Comparison of Two Methods for Deficit Irrigation of Sorghum

Abstract

Shortage of water is the most important limiting factor for crop production in arid and semi-arid regions of Iran. Higher efficiencies for the present water supply can be obtained by deficit irrigation. Seasonal and intra-seasonal approaches for deficit irrigation for Sorghum are compared in this study. The data for deficit irrigation were collected at the Baghali area, a semi-arid region, located 16 km north of Shiraz, in southern Iran. Time pattern distribution of applied water was not considered in their seasonal approach and the cost-benefit ratio analyses are performed on an annual basis. Decision making in the intra-seasonal approach is based on water allocation at different growth stages of crop. The results showed that there are some differences between the two approaches as far as the optimal water reduction is concerned. Seasonal approach showed a constant water reduction (18%) irrespective of water cost variation, while the intra-seasonal method offered higher allowable water reduction of 23% for unit water cost of 10 Rials which may lead to a more economical water use. However, the result obtained in the intra-seasonal method is sensitive to the unit water cost and the allowable water reduction becomes lower than that of the seasonal approach at the higher unit water cost. These results confirmed a previous result on Corn about the differences for the two approaches. Meanwhile, there is a substantial difference between the results for Sorghum and Corn in two different approaches.

Keywords: Economic analysis, Optimum irrigation, Seasonal deficit irrigation, Intra-seasonal deficit irrigation
sound definition for Y/Y_p, Nairizi and Rydzewski (1977) and Meyer et al. (1993) approximated the
(ET_p/ET_{ch}) by (W/W_p), where W_p and W_p stand for applied water and potential water needs, respectively. It
should be noted that this is valid only when deep
percolation is almost negligible. Furthermore, rainfall
during the growing season is considered negligible.
This approximation is not valid for systems where
water application efficiency is low. With low water
application efficiency, deficit irrigation in arid and
semi-arid areas may respond differently for the first
irrigation in the growing season. This is due to the fact
that soil water can supply some of the plant water
requirements. However in this condition the readily
available soil water is used up before each deficit
irrigation is applied. Therefore, the value of W_p is taken
equal to the amount of applied water.

The total amount of seasonal irrigation requirement in
full irrigation, ET_{ch}, is reduced by a fraction of x ($x<1$)
for a deficit irrigation. Therefore, the total seasonal
water allocated to a given crop is as follows:

$$\Sigma(W_x) = (1-x) \cdot \Sigma(ET_{ch})$$

(4)

with a logical constraint as follows:

$$0 \leq (W_x) \leq \Sigma(ET_{ch})$$

(5)

Following the previous simplifying assumptions, Eq.
(3) illustrated a nonlinear optimization model, for
which the Eqs. (4) and (5) are the constraints. The
solution for Eq. (3) can be found in optimization
textbooks (e.g., Luenberger, 1984). The details of the
solution by Lagrangian multiplier for some crops are
presented by Ghaframan and Sepaskhah (1997). There
are no field-measurements available for x,
corresponding to different growth stages of Sorghum.
Rao et al. (1988), after Doorenbos and Kassam (1979),
have proposed a simple multiplicative model similar to
Eq. (3), as follows:

$$Y/Y_p = \Pi [1-K_y] \cdot [1-ET_{ch}/ET_{ch}]$$

(6)

where K_y is the water sensitivity factor reported by
Doorenbos and Kassam (1979). Set of Eqs. (6), (4),
and (5) represent an optimization model simplified as
$(W/W_p) = (ET/ET_{ch})$. A solution of this model may be
found in Ghaframan (2008).

Results show that the relative crop yield reduced as the
values of water reduction x increased. On the other
hand, the saved irrigation water can be used to cultivate
more land. The total cultivated area can be increased by
a factor of $1/(1-x)$. Thus, the ratio of net benefit of
deficit irrigation to full irrigation Z (the relative net
benefit) was calculated as follows (Ghaframan &
Sepaskhah, 1997):

$$Z = \left(\frac{B}{C} \cdot \frac{Y}{Y_p} \cdot (1-x) \cdot \frac{B}{C} - 1\right)$$

(7)

in which B is the benefit (revenue) for the unit area
and C is the cost of crop production as defined in Eq.
(2). Y will be given in Eqn (8) later, as a function of
unit water cost.

