دهنده آن (با تغییرات پس از [۱۷]).

شکل ۲ هبسته‌های مغناطیسی مشت روده محدوده KC5 (برگرفته از نقشه ۱۵۰۰۰ مغناطیسی هواپیما سازمان اطلاعاتی ایران).
مطالعات زئوفیزیکی شامل:
1- انداره گیری از ترکیب‌های مغناطیسی روی نمونه‌ای از واحد‌های آتش‌شافی در سطح زمین در هر دو منطقه و دشت‌های دهنده سیب، نمونه‌های سرباره معدن دهنده سیب و جند نمونه آهنی - KC5
مانتیزی از ترکیب (TMI) جمعاً در ۱۳۶ نقطه (هشت نیمرخ) دو منطقه که ۲۵ نقطه آن به دهنده سیب و بقیه متعلق به KC5 تعلق دارد.
مغناطیسی‌تک جریان استفاده از نوع پروتون مدل ENVI با دقت ۰.۱ گاما و پذیرفتاری
سنج به کار برده شده مدل ۰.۵ SI با دقت GMS2 ۱×۱۰۳ بوده که هر دو ساخت شرکت
سینترکس کانادا متعلق به بخش زمین‌شناسی دانشگاه فردوسی مشهد بوده است.

زمین‌شناسی و سنگشناسی
زمین‌شناسی و سنگ‌شناسی واحد‌های آتش‌شافی منطقه KC5 و دهنده سیب توسط کریم‌پور و ملکرآده [6] و حیدری و همکاران [9] به تفصیل تشریح شده است. زمین‌شناسی محلی
محدوده اکتشافی KC5 و دهنده سیب بیشتر شامل مجموعه سنگ‌های آتش‌شافی و تنشیانی
ترشیری است.

و انتهای آدرین محدوده KC5 از گداره‌های آندرزیتی زیر دریابی نشته در بک حوضه کم-
عمق تشکیل شده که با آهکه‌ای غنی از فسفات‌های دوکوفی و نمونه‌ی به سن پالیتست-نوسن
بوشیده شده است. مجموعه آتش‌شافی از سه واحد سنگی شامل پیروکسین آندزیتی،
فلدسبار تراکی آندزیت بورفیری و واحد انتقالی بین آن دو بعنی، فلدسبار پیروکسین آندزیت تا
پیروکسین فلدسبار آندزیت بورفیری تشکیل شده است (شکل ۳).

شکل ۳ نقشه زمین‌شناسی محدوده KC5 (برگرفته از [6] با تغییرات اساسی [7])
واحد پروپکسن آنژینیت پورفیری در آغاز فعالیتی آنتی‌فن، قانون که به دلیل داشتن شگفت‌زده و مشغله‌گری با ویلی و پرچم‌های سایر تصورات KC5 فرایندی قرار گرفت و تهیه ماوراهایی با پیش‌بینی و پرچم‌های کم را در محدوده تشکیل داد. این واحد در محدوده سه‌خانه سیاه به‌سپری و بیشتر از طریق بلورهای کلینیوپیرزه در حد بیشتر - ازدین و کمی دوبیسپید به میزان 30 تا 40 درصد با بایت پورفیری تا کلورپورفیری تشکیل شدند. کانی‌های زمینه شامل پروپکسن، پالژیوکلاز، کانی‌های آویک و کانی‌های حاصل از دگرسانی است. مقدار کانی‌های آویک در این سنگ‌ها قابل توجه در حد 6 تا 8 درصد است. حفره‌های ناشی از خروج کاره‌های آنتی‌فن در این واحد در حد 8 تا 10 درصد به‌دست آمده و با کانی‌های دگرسانی بر دسته‌گری دسته‌گری دسته‌گری نشده. کانی‌های پورفیری در این سنگ‌ها به‌صورت بیشتر و کلسیت است. کلسیت و اپیدوت در متن سنگ و زولوماژ و کلسیت در حفره‌ها قرار دارند.

۱۵ درصد و کلسیت بیشتر در میان حفره‌ها وجود دارد و تا 5 درصد می‌رسد.

