Journal of Mathematical Physics, ( ISI ), Volume (57), No (1), Year (2016-1) , Pages (1-15)

Title : ( Inequalities for operator space numerical radius of 2x2 block matrices )

Authors: Mohammad Sal Moslehian , Mostafa Sattari ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

In this paper, we study the relationship between operator space norm and operator space numerical radius on the matrix space $\mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. Moreover, we establish several inequalities for operator space numerical radius and the maximal numerical radius norm of $2\times 2$ operator matrices and their off-diagonal parts. One of our main results states that if $(X, (O_n))$ is an operator space, then \begin{align*} \frac12\max\big(W_{\max}(x_1+x_2)&, W_{\max}(x_1-x_2) \big)\\ &\le W_{\max}\Big(\begin{bmatrix} 0 & x_1 \\ x_2 & 0 \end{bmatrix}\Big)\\ &\hspace{1.5cm}\le \frac12\left(W_{\max}(x_1+x_2)+ W_{\max}(x_1-x_2) \right) \end{align*} for all $x_1, x_2\in \mathcal{M}_n(X)$.

Keywords

, Numerical radius operator space, operator space norm, maximal numerical radius norm, block matrix, operator space