In reality, water stress in a specific stage of plant
growth may affect the plant growth in other stages.
However, in this analysis it was assumed that: 1) there
is no interaction between stages of growth, and the
analysis is applicable to determinate crops, 2) irrigation
water can be applied at any moment on request, 3)
rainfall during the growing season is negligible, 4)
deficit irrigation just decreases the quantity of yield and
its quality is either unaffected or it does not affect the
sale price, and 5) irrigation water is applied uniformly.

Experimental Data
The data is obtained from an experiment conducted at
Bajigah Agricultural Experiment Station for Sorghum
(Sorghum bicolor (L.)). This station is located 16 km north
of Shiraz (Fars province, I.R. of Iran) at 29°32 N and
52°35 E (elevation 1810 m). There was no rainfall
during the growing season. The climate of the study
area is semi-arid as reported by Malek (1981). The time
of occurrence of different growth stages and their
sensitivity index for Sorghum are obtained from
Doorenbos and Kassam (1979) and are listed in Table 1.
Sorghum evapotranspiration has been measured in
the field by Ghasemi (1999). The yield data were
obtained from experiments conducted in Bajigah and
Karshkak Agricultural Experiment Stations in Shiraz
University (Ghasemi, 1999) for grain Sorghum (Kimia,
a local cultivar) at different irrigation intervals (10-, 15-
and 20-day) and different irrigation methods (ordinary
furrow, fixed-ever-other-furrow, and variable ever-
other-furrow) on clay loam soil, in 1998 (planted at first
week of May). The plant population was 133300 per
hectare. The EC of irrigation water was 0.5 dS/m. The
amounts of applied water for each irrigation treatment
were also measured. The Sorghum yield harvested at the
last week of October and grain with 14% moisture
content was separated from the top and weighed. The
relative grain yield was calculated as the ratio of grain
yield at different irrigation treatments to that obtained
at ordinary furrow irrigation treatment with 10-day
intervals and optimized agronomic conditions
(maximum yield).
sound definition for \(\gamma \). Nairizi and Rydzewski (1977) and Meyer et al. (1993) approximated the \((\gamma, \theta)\) by \((W, W^r)\), where \(W\) and \(W^r\) stand for applied water and potential water needs, respectively. It should be noted that this is valid only when deep percolation is almost negligible. Furthermore, rainfall during the growing season is considered negligible. This approximation is not valid for systems where water application efficiency is low. With low water application efficiency, deficit irrigation in arid and semi-arid areas may respond differently for the first irrigation in the growing season. This is due to the fact that the soil water can supply some of the plant water requirements. However, in this condition the readily available soil water is used up before each deficit irrigation is applied. Therefore, the value of \(W\) is taken equal to the amount of applied water.

The total amount of seasonal irrigation requirement in full irrigation, \(\Sigma W^r\), is reduced by a fraction of \(x(1-x)\) for a deficit irrigation. Therefore, the total seasonal water allocated to a given crop is as follows:

\[
\Sigma W^r = (1-x) \Sigma (\gamma, \theta) \]

with a logical constraint as follows:

\[
(1-x) \leq \Sigma (\gamma, \theta) \leq x \Sigma (\gamma, \theta)
\]

Following the previous simplifying assumptions, Eq. (3) illustrated a nonlinear optimization model, for which the Eqs. (4) and (5) are the constraints. The solution for Eq. (3) can be found in optimization textbooks (e.g., Lukenberger, 1984). The details of the solution by Lagrangian multiplier for some crops are presented by Ghahraman and Sepaskhah (1997). There are no field-measurements available for \(\lambda\), corresponding to different growth stages of Sorghum. Rao et al. (1988), after Doorenbos and Kassam (1979), have proposed a simple multiplicative model similar to Eq. (3), as follows:

\[
Y/N = \Pi_l[1-K_l(1-\mu/\gamma, \theta, \mu/\gamma, \theta)]
\]

where \(K_l\) is the water sensitivity factor reported by Doorenbos and Kassam (1979). Set of Eqs. (6), (4), and (5) represent an optimization model simplified as \((W^r, W^r) = (\gamma, \theta, \mu/\gamma, \theta)\). A solution of this model may be found in Ghahraman (2000).