واحد کلسیت پیکزدن و پروپکسن فلدسری پورفیری نمی‌تواند واحدهای آنتی‌فنی در میان واحدهای پروپکسن آنژینیت پورفیری در جنوب و فلدسری تراکی آندزینیت پورفیری در شیال دیده می‌شود. بایت این سنگ پورفیری و دارای بلورهای دشت و کشیده پالژیوکلاز. مقدار کلینیوپیرزه در سنگ‌های دیگر و با پورفیری پیشین و در حد 3 تا 4 درصد بیشتر و 2 تا 3 درصد است. در عرض قطر حفره دستگاه این سنگ‌ها به‌دست آمده و بیشتر از می‌رسد. حفره‌های سنگ‌های اغلب با کانی‌های حاصل از دگرسانی مثل زولوماژ و کلسیت پر شده است. زولوماژ در حاشیه حفره‌ها و یا در متن سنگ به‌شكل رشته‌ای بوده و بطور متوسط به همراه دیگر سنگ‌ها و آتشفشان‌ها در حفره‌ها قرار دارند.
دانش‌آموزی به‌عنوان یکی از روش‌های مغناطیسی سنجش است که از آن تا کاربرد و تفسیر مغناطیسی را محدود ساخته و آن را به‌طور صحیح و دقیق اجرای آن را بروز رسانی می‌کند.

سنج مغناطیسی (واحد فلدسپار تراکی آنزیمی زئولیت) در محدوده سنجش به‌عنوان ماسه نانو‌ساختاری (دو چهار حفره) شده در این واحد انداده‌گیری‌های پذیرفتابار مغناطیسی انجام داده شده است. این واحد در رابطه با کانال‌های اصلی که در اختیار شرکت توس می‌باشد، در اختیار قرار داشته و چاه‌های ناحیه گزارش شده است. این واحد از استحکامات ناحیه گزارش شده، از قسمت‌های محدوده پذیرفتابار مغناطیسی (دو چهار حفره) شده در این واحد انداده‌گیری‌های پذیرفتابار مغناطیسی انجام داده شده است. این واحد از استحکامات ناحیه گزارش شده، از قسمت‌های محدوده پذیرفتابار مغناطیسی (دو چهار حفره) شده است. این واحد از استحکامات ناحیه گزارش شده، از قسمت‌های محدوده پذیرفتابار مغناطیسی (دو چهار حفره) شده است.
تغییرات پذیرفتابی مغناطیسی با مقدار گزارش شده پذیرفتابی مغناطیسی در منابع زئوفزیکی برای سنگهای آندریتی مطابقت دارد.[15]. مقایسه مانگین کل پذیرفتابی مغناطیسی بین دو چاه (جدول‌های 1 و 2) تغییر محضی را نشان نمی‌دهد. تعداد شش انداره-
گیری پذیرفتابی مغناطیسی از سرباره‌های انبیو شده محل معدن انجام شد (جدول 3).

جدول 1 پذیرفتابی مغناطیسی چاه شماره ۱۲ از معدن مس دهه سیا[۸]

<table>
<thead>
<tr>
<th>توضیحات</th>
<th>پذیرفتابی مغناطیسی (SI)</th>
<th>رنگ عمق نمونه (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>در ابتدا اثر مالاکیت دیده می‌شد</td>
<td>۱۳۷۹×۱۰⁻۵</td>
<td>۱</td>
</tr>
<tr>
<td></td>
<td>۵۲۵×۱۰⁻۳</td>
<td>۲</td>
</tr>
<tr>
<td></td>
<td>۳۵۶×۱۰⁻۲</td>
<td>۳</td>
</tr>
<tr>
<td></td>
<td>۱۱۳۲×۱۰⁻۲</td>
<td>۴</td>
</tr>
<tr>
<td></td>
<td>۱۱۸۷×۱۰⁻۲</td>
<td>۵</td>
</tr>
<tr>
<td></td>
<td>۱۳۲۱×۱۰⁻۲</td>
<td>۶</td>
</tr>
<tr>
<td></td>
<td>۱۰۱۱×۱۰⁻۲</td>
<td>۷</td>
</tr>
<tr>
<td></td>
<td>۱۶۵×۱۰⁻۳</td>
<td>۸</td>
</tr>
<tr>
<td></td>
<td>۴۸۹×۱۰⁻۳</td>
<td>۹</td>
</tr>
<tr>
<td>به سمت عمق در حد حفرات در حال زیاد شدن و امکان‌هایی نیز در حال زیاد شدن است.</td>
<td>۱۱۱×۱۰⁻۲</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>۲۶۸×۱۰⁻۲</td>
<td>۱۱</td>
</tr>
<tr>
<td></td>
<td>۳۸۴×۱۰⁻۳</td>
<td>۱۲</td>
</tr>
<tr>
<td></td>
<td>۴۴۹×۱۰⁻۳</td>
<td>۱۳</td>
</tr>
<tr>
<td></td>
<td>۲۳۳×۱۰⁻۰</td>
<td>۱۴</td>
</tr>
<tr>
<td>در عمق رگه‌های کالکوزیت دیده می‌شود.</td>
<td>۱۳۲۵×۱۰⁻۲</td>
<td>۱۵</td>
</tr>
<tr>
<td></td>
<td>۱۵۵۸×۱۰⁻۲</td>
<td>۱۶</td>
</tr>
<tr>
<td></td>
<td>۷۰۲×۱۰⁻۲</td>
<td>۱۷</td>
</tr>
<tr>
<td></td>
<td>۱۵۷۵×۱۰⁻۲</td>
<td>۱۸</td>
</tr>
<tr>
<td></td>
<td>۹۰۴×۱۰⁻۲</td>
<td>۱۹</td>
</tr>
<tr>
<td></td>
<td>۱۳۷۸×۱۰⁻۲</td>
<td>۲۰</td>
</tr>
</tbody>
</table>
جدول ۲ پذیرفتنی مغناطیسی چاه شماره ۲۸ از معدن سد دهنه‌سیه [۸]

