
Distributed RDFS Knowledge-based System Update in Case of Deletions

Hamid Oliaei, Mahmoud Naghibzadeh Member, IEEE
Faculty of engineering

Ferdowsi university of Mashhad
Mashhad, Iran

oliaei.hamid@stu-mail.um.ac.ir, naghibzadeh@um.ac.ir

Abstract— This article presents a method for maintaining the
materialization of a RDFS Knowledge-Base in case of fact
deletions in a distributed way. MapReduce framework is used
to implement and test the method. Current MapReduce
framework-based distributed reasoning is used for static RDFS
knowledge bases. However, any changes in KB have been
followed by rebuilding the closure which is very time
consuming. The alternative is to update it. The method
preserves soundness and completeness which are necessary
conditions to any materialization process. The steps involved in
fact deletion is recognized and a set of RDFS rules is devised
accordingly to preserve correctness properties. Finally, we
analyze the time and space consumed by the presented method.

Keywords- Distributed RDFS; Knowledge base deletion
maintenance; Soundness and completeness

I. INTRODUCTION

Scalable reasoning is a huge challenge in semantic web.

With current large amount of data and its fast growth, even
supercomputers maybe can't work efficient for reasoning on
this scale. So a distributed way must be considered. For huge
amount of data, computing the closure under a semantic
needs distributed methods too.

 Another challenge is maintaining materialization in case
of changes. They can be deletion, insertion or updating some
facts or rules in knowledge base. Of course, we can handle
an update with a deletion and an insertion.

Between handling deletion and insertion, deletion is more
important. After deletion of some facts or rules, it's
completely possible that other facts or rules become
incorrect. So if we can't use proper methods in case of
deletions from KB, soundness may be lost.

After ontology materialization, most current distributed
systems don't have any solution for changes facts or rules. In
current state, after a deletion from a closure, for keeping its
soundness, the closure must be rebuilt that is time
consuming. In this paper we focus on fact deletion from a
distributed RDFS knowledge base and found a solution for
maintaining that in case of fact deletions using MapReduce
framework. We use method introduced in [10] for rewriting
rules for maintaining KB. We will show later that finding a
way for doing the overestimation step as distributed is
enough for maintaining the KB. We use MapReduce
framework explained in [1] for processing the RDFS rules.
We rewrites the procedures for deletion rules and find a

procedure for doing the jobs correctly so after finishing the
jobs we can be sure that our KB is still sound and degree of
its completeness is equal to [1].

Our method's properties are:
• Using current maintenance method in a

distributed way;
• Using MapReduce framework for distributed

processing
• Skipping rederivation step to optimize

consuming time & hard disk space
This paper as structured as follows: section 2 discuss

about related works. Section 3 is about the whole Idea.
Finally conclusion and future work will be discussed.

II. RELATED WORK
In scalable systems scope, Urbani et al. [1] found a way

for building a closure Based on RDFS. From distributed
aspect our work uses their ideas and algorithms. They
extended their work to OWL/Horst KBs in [2] and add
incrementally maintenance of materialization to the system
in [3]. Oren et al. [4] use a data partitioning technique based
on triple common terms. Their idea's problem is high
overhead and redundancy. Weaver et al. [5] use a parallel
algorithm for materializing the complete RDFS closure.
They consider RDFS characteristics. They define classes of
RDFS rules and use ABox Partitioning. Su et al. [6] have
demonstrated a logic for large scale data with combination of
OWL with Horn clauses called β-PSML. Verstichel et al. [7]
break concepts in two parts including contents and services
to present an OWL-based meta-model for distributed
reasoning using data partitioning. Fensel et al. [8] in a project
called LarKC, achieved scalability through parallelization
and giving up completeness. They reason on part of data and
then decide what to do. Schlicht et al. [9] presented a sound
and complete distributed method for ontologies using
ordered resolution. They implemented their work on ALC
models.

In maintenance of materialization scope, Volz et al [10]
use a technique for management of dynamic update using
rewritten rules and maintenance programs. We borrow our
deletion rules notations from them. Stuckenschmidt et al.
[11] presented a notion called distributed description logics
for modular ontologies based on logic SHIQ. They presented
a method for handling simple changes and update the
ontology. DeGiacomo et al. [12] presented an algorithm for