Results show that the relative crop yield reduced as the values of water reduction \(x\) increased. On the other hand, the saved irrigation water can be used to cultivate more land. The total cultivated area can be increased by a factor of \(1/(1-x)\). Thus, the ratio of net benefit of deficit irrigation to full irrigation \(Z\) (the relative net benefit) was calculated as follows (Ghahraman & Sepaskhah, 1997):

\[
Z = \frac{B}{C} \left[\frac{Y/N}{(1-x)} \right] \left[\frac{1}{((1-x)/(B/C))} \right]
\]

in which \(B\) is the benefit (revenue) for the unit area and \(C\) is the cost of crop production as defined in Eq. (2). \(Y\) will be given in Eqn. (8) later, as a function of unit water cost.

In reality, water stress in a specific stage of plant growth may affect the plant growth in other stages. However, in this analysis it was assumed that: 1) there is no interaction between stages of growth, and the analysis is applicable to determinate crops, 2) irrigation water can be applied at any moment on request, 3) rainfall during the growing season is negligible, 4) irrigation just decreases the quantity of yield and its quality is either unaffected or it does not affect the sale price, and 5) irrigation water is applied uniformly.

Experimental Data
The data was obtained from an experiment conducted at Bajah Agricultural Experiment Station for Sorghum (Sorghum durra L.). This station is located 16 km north of Shiraz (Fars province, I.R. of Iran) at 29°32' N and 52°35' E (elevation 1810 m). There was no rainfall during the growing season. The climate of the study area is semi-arid as reported by Malek (1981). The time of occurrence of different growth stages and their sensitivity index for Sorghum are obtained from Doorenbos and Kassam (1979) and are listed in Table 1. Sorghum evapotranspiration has been measured in the field by Ghahraman (1999). The yield data were obtained from experiments conducted in Bajah and Kooshkarak Agricultural Experiment Stations in Shiraz University (Ghahraman, 1999) for grain Sorghum (Kimia, a local cultivar) at different irrigation intervals (10-, 15-, and 20-day) and different irrigation methods (ordinary furrow, fixed-every-other-furrow, and variable every-other-furrow) on clay loam soil, in 1998 (planted at first week of May). The plant population was 133200 per hectare. The FC of irrigation water was 0.5 dsm⁻¹. The amounts of applied water for each irrigation treatment were also measured. The Sorghum yield harvested at the last week of October and grain with 14% moisture content was separated from the top and weighed. The relative grain yield was calculated as the ratio of grain yield at different irrigation treatments to that obtained at ordinary furrow irrigation treatment with 10-day intervals and optimized agronomic conditions (maximum yield).
Table 1 - Some characteristics of Sorghum at Bajgah

<table>
<thead>
<tr>
<th>Physiological stage</th>
<th>Date</th>
<th>Ky</th>
<th>Length of period (d)</th>
<th>Potential evapotranspiration ET₀ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting</td>
<td>31 May</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establishment</td>
<td>25 June</td>
<td>0.01</td>
<td>25</td>
<td>114.1</td>
</tr>
<tr>
<td>Vegetation</td>
<td>30 July</td>
<td>0.20</td>
<td>35</td>
<td>189.0</td>
</tr>
<tr>
<td>Flowering</td>
<td>24 August</td>
<td>0.55</td>
<td>25</td>
<td>145.0</td>
</tr>
<tr>
<td>Yield formation</td>
<td>13 October</td>
<td>0.45</td>
<td>30</td>
<td>270.9</td>
</tr>
<tr>
<td>Ripening</td>
<td>31 October</td>
<td>0.20</td>
<td>18</td>
<td>23.1</td>
</tr>
<tr>
<td>Entire season</td>
<td></td>
<td>0.90</td>
<td>153</td>
<td>742.1</td>
</tr>
</tbody>
</table>

The relationship between grain yield and applied water was determined as water production function (Fig. 1). Furthermore, the relationship between production cost and applied water was also determined for different water prices. These relationships were used in the economic analysis.

\[
Y = -7.274 + 0.0313W - 0.000018W^2
\]

For which \(R^2 = 0.93 \), Standard error (SE) = 0.5, and Significance probability \(p < 0.0004 \).