<table>
<thead>
<tr>
<th>توضیحات</th>
<th>پذیرفتنی مغناطیسی (SI)</th>
<th>عمیق‌نموده (متر)</th>
<th>رده</th>
</tr>
</thead>
<tbody>
<tr>
<td>واحد فلزسیت تراکی آندزیت پورفیری بخلزل و درد شکستگی در واحد سنگی دیده نمی‌شود.</td>
<td>۱۲۳۱۰۶۱۵۱۰۵۱۵</td>
<td>۶۰۰</td>
<td>۱</td>
</tr>
<tr>
<td>دامنه شامل زندگی‌های جزیی کربن و زاولیت - کلسیت</td>
<td>۱۲۳۲۴۰۱۰۵۵۵۵</td>
<td>۹۱۵</td>
<td>۲</td>
</tr>
<tr>
<td></td>
<td>۱۲۳۲۴۰۱۰۵۵۵۵</td>
<td>۱۲۷۰</td>
<td>۳</td>
</tr>
<tr>
<td></td>
<td>۸۹۵۱۰۵۵۵۵۵</td>
<td>۱۵۴۵</td>
<td>۴</td>
</tr>
<tr>
<td></td>
<td>۳۰۲۱۰۵۵۵۵</td>
<td>۱۵۵۵</td>
<td>۵</td>
</tr>
<tr>
<td></td>
<td>۲۲۴۲۰۵۵۵</td>
<td>۲۴۵۵</td>
<td>۵</td>
</tr>
<tr>
<td></td>
<td>۱۵۷۸۵۱۰۵۵</td>
<td>۲۶</td>
<td>۶</td>
</tr>
<tr>
<td></td>
<td>۱۴۶۵۱۰۵۵</td>
<td>۳۰۰</td>
<td>۸</td>
</tr>
<tr>
<td></td>
<td>۱۷۸۸۰۵۵</td>
<td>۳۵۴۰</td>
<td>۹</td>
</tr>
<tr>
<td></td>
<td>۱۷۸۸۰۵۵</td>
<td>۳۷۸۰</td>
<td>۱۰</td>
</tr>
<tr>
<td></td>
<td>۲۰۸۸۰۵۵</td>
<td>۴۲۷۰</td>
<td>۱۱</td>
</tr>
<tr>
<td></td>
<td>۱۸۸۸۰۵۵</td>
<td>۴۵۰۰</td>
<td>۱۲</td>
</tr>
<tr>
<td></td>
<td>۲۰۸۸۰۵۵</td>
<td>۴۹۲۵</td>
<td>۱۳</td>
</tr>
<tr>
<td></td>
<td>۲۰۸۸۰۵۵</td>
<td>۵۵۳۵</td>
<td>۱۴</td>
</tr>
<tr>
<td></td>
<td>۲۱۴۵۱۰۵۵</td>
<td>۵۷۵۵</td>
<td>۱۵</td>
</tr>
<tr>
<td></td>
<td>۲۶۳۷۱۰۵۵</td>
<td>۶۰</td>
<td>۱۶</td>
</tr>
</tbody>
</table>

