Iranian Journal of Science and Technology-Transaction A: Science, ( ISI ), Volume (42), No (3), Year (2017-1) , Pages (1505-1509)

Title : ( Two Adaptive Dai–Liao Nonlinear Conjugate Gradient Methods )

Authors: Saman Babaie-Kafaki , Reza Ghanbari ,

Access to full-text not allowed by authors

Citation: BibTeX | EndNote

Abstract

Following recent attempts to find appropriate choices for parameter of the nonlinear conjugate gradient method proposed by Dai and Liao, two adaptive versions of the method are proposed based on a matrix analysis and using the memoryless BFGS updating formula. Under proper conditions, it is shown that the methods are globally convergent. Numerical experiments are done on a set of CUTEr unconstrained optimization test problems; they demonstrate the efficiency of the proposed methods in the sense of Dolan–Moré performance profile.

Keywords

, Unconstrained optimization, Conjugate gradient method, BFGS update, Line search, Global convergence
برای دانلود از شناسه و رمز عبور پرتال پویا استفاده کنید.

@article{paperid:1066987,
author = {Saman Babaie-Kafaki and Ghanbari, Reza},
title = {Two Adaptive Dai–Liao Nonlinear Conjugate Gradient Methods},
journal = {Iranian Journal of Science and Technology-Transaction A: Science},
year = {2017},
volume = {42},
number = {3},
month = {January},
issn = {1028-6276},
pages = {1505--1509},
numpages = {4},
keywords = {Unconstrained optimization; Conjugate gradient method; BFGS update; Line search; Global convergence},
}

[Download]

%0 Journal Article
%T Two Adaptive Dai–Liao Nonlinear Conjugate Gradient Methods
%A Saman Babaie-Kafaki
%A Ghanbari, Reza
%J Iranian Journal of Science and Technology-Transaction A: Science
%@ 1028-6276
%D 2017

[Download]