This production function was obtained for short furrow irrigation with application efficiency of about 90% which is attainable in short furrows with precise determination of irrigation water requirements. The regression coefficients (\(a_1, a_2, \) and \(c_2\)) are statistically significant at probability levels of 0.03, 0.04 and 0.04, respectively. Furthermore, the high \(R^2 \) and low SE and \(p \) values of the multiple regression indicated that using the amounts of irrigation water from different furrow irrigations and irrigation intervals resulted in a statistically significant multiple regression equation. Therefore, this production function is applicable for the study area using surface irrigation (Ghasemi, 1999). However, different production functions may be obtained for different irrigation methods such as sprinkler or trickle irrigation. A similar equation for the production function of Sorghum was obtained in another area located 75 km north of Bajgah area (Ghasemi, 1999) and High Plain of Kansas (USA) (Stone et al., 1996). Furthermore, the obtained production function was somewhat similar to that reported by Sharma and Alonso Neto (1986) in northeastern Brazil. Therefore, it may be applicable to similar areas in the region.

On the other hand, total variable cost (C. Rls ha\(^{-1}\)) of production may be represented as follows:

\[C = a_1 + b_1 W \]

where \(a_1 \) is the fixed cost and \(b_1 \) is the slope of line. Where the applied water \(W \) is variable, the total cost \(C \) is also variable. Ghasemi (1999) has calculated \(C \) as 779621 Rls ha\(^{-1}\) (8000 Rls is one US Dollar).

A local survey showed that the price of Sorghum is in the order of 430 Rls kg\(^{-1}\). With definite functions of Sorghum yield and cost, optimal amounts of water for maximum yield \((W_{max}) \) (6.333 t ha\(^{-1}\)), and maximum benefit for water-limiting condition \((W_{w}) \) would be as follows:

\[W_{w} = b_1 / (2c_2) \]

\[W_{max} = (P_c - a_1 - a_3) / (P_c c_3)^{1/2} \]

Where \(b_1 \) and \(c_2 \) are the second and third coefficients of yield-water production function (Eq. 8), \(a_1 \) is the first coefficient of yield-water production function (Eq. 8), \(a_3 \) is the fixed cost of production or the first coefficient of cost function (Eq. 9), \(P_c \) is the price per unit weight of crop, and \(c_3 \) is the third coefficient of yield-water production function (Eq. 8). Equation (10) was
obtained by maximizing Eq. (8). Equation (11) was obtained by substituting derivatives of Eqs. (8) and (9) in Eq. (1).

The maximum benefit for water non-limiting condition \((W_f)\) would be as follows:

\[
W_f = \frac{(b_2P + b_1)}{(2P + c)}
\]

(12)

Where \(b_2\) is the slope of cost function (Eq. 9) and \(P\), and \(c\) were described previously. Equation (12) was obtained by substituting Eqs. (8) and (9) and their derivatives in Eqn. (2).

The values of \(W_m\), \(W_s\), and \(W_f\) were computed as 869, 710.5 and 837.3 mm (with water price of 50 Rls m\(^{-3}\)), respectively. This means that under limited water supply, 18% reduction in the amount of applied water is an optimum policy especially when the price of water is very low as in the case in Iran. Furthermore, when the water is limiting, the \(W_m\) is reduced about 15% compared with \(W_f\). It is interesting to note that the ratio of irrigation need \(W_m\) or \(W_s\) (Eqs. 10 and 11, respectively) depend on the cost of water and irrigation application efficiency. This might be due to the fact that performance of irrigation has not been taken into account in economic analysis. Figure 2 shows the mutual effect of water cost and applied water depth in the farm net benefit. It appears that corresponding to every water cost, there is a unique optimal water depth to maximize farm income. The variation pattern is however somewhat identical for all water prices. Figure 2 also shows that, with the seasonal approach (Eq. 2), for a specific net benefit, more irrigation water is required as the unit water cost rises. With a water cost of 250 Rls m\(^{-3}\) and higher there will be virtually no farm benefit.

