THE FIXED POINT ALTERNATIVE THEOREM
AND SET-VALUED FUNCTIONAL EQUATIONS

ALIREZA KAMEL MIRMOSTAFAEE AND MOSTAFA MAHDAVI

Center of Excellence in Analysis on Algebraic Structures
Department of Pure Mathematics, School of Mathematical Sciences
Ferdowsi University of Mashhad
Mashhad 91775, Iran
E-mail:mirmostafaei@ferdowsi.um.ac.ir

Abstract. We use the fixed point alternative theorem to prove the stability of the set-valued function equation
\[c(x)F(h(x)) = F(x). \]
This result enable us to prove the stability of some set-valued functional equations.

Key Words and Phrases: Set-valued mappings, functional inequalities, non-expensive mappings.

2010 Mathematics Subject Classification: 39B52, 39B69, 47S09.

1. Introduction

One of the main topics in functional equations is Hyers-Ulam stability which was originated from a question of S. M. Ulam [25]. D. H. Hyers [12] gave the first significant partial solution to Ulam’s question. The theorem of Hyers was generalized by T. Aoki [1] for additive mappings and by Th.M. Rassias [22] for linear mappings by considering an unbounded Cauchy difference. The paper of Th.M. Rassias has provided a lot of influence in the development of what we now call Hyers-Ulam-Rassias stability of functional equations.

It should be noted that almost all proofs in this topic used Hyers method. In 1991, Baker [3] used the Banach fixed point theorem to prove Hyers-Ulam stability for a non-linear functional equation. V. Radu [21], in 2003, employed the fixed point alternative theorem [9] to establish the stability of Cauchy additive functional equation. Using such an elegant idea, several authors applied the method to investigate the stability of some functional equations, (see e. g. [5, 6, 7, 10, 13, 14, 16, 17, 19, 20]).

The theory of set-valued functions was fairly systematically developed for the first time in Berge’s book [4]. It is of interest to investigate the Hyers-Ulam stability of set-valued functional equations and inclusions. Although there are much less results of Hyers-Ulam stability for set-valued ones than those for single-valued ones, some interesting results were obtained by several mathematicians (e.g. [2, 11, 15, 18, 23, 24, 26]).