جدول ۳ پذیرفتنی مغناطیسی در نمونه‌های سرباره [۸]

<table>
<thead>
<tr>
<th>پذیرفتنی مغناطیسی (SI)</th>
<th>رده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۵۵۸۰۱۰۵</td>
<td>۱</td>
</tr>
<tr>
<td>۱۲۳۸۰۱۰۵</td>
<td>۲</td>
</tr>
<tr>
<td>۲۵۸۰۱۰۵</td>
<td>۳</td>
</tr>
<tr>
<td>۱۱۳۲۰۱۰۵</td>
<td>۴</td>
</tr>
<tr>
<td>۳۵۰۱۰۵</td>
<td>۵</td>
</tr>
<tr>
<td>۱۱۵۸۰۱۰۵</td>
<td>۶</td>
</tr>
</tbody>
</table>

مقایسه پذیرفتنی‌های مغناطیسی سنگ میزبان (جدول‌های ۱ و ۲) با سرباره‌ها (جدول ۳) نشان می‌دهد که پذیرفتنی مغناطیسی سرباره‌ها ۱۰ برابر کمتر از فلزسپار تراکی آندزیت پورفیری بعنوان سنگ میزبان است. همچنین اندازه‌گیری‌های پذیرفتنی مغناطیسی از واحد انیشیتی پروکسی‌ای آندزیت پورفیری و فلزسپار تراکی آندزیت پورفیری از نمونه‌های برون‌زدای سنگ‌های زیر نیمرخ‌یا.
مغناطیسی‌های غربی انجام شد (جدول‌های ۴ و ۵). مقایسه تغییرات میدان‌های دیفرانسیالی مغناطیسی (جدول‌های ۴ و ۵) نشان می‌دهد که لایه‌های گردشافته در این دو واحد آتش‌نشانی نمی‌باشد. همچنین سایه‌ای به این نموده تغییرات مغناطیسی در واحد امکان‌پذیر بوده‌است.

میدان‌های دیفرانسیالی مغناطیسی در واحد امکان‌پذیر بوده‌است.

اندازه گیری‌های مغناطیسی زمینی

- منطقه معدن دهنده سیایی

و نیم‌مرخ با امتداد S ۳۵° E هر کدام به طول ۲۴۰ متر و به فاصله ۱۲۰ متر از یکدیگر و عمود بر امتداد واحد گیری سنجی برای اندازه‌گیری انتخاب شدند. فواصل نقاط اندازه‌گیری برای هر نقطه ۱۰ متر در انتخاب شدند. شروع نیم‌مرخ از محل حوضه‌ای ۱۲۰ متر از سطح دریا آغاز شد.

- مطالعه معمول تغییرات روزانه میدان مغناطیسی زمینی برگرفته شده نشان دهنده خاصیت آن‌ها است.

جدول ۴: پذیرپذیری‌های مغناطیسی در واحد پرونده‌ای دو اندازه‌گیری در ۵ غربی [۸]

<table>
<thead>
<tr>
<th>پذیرپذیری مغناطیسی</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱۷۴÷۱۱۴۵</td>
<td>۱</td>
</tr>
<tr>
<td>۳۵۴÷۱۱۴۵</td>
<td>۲</td>
</tr>
<tr>
<td>۳۳۵÷۶۵۴</td>
<td>۳</td>
</tr>
<tr>
<td>۶۵۴÷۱۱۴۵</td>
<td>۴</td>
</tr>
<tr>
<td>۱۳۷۶÷۱۱۴۵</td>
<td>۵</td>
</tr>
<tr>
<td>۱۱۷۶÷۱۳۷۶</td>
<td>۶</td>
</tr>
<tr>
<td>۱۳۷۶÷۱۷۱۶</td>
<td>۷</td>
</tr>
</tbody>
</table>
جدول ۵ پذیرفتهای مغناطیسی در واحد فلسفسیت تراکی آنتزیت پورفیری ۵ غربی [۸].