The relationship between the values of \(X\) (the relative net benefit) and the values of \(x\) (fraction of water reduction) at different values of benefit to cost ratio \((B/C)\) are calculated based on Eq. (7). The results are shown in Fig. 4. The range of \(B/C\) (1.1 to 2.4) used in this analysis corresponds to the values that may occur in case of seasonal analysis with different amounts of applied irrigation water. In this analysis, the production cost was assumed to be independent of the method and intervals of irrigation as shown in Eq. (9). In Iran more than 50% of irrigation water is supplied by private pumping wells. Furthermore, the labor cost for irrigation is not a considerable amount. Therefore, the most significant exogenous variables influencing \(B/C\) ratio are the fixed production cost and benefit (revenue) per unit area. Figure 4 indicates that deficit irrigation is valid through a range of water reduction rates starting at 0% (full irrigation) and terminating at 50% in this study. There is a unique point in this range, however, that maximizes the relative net benefit. In this study, 8% water reduction can maximize relative net benefit irrespective of \(B/C\) ratio (except for \(B/C=1.1\) which needs 7% water reduction). Generally this is also dependent on \(B/C\) (e.g., Ghabraman & Sepaskhah, 1997). This discrepancy may be due to less sensitivity of Sorghum to water deficit at various growth stages (Table 1) compared to those for other crops. As \(B/C\)
ratio increases, there will be a higher range of water reduction and also a higher relative net benefit (Fig. 4). The relationship between values of Z and x for Sorghum is quite different from that obtained for Corn (Ghahraman et al., 2001) in which the similar values of Z were obtained for much higher values of B/C.

![Figure 4: Simulated relative net benefit for Sorghum at different water reduction and B/C ratios](image)

Comparison of the Methods

Table 2 compares the results of relative Sorghum grain yield and the net benefit between seasonal and intra-seasonal methods at different depths of applied water, irrigation application efficiency, and the cost of water. The results clearly indicate that for the applied water depths less than 500 and 600 mm with water prices lower than 200 and 100 Rs m⁻³, respectively, the intra-seasonal approach results in a more economical yield. This might be due to the approximation of \((\text{ET}_l/\text{ET}_p)\times (\text{W}_p/\text{W}_l)\), which is valid only when deep percolation is almost negligible. For applied water depths greater than 600 mm the corresponding deep percolation may not be negligible. In theory, the intra-seasonal approach shows better results if irrigation application efficiency is considered in the economic analysis. Due to the applied restrictions for this study (50% max of supply reduction), the results are not presented for water depths less than 400 mm. The seasonal model does not have this restriction in its structure.

The results revealed that for water reduction of about 31% (1-700/869) and higher, the intra-seasonal approach results in a higher net benefit. However, the irrigation application efficiency and uniformity are not included in the intra-seasonal approach. The seasonal approach was analyzed under a high application efficiency of about 90%. In general, the seasonal approach is more reliable since it considers the sensitivity of the crop stage to water deficit and crop production. Furthermore, 1< water reduction of 20%

Table 3 shows the optimum water reductions of Sorghum under seasonal approach. Results are presented for water limiting and water-non limiting conditions at different water costs. The maximum allowable water deficit under intra-seasonal approach at different B/C ratios are also printed. In general, the allowable amounts of water reduction for Sorghum are higher than those for Corn as reported by Ghahraman et al. (2001). Table 3 shows that in the seasonal approach Sorghum is completely insensitive to water cost changes. The optimal water reduction for Sorghum is 18% while the optimum water reduction for Corn varied between 4.8 to 3.1% for water prices between 15.55 to 200 Rs m⁻³. However, this was not the case for the intra-seasonal approach and an optimal water reduction of 25% was obtained for the higher value of B/C (2.4). The value of water reduction was decreased to 11% as the B/C value reduced to 1.4. No water reduction is allowed when the B/C value is smaller than 1.0 (Table 3). Due to the assumptions considered in the theory of seasonal approaches (English, 1990), the reduction in applied water was not dependent on the water price (Eq. 11). However, for water-non limiting condition, the optimum reduction in applied water was dependent on the water price (Eq. 12). Furthermore, the denominator of the B/C ratio (i.e., C) was dependent on water price according to Eq. (9). Therefore, the optimum water reduction was dependent on the water price for intra-seasonal approach. For seasonal approach this happens for water-non limiting condition.

As the water price increased the allowable water reduction increased and an optimum water reduction of 14.2% resulted for a water price of 200 Rs m⁻³.

In fact, the intra-seasonal approach showed a high degree of sensitivity to water cost. This is more rational, while it was not obtained for the seasonal approach.

The results showed that there was a remarkable difference between the results of allowable water reduction obtained by these two scenarios for Sorghum. Between these two approaches the intra-seasonal approach seemed more realistic under field conditions. Sorghum is not a highly water sensitive crop (Table 1), therefore, the allowable water reductions for both methods are considerable (Table 4).
Table 2 - Simulated relative grain yield and net benefit for Sorghum at different depths and costs of water.

