High Performance Bragg Gratings in Chalcogenide Glass Rib Waveguides Written with a Modified Sagnac Interferometer: Fabrication and Characterization

M. Shokooh-Saremi1, V. G. Ta'eed1, N. J. Baker1, I. C. M. Littler1, D. J. Moss1, B. J. Eggleton1, Y. Ruan1 and B. Luther-Davies2

1Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, Sydney NSW 2006, Australia, E-mail: mehrdad@physics.usyd.edu.au
2Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT, Australia

Abstract: We report high performance Bragg gratings in As2S3 chalcogenide glass rib waveguides, written with a modified Sagnac interferometer for the first time. Grating growth dynamics obtained from an in-situ monitoring setup are presented and analyzed.

Chalcogenide glasses have attracted significant attention in the past few years as promising nonlinear optical materials in the infrared telecommunications window. As2S3 is one of these glasses that exhibits a high third order nonlinearity (~400 times of silica), low two photon absorption (and hence good figure of merit), and furthermore its optical properties can be stoichiometrically tuned. In addition, it is photosensitive when exposed to visible light near its optical absorption edge (~514-632 nm) [1-2]. This phenomenon has been utilized in fabrication of optical devices such as waveguides and gratings [3-6]. To date, however, the performance specifications of Bragg gratings in chalcogenide waveguides have been limited.

In this paper, we present high performance waveguide gratings in As2S3 chalcogenide glass rib waveguides. These gratings are of high enough quality to be appropriate for advanced all-signal processing applications, such as optical regeneration. The gratings are written using a highly stable holographic writing setup based on a modified Sagnac interferometer. This setup allows easy Bragg wavelength tuning with high quality grating apodization, and has enabled us to achieve very strong, well apodized Bragg gratings in As2S3-based rib waveguides. In addition, we present detailed grating growth dynamics using an in-situ monitoring setup.

Figure 1 shows the grating writing configuration. A CW, frequency-doubled, diode-pumped Nd:YAG laser at λ = 532 nm (maximum available power at the sample of 50 mW) is used as light source. The (linearly polarized) beam is telescopically expanded, cylindrically focused and split using a phase mask (Λm = 1063.3 nm). The +1 and -1 orders are reflected from a pair of mirrors and interfere at the surface of the waveguide sample (TE polarized) with a spot size at the writing plane of 5.5 × 0.6 mm2. The laser’s short coherence length (~4 mm) limits the length of the interference pattern, and results in a nearly ideal raised-apodized grating ~4 mm in length. Tuning the Bragg wavelength of the grating can be achieved by changing the angle of the mirrors and displacement of the sample holder. Gratings are characterized with an unpolarized high-power C-band EDFA-ASE source, an auto-alignment system and a silicon detector attached to a power meter. The output of the laser source was butt-coupled into the waveguide via a high-NA fiber. A second high-NA fiber coupled the transmitted output firstly to the detector for getting the best power coupling into the waveguide and then to an optical spectrum analyzer (OSA) with 60 pm resolution bandwidth in order to measure the grating transmission spectra. A bulk optics polarization controller was placed between the sample and light source and adjusted to obtain the maximum polarization extinction ratio for the two orthogonal polarization states (TE and TM). Figure 2 shows the normalized transmission spectra of a grating written in a 4 µm wide, 5 cm long rib waveguide (slab height = 1.39 µm and rib height = 2.39 µm) for TE polarization. The total writing power and exposure time were 6.0 mW and 60 seconds, respectively. From Figure 2, it is clear that this grating is strong (Δnae ~ 7.7×10-3) and the bottom of the transmission dip is < -33 dB limited by the dynamic range of our measurement setup. The other shallow transmission dip at ~1545 nm is due to the effect of higher order (leaky) modes supported by this waveguide.

To investigate the growth behavior of the gratings, an in-situ monitoring setup was added to the Sagnac interferometer writing system. This consists of two 3-axis translation stages to couple the light from an EDFA-ASE source to the waveguide and from the waveguide to an OSA, via high-NA fibers. Figure 3 shows the evolution of the gratings during the writing process, for a 5 cm long, 5 µm wide waveguide. The total writing power at the waveguide surface is 5.6 mW. The spectra in Figure 3 are for TE polarized light, obtained with a polarization control stage (before the waveguide) in the in-situ monitoring setup. The transmission spectra of gratings are after 86, 196, 350 and 712 seconds of writing time. As seen, the Bragg wavelength, strength and shape of the spectra evolve over time. The emergence of spectral sidelobes at the short wavelength side of the spectrum is an indication of formation of a Gaussian grating profile. Change in