<table>
<thead>
<tr>
<th>پذیرفتهای مغناطیسی (SI)</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۲۳۰×۱۰⁻۵</td>
<td>۱</td>
</tr>
<tr>
<td>۱۰۴۰×۱۰⁻۵</td>
<td>۲</td>
</tr>
<tr>
<td>۹۶۰×۱۰⁻۵</td>
<td>۳</td>
</tr>
<tr>
<td>۷۲۴۰×۱۰⁻۵</td>
<td>۴</td>
</tr>
<tr>
<td>۷۳۵۰×۱۰⁻۵</td>
<td>۵</td>
</tr>
<tr>
<td>۸۹۲۰×۱۰⁻۵</td>
<td>۶</td>
</tr>
</tbody>
</table>

با استفاده از میدان اصلی مغناطیسی منطقه از نقشه مغناطیسی سازمان زمین‌شناسی کشور [۱۶] میدان اصلی به صورت برداری از اندازه‌گیری پیوسته کشیده شد. نیم‌برخ این برداشت‌ها بر از تصحیح روزانه میدان و میدان اصلی در شکل‌های ۴ الف و ب آمدند. دامنه به‌هنجارهای مشاهده شده در نیم‌برخ شکل‌های ۴ الف و ب بین ۲۵۰ تا ۵۰۰ کما متغیر بوده است که نتیجه پراکندگی مکنتش در زمینه سنگ تعبیر می‌شود. این تغییرات در پذیرفتهای مغناطیسی اندامه‌گیری شده مفهومی حفاری نیز مشاهده می‌شدند (جدول‌ها ۱ و ۲).

(الف)

(ب)

شکل ۴ (الف) نیم‌برخ شدت میدان مغناطیسی LOE در معدن مس دهنه سیاه و واحد سنگی تفسیر شده زیر بوسیله ب (ب) نیم‌برخ شدت میدان مغناطیسی LOE در معدن مس دهنه سیاه و واحد سنگی تفسیر شده زیر بوسیله [۸].
مناطق سنجش‌های زمینی بر روی پی هنجارپرا...

• منطقه اکتشافی KC5 غربی

به صورت چشمگیری سنگی جهت انداده‌گیری مغناطیسی در منطقه اکتشافی KC5 غربی، چهار نیم‌برخ شمالي-جنوبی به فاصله 30 متر از یکدیگر و به طول تقیبی 350 متر عمود بر امتداد واحدهای انتخاب شده‌که قابلیت انداده‌گیری 10 متر بوده است. نیم‌برخ اول از جنوب به شمال و از نوک‌های ماخچصات 37° 25' عرض شمالی و 29° 27' طول شرقی و ارتفاع 1237 مترز سطح دریا آغاز شد. با استفاده از نقشه مغناطیسی سازمان زمین‌شناسی کشور، [16] میدان اصلی به صورت برداری از اندازه‌گیری‌های کامپاس شد. نتایج اندازه‌گیری‌ها پس از تصحیح تغییرات زاویه میدان و تصویج میدان اصلی به صورت نیم‌برخ‌هایی در شکل ۵ مشاهده می‌شود. تغییرات دامنه بالایی مغناطیسی از جنوب به شمال به صورت هنگام در هر چهار نیم‌برخ برداشت شده نشان دهنده واحدهای سنگی مختلف زیر پوشش این نیم‌برخ‌هاست.

قلمدرین واحدهای نشاسته آشفتگی‌های پیوسته درون‌نبهای پزشکان و اندیشه‌های پویا در سمت جنوب دارای بیشترین دامنه بوده که محدودیتی از حداقل ۹۰۰ کام دارد. این واحدها به‌کمک کیفیت در حدود ۱۲۰ متر بر نیم‌برخ‌ها دیده می‌شود (شکل ۵).

شکل ۵ الف) نیم‌برخ شدت میدان مغناطیسی روند L0E غربی و واحدهای سنگی تفسیر شده‌که پوشش از ب) نیم‌برخ شدت میدان مغناطیسی روند L30E غربی و واحدهای سنگی تفسیر شده‌که پوشش از \[8\]
شکل ٥ ج) نمایش شدت میدان مغناطیسی در L60E غربی و واحدهای سنگی تفسیر شده زیر KC5 در یک پویش آن. (د) نمایش شدت میدان مغناطیسی در L90E غربی و واحدهای سنگی تفسیر شده زیر پویش آن.