<table>
<thead>
<tr>
<th>Depth of Water (mm)</th>
<th>Unit water cost (Rls/m³)</th>
<th>Net benefit (Rls*10⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S⁺⁺⁺</td>
<td>IS⁺⁺⁺</td>
</tr>
<tr>
<td>400</td>
<td>0.374</td>
<td>0.547</td>
</tr>
<tr>
<td>400</td>
<td>0.374</td>
<td>0.547</td>
</tr>
<tr>
<td>500</td>
<td>0.612</td>
<td>0.762</td>
</tr>
<tr>
<td>600</td>
<td>0.794</td>
<td>0.907</td>
</tr>
<tr>
<td>700</td>
<td>0.918</td>
<td>0.996</td>
</tr>
<tr>
<td>800</td>
<td>0.986</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>0.952</td>
<td>1</td>
</tr>
</tbody>
</table>

* S⁺⁺⁺: Seasonal approach
* IS⁺⁺⁺: Inter-seasonal approach

Table 3 - Optimum and maximum allowable water reduction for seasonal and intra-seasonal approaches, respectively

<table>
<thead>
<tr>
<th>Cost of water (Rls/m³)</th>
<th>Seasonal approach</th>
<th>Intra-seasonal approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water reduction (%)</td>
<td>Benefit to cost ratio B/C</td>
</tr>
<tr>
<td></td>
<td>Water limiting</td>
<td>Non-limiting</td>
</tr>
<tr>
<td>0</td>
<td>18.2</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>18.2</td>
<td>3.7</td>
</tr>
<tr>
<td>50</td>
<td>18.2</td>
<td>7.4</td>
</tr>
<tr>
<td>100</td>
<td>18.2</td>
<td>11.1</td>
</tr>
<tr>
<td>200</td>
<td>18.2</td>
<td>14.9</td>
</tr>
</tbody>
</table>
A similar research was conducted for corn by Ghahraman et al. (2001). They concluded that although there was a noticeable difference between the outcomes of the two approaches, there was a narrow range for water reduction for corn. The optimum water reduction for corn in the seasonal approach with the present price of water is much lower than that of sorghum, i.e., 5% vs. 18.2% (Ghahraman et al., 2001). The difference between optimum water reduction under seasonal and intra-seasonal approaches with the present price of water was lower for sorghum compared to that of corn, i.e., 1.25 to 2.0 (Ghahraman et al., 2001). The distinct difference between corn and sorghum in response to seasonal and intra-seasonal approaches is mainly due to the sensitivity of corn to water deficit. Furthermore, Stone et al. (1996) indicated that corn produced more grain than sorghum when the total irrigation plus rainfall is more than 671 mm. Sorghum is a better choice when this decreases to less than 532 mm.

Conclusions
The results of this research again confirmed that seasonal and intra-seasonal approaches yield different outcomes for sorghum (i.e., a less sensitive crop to water stress) compared to corn (i.e., a sensitive crop to water stress). The allowable range for water reduction for sorghum in an intra-seasonal approach is rather wide since it is not a water sensitive crop. In computing the optimal water reduction, the seasonal approach did not respond to either water cost or irrigation application efficiency, which shows its unrealistic assumptions are inherent in its theory. The results clearly showed that the intra-seasonal approach yielded more economical preferences for sorghum with a low price of water. However, the results obtained in the intra-seasonal method are sensitive to the unit water cost and the allowable water reduction becomes lower than that of the seasonal approach at the higher cost per unit. It is also concluded that for corn, in contrast to corn, the difference between seasonal and intra-seasonal approaches with water price of about 25 Rls m⁻³ is negligible and both methods result in similar optimum water reductions.

The production function may be different with various irrigation methods (i.e., surface irrigation, sprinkler or trickle irrigation) in the seasonal model. Therefore, appropriate function is required for the relevant irrigation methods. The production cost may be dependent on the irrigation methods for intra-seasonal models. Therefore, the B/C ratio may be dependent on the irrigation method. Furthermore, this model may be more appropriate for flexible schemes of irrigation such as private well for water supply.

References

Submitted: December 5, 2004
Revised: July 8, 2006
Accepted: September 25, 2006