Title : ( Theoretical investigation of effects of local cooling of a nozzle divergent section for controlling condensation shock in a supersonic two-phase flow of steam )
Authors: Mohammad Reza Mahpeykar , Ali Reza Teymourtash , Ehsan Amiri Rad ,Access to full-text not allowed by authors
Abstract
In supersonic adiabatic two-phase flows of steam, under the influence of supersonic acceleration, the fluid loses its equilibrium conditions and becomes supersaturated. Following this condition and to restore the fluid to equilibrium, micro droplets of water form in the absence of any surface or foreign particles. This phenomenon is called nucleation and the formed minute small droplets grow along the fluid flow path. The formation of these droplets and their growth causes the release of the latent heat of evaporation to the gas phase particularly in the nucleation region, and results in an increase in the flow pressure which is called the condensation shock. In this paper, and in continuation of the series of papers by the authors, in addition to analytically solving the adiabatic gas-liquid supersonic flow of steam in a convergent-divergent channel, a novel solution to controlling the undesired effects of this pressure rise (condensation shock) is presented. In the proposed method, with the help of cooling the divergent section of the nozzle, the analytical model for the 1D non-adiabatic two-phase steam flow is further developed which shows considerable decrease in the intensity of the formed condensation shock.