جوان ترين واحد سنگي شامل آهن- مان- توف (واقع در شمال) است كه بي هنجرى مغناطيسى در آن جهت به شدت كاهش مي باشد. شكلهای ٥ (الف، ب، ج و د). واحد آنتفنشانى فلدسيار تراکي آنديزيت پورفيري در زیر واحد جوان تنشنتسي قرار دارد كه دامنه كشتي نسبت به واحد پيركوسن آنديزيت پورفيري نشان مي دهد. دامنه كميتى در اين واحد ٤٠٠ كاميار و بيشينهٔ آن ٦٠٠ كاميار است. ببين دو واحد آنتفنشانى ياد شده و در فاصله تقريبي ١٣٠ متر تا ٢٣٠ متر، دامنه بي هنجرى مغناطيسى تغيير چنداني نداشت و از نظر زبرگي بین دو واحد آنتفنشانى بوده و اين انتقال تفسير مي شود. مطالعات مقاطع ميكروسكوپي نمونه هاي برداشت شده تبديل تدرسي از پيركوسن آنديزيت پورفيري به فلدسيار تراکي آنديزيت پورفيري را نشان مي دهد كه تفسير مغناطيسى را تانديد مي كند.

ميران يکسان پذيرفتاري مغناطيسى (جدولهای ٤ و ٥) در نمونه های سطحی پيركوسن آنديزيت پورفيري و فلدسيار تراکي آنديزيت پورفيري در منطقه KC5 غربي مي رساند كه اگر تغييراتى در عمق وجود نداشت باشد، باید باسي مغناطيسى اندارهگي شده در روی اين دو
واحده سنجش هم‌هست باشد. مقایسه دامنه ی هنجاره مغناطیسی اندازه‌گیری شده ناشی از پیروکسنس آن‌دزیت پوزفیری و فلدسپار تراکی آن‌دزیت پوزفیری شکل 5 نشان می‌دهد که اولی در حدود 400 گرم بزرگتر از دومی است. این نشان می‌دهد که خاستگاه ی هنجاری با دامنه بزرگ‌تری باشد.

مقایسه ی پذیرفتاریهای مغناطیسی اندازه‌گیری شده نمونه‌های سطحی از یک فلدسپار تراکی آن‌دزیت پوزفیری در منطقه KC5 غربی و مغناطیسی حفاری از همان واحده ان‌شانه‌ای در منطقه معدن من دهنه سیاه نشان می‌دهد که میانگین این پارامتر اندازه‌گیری شده در اولی نصف از دومی است (جدول 4). با توجه به ی هنجاره مغناطیسی با دامنه کوچکتر ناشی از فلدسپار تراکی آن‌دزیت پوزفیری در منطقه دهنه سیاه نسبت به ی هنجاری ایجاد شده از همان منطقه یک یا دو برابر غربی است.

واحده ان‌شانه‌ای در منطقه KC5 غربی و نیز پذیرفتاری مغناطیسی کمتر ان‌دزیت غربی از این سنجش‌های ان‌شانه‌ای در منطقه KC5 غربی نسبت به منطقه دهنه سیاه چنین برنده که می‌شد که این افزایش ی پذیرفتاری مغناطیسی و در نتیجه خاستگاه ی هنجاری با دامنه بزرگ‌تر غربی در دهنه سیاه به کانی‌های غربی تاناهی همراه با کانی‌های سیاه در منطقه دهنه سیاه در فلدسپار تراکی آن‌دزیت پوزفیری و عدم کانی‌های‌ی سیاهی اصلی در این واحده ان‌شانه‌ای در منطقه KC5 غربی نشان می‌دهد که یکی سازه اصلی در منطقه KC5 غربی یا پیوست در عمق کانی‌های سیاه به شکل یک ترکیب شفاف تراکی سیاهی است.

همچنین مقایسه دامنه ی هنجاره مغناطیسی اندازه‌گیری شده بر یک پی‌روکسنس آن‌دزیت پوزفیری در منطقه KC5 غربی و فلدسپار تراکی آن‌دزیت پوزفیری در منطقه معدن من دهنه سیاه (جدول 6) نشان می‌دهد که پی‌روکسنس آن‌دزیت پوزفیری و وجود ی پذیرفتاری مغناطیسی کمتر، با دامنه ی هنجاری از آن دو برابر فلدسپار تراکی آن‌دزیت پوزفیری است. این مقایسه یا یکی از دیگر است بر عمق مشترک‌کننده ی هنجارگاهی در منطقه KC5 غربی.

منطقه KC5 غربی یا پیوست در عمق کانی‌های سیاه به شکل یک ترکیب شفاف تراکی سیاهی است.

منطقه KC5 غربی یا پیوست در عمق کانی‌های سیاه به شکل یک ترکیب شفاف تراکی سیاهی است.
تفسیر شده است. مقایسه بی هنجاری مغناطیسی ناشی از واحدهای انششنهای در منطقه KC5 غربی، شکل‌های ۵ و ۶ نشان می‌دهد که در اولی دو واحدهای یکی از پرکسن اندزیت پورفیری بزرگتر از فلدسپار منقرضات کننده تاریک اندزیت پورفیری است. حضور اندزیت پورفیری که در بخش‌های مغناطیسی منطقه KC5 شرکت می‌کند (جدول ۶) حاصل از این واحدهای انششنهایی را در این منطقه ناپذیر می‌کند.

جدول ۶ مقایسه پدیفراتی مغناطیسی و دامنه بی هنجاری در KC5 غربی و دهنده سیاه

<table>
<thead>
<tr>
<th>پدیفراتیر در کلیه کنونی</th>
<th>پدیفراتیر در کلیه کنونی</th>
<th>پدیفراتیر در کلیه کنونی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۲۵۰۰۰۰۰۰</td>
<td>۰/۲۵۰۰۰۰۰۰</td>
<td>۰/۲۵۰۰۰۰۰۰</td>
</tr>
</tbody>
</table>

شکل ۶ اینفوگرافیک شده بی‌هنجاری مغناطیسی در شرقی و واحدهای سنگی تفسیر شده KC5 غربی در دهه L05W زیر پوشش آن. ب) نمروخ شدت میدان مغناطیسی در شرقی و واحدهای سنگی تفسیر KC5 غربی در دهه L30W زیر پوشش آن.
مقایسه بذریفناوری مغناطیسی و دانه‌ی پی هنجره‌ای مغناطیسی بین مناطق دهنه سیاه KC5 غربی و کیفیتی KC5 شرقی نشان می‌دهد که اولی و سومی بیشتر به هم نزدیک بوده و با دومی از نظر دو کمیت یاد شده اختلاف دارد.

بحث و برداشت

پذیرفتن‌هایی مغناطیسی انداره‌گیری شده روی واحد فلدسپار تراکی آندزیت پورفیری از مگرهای حواری (از دوچه که خارج از کانی سازی اصلی بوده و در کنار کانی سازی در آنها توانایی انتقال میدان دهنده سیاه نشان می‌دهد که این سری در هر دو قاعده شده و تغییر جندانی ندارد. میانگین دامنه بذریفناوری مغناطیسی SI غربی روی روزهای 1300000000 و نسبت یکمی‌های مغناطیسی انداره‌گیری شده از سروردها میدان این منطقه (جدول ۲) بی‌کهتم سنگ بهبود است. انداره‌گیری‌های این کمیت فیزیکی در منطقه KC5 غربی نمونه‌های سطحی پیروکس دانه‌نیزه و فلدسپار تراکی آندزیت پورفیری جدول‌های ۴ و ۵ نتایج نافذ کرده که این منطقه آن در منطقه KC5 غربی تقریباً نصف میانگین در منطقه میدان مس دهنده سیاه است (فلدسپار تراکی آندزیت پورفیری در هر دو منطقه مشابه می‌شود).

شدت کل میدان مغناطیسی در هشت نمیرمتر از ۲۲۳ نقطه در مناطق میدان مس دهنده سیاه کیفیتی KC5 غربی و شرقی KC5 شرقی (شکل‌های ۴ و ۵) انداره‌گیری شد دانه‌ی پی هنجره‌ای مغناطیسی انداره‌گیری میدان دهنده از واحد فلدسپار تراکی آندزیت پورفیری در منطقه میدان غربی کیفیتی KC5 گزاره ۵۰۰ تا ۴۰۰ کاما است. و روی واحد پیروکس آندزیت پورفیری در منطقه KC5 غربی ۹۰۰ کاما بوده است. پذیرفتنی مغناطیسی واحد فلدسپار تراکی آندزیت پورفیری در منطقه کیفیتی KC5 غربی حداکثر صفر بذریفناوری مغناطیسی انداره‌گیری شده از همین واحد آنتنشیشنی در منطقه دهنده سیاه بوده در صورتی که غربی بزرگتر از همان واحد در دهنه سیاه است. بنابراین خاستگاه بی‌هنجره‌ای با دامنه بزرگتر در منطقه KC5 غربی عمیق است. پذیرفتنی دامنه بی‌هنجره‌ای مغناطیسی روی واحد پیروکس آندزیت پورفیری در منطقه KC5 غربی واقع شده در حاليه
پیچفتاری مغناطیسی آن با ایجاد آتش‌سوزی دیگر این منطقه یک کن است. بازهم نتیجه می‌شود که خاستگاه یان هنجاری ناشی از پیروکسن آندزیت پورفیری نیز در قرار دارد.

یان هنجاری مغناطیسی یا به شدت بالای بررسی شده در این کار (شکل 2) علاوه بر انطباق با آثار کانی سازی مس در محدوده اکتشافی KC5 و معدن متروکه سرسه دهنه سیاه، بر تعداد زیادی دیگر معدن متروکه مس (مثل جشمه گز، بانوی، خزگال و...) در بخش از فوکالیت واژه‌ای و بخش تحتانی تنش‌تنهایی سری عریان در ناحیه منطقه اکتشافی (یا یکی از آنها در شکل شماره 1 نظام داده شده است) با نتوانه به فاصله این مناطق کانی سازی از یکدیگر و هم‌اکنون کانی سازی نابیزه به یان هنجاری مغناطیسی هواپیمایی متاثر، در این افق خاص در طول حدود 40 کیلومتر بدون شک این دو (کانی سازی اصلی و یان هنجاری مغناطیسی) با هم مرتبط نمی‌شود.

مطالعات تونشنیمیایی تنش‌تنهایی رودخانه‌ای نیز علاوه بر مناطق KC5 و دهنه سیاه، وجود یان هنجاری‌های دیگری را نیز ممکن با این افق کانی سازی را نیز تایید می‌کند. تمامی این معدن‌های قدمی و یان هنجاری‌های تونشنیمیایی در برخی ویژگی‌های مشترکی از جمله پرداش‌با کانی‌های مغناطیسی هواپیمایی دارای وضعیت زون کانی‌سازی، نوع دگرگردانی، حالت کانی‌سازی و نوع کانی‌ها هستند که نشان می‌دهد کانی‌سازی‌ها از یک حالت و در شرایط یکسانی تشکیل شده‌اند و[9].

همه این شواهد دلیلی بر این است که محلول کانه دار از برخوردیش فوقانی فلدسبار تراکی آندزیت پورفیری و بخش تحتانی تنش‌تنهایی سری عریان یک گسل بهره‌برداره و در افق مناسبی در دری و شکستگی‌ها کانی سازی مس شکل گرفته است. حضور زولنت‌ها کلارسدار و کلریت میوت این است که محلول کانی‌سازی پلایی و محلول غنی از کلسیم pH بوده است. گسترده‌تر بودن کانی سازی در طول 40 کیلومتر نشان می‌دهد که خاستگاه کانی‌سازی بسیار وسیع بوده و بی‌جنبه‌ای یا غیره‌ای را می‌طلبد [8].

مراجع
[8] کریم‌پور محمد حسن، ملکزاده شفرودری آزاده، "زمین‌شناسی کانی‌سازی و آنتراسیون در محدوده اکتشافی مس سین "KS5 استان خراسان رضوی"، مجموعه مقالات دوازدهمین همایش بورشنسی، کانی‌سازی ایران، دانشگاه شهید چمران اهواز، صفحه 185 (1368).

[9] حیدریان محمد رضا، کریم‌پور محمد حسن، ملکزاده شفرودری آزاده، "نماگیری مغناطیسی زمینی در منطقه معدن مس دهنه سیاه و محدوده اکتشافی KS5 (بردسکن-استان خراسان رضوی)"، طرح پژوهشی مکرر تحقیقات ذخایر معدنی شرق ایران، دانشگاه فردوسی مشهد، 1360 صفحه.

[11] حیدری عباسقلی، تازیپور غلامرضا، کریم‌پور محمد حسن، سعادت سیدمحسن، "گرنشی بر شواهد کانی‌سازی مس در شمال شرقی"، فصلنامه مطالعات هشت‌مین همایش بورشنسی و کانی‌سازی ایران، دانشگاه فردوسی مشهد، صفحه 65-71 (1379).

[12] خوئینی ناصر، قربانی منصور، تاجیکش پیمان، "کانی‌سازی مس در ایران"، سازمان زمین‌شناسی و اکتشافات معدنی کشور. 1378 صفحه.

[16] يوسفی امکلی، "غشیده شده سیان کل مغناطیسی 1:100000:سازمان زمین‌شناسی"، برگ شماره 3 سازمان زمین‌شناسی کشور (1390).